1
|
Ma C, Zhang L, Huang Q, Deng Q, Huang F, Xu J. Phenethyl isothiocyanate ameliorates liver injuries secondary to inflammatory bowel disease. Food Funct 2025; 16:2589-2597. [PMID: 40047466 DOI: 10.1039/d4fo04931d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Inflammatory bowel disease (IBD) is often accompanied by secondary liver injury which further evolves into various hepatobiliary disorders. The pathogenesis of secondary liver injury involves many different mechanisms including inflammation, pyroptosis, oxidative stress, and heat shock response. Here, we tested the effect of administration of phenethyl isothiocyanate (PEITC) on secondary liver injury in DSS-induced IBD mice. PEITC supplementation reversed liver injury as determined by hepatic injury-related parameters and histopathological examinations. Severe hepatic inflammation with IBD, evidenced by ubiquitously distributed activated macrophages, increased secretion of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), enhanced expression of inflammation-related proteins (iNOS and COX-2), and augmented activation of the TLR4/NF-κB signaling pathway, was inhibited by PEITC treatment. PEITC also prevented IBD-induced increases in pyroptosis and oxidative stress in the liver. In addition, impairments of hepatic heat shock response elicited by IBD were restored by PEITC treatment. Taken together, these results suggested that PEITC may be effective as a therapeutic reagent to attenuate secondary liver injury caused by IBD.
Collapse
Affiliation(s)
- Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Li Zhang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard, Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, No. 11, Lingjiaohu Road, Wuhan 430015, P.R. China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| |
Collapse
|
2
|
Wang L, Liu Y, Shen G, He G, Qiu S, Li B. Mechanisms of Si-Wu Decoction in the treatment of ulcerative colitis revealed by network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116847. [PMID: 37356743 DOI: 10.1016/j.jep.2023.116847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Wu Decoction (SWD) is a traditional Chinese medicine decoction. SWD is commonly used to treat blood deficiency syndrome. It is also used to treat some ulcerative colitis (UC) patients now, but the mechanism of action remains unclear. AIM OF THE STUDY This study explored the efficacy and mechanism of action of SWD in treating UC based on network pharmacology and related experimental validation. MATERIALS AND METHODS Several databases were used to screen SWD for major active ingredients, targets of the ingredients, and UC disease genes. Cytoscape 3.8.2 software was used for topological analysis to construct the drug-compound-disease gene-target relationship network. The String database platform was used to construct the target protein interaction network. The DAVID (Database for Annotation, Visualization and Integrated Discovery) database was used to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis for the key targets. DSS (Dextran Sulfate Sodium)-induced UC mouse model was used to evaluate the in-vivo activity of SWD. Western Blot analysis and quantitative polymerase chain reaction were performed to verify the targets in the related pathways. RESULTS Network pharmacology revealed that the SWD targeted pathway network involved 12 core targets and 15 major pathways. SWD may play a part by targeting key targets such as nuclear factor-kappaB (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) pathway, and several mitogenic pathways. We showed that SWD largely restored the colorectal structure in UC model mice. Compared to the model group, the SWD group showed reduced infiltration of inflammatory cells. SWD significantly decreased the mRNA levels of IL-6 (Interleukin-6), TNF-α (Tumor necrosis factor-alpha), IL-1b (Interleukin-1beta) and other pro-inflammatory factors. Western Blot results showed that SWD concentration-dependently inhibited STAT3 and NF-κB activation in DSS-treated colon tissue. CONCLUSION Our findings suggest that SWD treats UC by inhibiting STAT3 and NF-κB signaling pathways, reducing the expression of inflammatory cytokines, and improving epithelial repair in experimental colitis, thus shedding light on the mechanisms by which SWD exerts its effects on UC.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Guanlin He
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Shoutao Qiu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Baojie Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Fiel MI, Schiano TD. Systemic Disease and the Liver Part 2: Pregnancy-Related Liver Injury, Sepsis/Critical Illness, Hypoxia, Psoriasis, Scleroderma/Sjogren's Syndrome, Sarcoidosis, Common Variable Immune Deficiency, Cystic Fibrosis, Inflammatory Bowel Disease, and Hematologic Disorders. Surg Pathol Clin 2023; 16:485-498. [PMID: 37536884 DOI: 10.1016/j.path.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The liver is involved in many multisystem diseases and commonly may manifest with abnormal liver chemistry tests. The liver test perturbations may be multifactorial in nature, however, as patients are receiving many different medications and can also have intrinsic liver disease that may be exacerbated by the systemic disorder. Some disorders have typical histologic findings that can be diagnosed on liver biopsy, whereas others will show a more nonspecific histology. Clinicians should be aware of these conditions so as to consider the performance of a liver biopsy at the most opportune time and setting to help establish the diagnosis of acute or chronic liver disease.
Collapse
Affiliation(s)
- Maria Isabel Fiel
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA.
| | - Thomas D Schiano
- Division of Liver Diseases, Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place-Box 1104, New York, NY 10029, USA
| |
Collapse
|
4
|
Hu X, Liu W, He M, Qiu Q, Zhou B, Liu R, Wu F, Huang Z. Comparison of the molecular mechanisms of Fuzi Lizhong Pill and Huangqin decoction in the treatment of the cold and heat syndromes of ulcerative colitis based on network pharmacology. Comput Biol Med 2023; 159:106870. [PMID: 37084637 DOI: 10.1016/j.compbiomed.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE The aim of this study was to illuminate the similarities and differences of two prescriptions as "cold" and "heat" drugs for treating ulcerative colitis (UC) with the simultaneous occurrence of heat and cold syndrome via network pharmacology. METHODS (1) Active compounds of Fuzi-Lizhong Pill (FLP) and Huangqin Decoction (HQT) were retrieved from the TCMSP database, and their common active compounds were compared using the Venn diagram. (2) Potential proteins targeted to three sets of compounds either (i) shared by FLP and HQT, (ii) unique to FLP or (iii) unique to HQT were screened from the STP, STITCH and TCMSP databases, and three corresponding core compound sets were identified in Herb-Compound-Target (H-C-T) networks. (3) Targets related to UC were identified from the DisGeNET and GeneCards databases and compared with the FLP-HQT common targets to identify potential targets of FLP-HQT compounds related to UC. (4) Three potential target sets were imported into the STRING database for protein‒protein interaction (PPI) analysis, and three core target sets were defined. (5) The binding capabilities and interacting modes between core compounds and key targets were verified by molecular docking via Discovery Studio 2019 and molecular dynamics (MD) simulations via Amber 2018. (6) The target sets were enriched for KEGG pathways using the DAVID database. RESULTS (1) FLP and HQT included 95 and 113 active compounds, respectively, with 46 common compounds, 49 FLP-specific compounds and 67 HQT-specific compounds. (2) 174 targets of FLP-HQT common compounds, 168 targets of FLP-specific compounds, and 369 targets of HQT-specific compounds were predicted from the STP, STITCH and TCMSP databases; six core compounds specific to FLP and HQT were screened in the FLP-specific and HQT-specific H-C-T networks, respectively. (3) 103 targets overlapped from the 174 predicted targets and the 4749 UC-related targets; two core compounds for FLP-HQT were identified from the FLP-HQT H-C-T network. (4) 103 FLP-HQT-UC common targets, 168 of FLP-specific targets and 369 of HQT-specific targets had shared core targets (AKT1, MAPK3, TNF, JUN and CASP3) based on the PPI network analysis. (5) Molecular docking demonstrated that naringenin, formononetin, luteolin, glycitein, quercetin, kaempferol and baicalein of FLP and HQT play a critical role in treating UC; meanwhile, MD simulations revealed the stability of protein‒ligand interactions. (6) The enriched pathways indicated that most targets were related to anti-inflammatory, immunomodulatory and other pathways. Compared with the pathways identified using traditional methods, FLP-specific pathways included the PPAR signaling pathway and the bile secretion pathway, and HQT-specific pathways included the vascular smooth muscle contraction pathway and the natural killer cell-mediated cytotoxicity pathway etc. CONCLUSION: In this study, we clarified the common mechanisms of FLP and HQT in treating UC and their specific mechanisms in treating cold and heat syndrome in UC through compound, target and pathway distinction and a literature comparison based on network pharmacology; these results provide a new perspective on the detailed mechanism of "multidrugs and single-disease" thought in traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiyun Hu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Weidong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Meiqi He
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Qimiao Qiu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Bingjie Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Ruining Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Fengxu Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China; Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| |
Collapse
|
5
|
Wang C, Pan Z, Jin Y. F-53B induces hepatotoxic effects and slows self-healing in ulcerative colitis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120819. [PMID: 36481465 DOI: 10.1016/j.envpol.2022.120819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated polyfluorinated ether sulfonate (F-53 B) is a distinct substitute for perfluorooctane sulphonate. It has been reported to be biologically toxic to mammals, causing enteric toxicity, liver toxicity and neurotoxicity. However, studies about the effects of F-53 B on patients with gastrointestinal diseases such as inflammatory bowel disease are very limited. In this study, whether the toxic impacts of F-53 B on the gut and liver can be exacerbated in mice with colitis was explored. The sensitivity of mice with acute colitis caused by dextran sulfate sodium salt (DSS) to F-53 B was compared with that of healthy mice. The mice were administered water containing F-53 B at doses of 10 and 100 μg/L sequentially for two weeks, respectively. F-53 B exposure exacerbated DSS-induced colonic inflammation, including inducing shortening of colon length, inflammatory cell infiltration and more severe histopathological symptoms. In addition, F-53 B administration significantly increased the levels of inflammatory cytokines, including interleukin (IL)-1, IL-6 and tumour necrosis factor-α, in the plasma of mice with enteritis compared with control group. F-53 B impaired intestinal integrity of mice with colitis by downregulating Claudin-1 and antimicrobial peptide-related genes while elevating serum lipopolysaccharide levels. In addition, in mice with colitis, F-53 B increased the levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, aspartate aminotransferase, and alanine aminotransferase, resulted in more severe liver inflammation and increased the level of genes related to the Gasdermin D-mediated pyrolysis. Conclusively, our results indicated that F-53 B delayed the self-healing of ulcerative colitis (UC) and caused liver inflammation in mice. This study provided some new insights into the health risks of F-53 B and raises concerns about the health of individuals with UC.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China; Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
6
|
Luo T, Wang D, Zhao Y, Li X, Yang G, Jin Y. Polystyrene microplastics exacerbate experimental colitis in mice tightly associated with the occurrence of hepatic inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156884. [PMID: 35752249 DOI: 10.1016/j.scitotenv.2022.156884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 05/27/2023]
Abstract
The potential health effects of microplastics (MPs) have become a public concern due to their ubiquitousness in the environment and life. Numerous studies have demonstrated that a high dose of MPs can adversely affect gastrointestinal health. However, few studies have focused on the impact of microplastics on patients' health with respect to gastrointestinal diseases. Inflammatory bowel disease (IBD) has emerged as a global disease with a rapidly increasing incidence. IBD, a specific gastrointestinal illness characterized by acute, chronic inflammation and intestinal barrier dysfunction, might increase sensitivity to MPs exposure. Herein, we investigated the impact and mechanism of PS-MPs on dextran sodium sulfate (DSS)-induced colitis. The results demonstrated that gavage with PS-MPs alone caused minimal effects on the intestinal barrier and liver status of mice. For mice with colitis, additional PS-MPs exposure caused a shorter colon length, aggravated histopathological damage and inflammation, reduced mucus secretion, and increased the colon permeability. Furthermore, PS-MPs exposure also increased the risk of secondary liver injury associated with inflammatory cell infiltration. These findings provide more histopathological evidence and suggest a need for more research on the health risk of MPs for sensitive individuals.
Collapse
Affiliation(s)
- Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
7
|
Albuquerque-Souza E, Sahingur SE. Periodontitis, chronic liver diseases, and the emerging oral-gut-liver axis. Periodontol 2000 2022; 89:125-141. [PMID: 35244954 PMCID: PMC9314012 DOI: 10.1111/prd.12427] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver carries out a wide range of functions ranging from the control of metabolites, nutrient storage, and detoxification to immunosurveillance. While inflammation is essential for the tissue remodeling and maintenance of homeostasis and normal liver physiology, constant exposure to dietary and microbial products creates a niche for potentially prolonged immune activation and unresolved inflammation in susceptible host. Failure to restrain inflammation can lead to development of chronic liver diseases characterized by fibrosis, cirrhosis and eventually liver failure. The liver maintains close interactions with numerous organs which can influence its metabolism and physiology. It is also known that oral cavity microenvironment can influence the physiological conditions of other organs and emerging evidence implicates that this could be true for the liver as well. Presence of chronic inflammation and dysbiotic microbiota is a common feature leading to clinical pathology both in periodontitis and chronic liver diseases (CLDs). In fact, known CLDs appear to have some relationship with periodontitis, which impacts the onset or progression of these conditions in a bidirectional crosstalk. In this review, we explore the emerging association between oral‐gut‐liver axis focusing on periodontitis and common CLDs including nonalcoholic fatty liver disease, chronic viral hepatitis, liver cirrhosis, and hepatocellular cancer. We highlight the immune pathways and oral microbiome interactions which can link oral cavity and liver health and offer perspectives for future research.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sinem E Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Zhu L, Zong X, Xiao X, Cheng Y, Fu J, Lu Z, Jin M, Wang F, Wang Y. Multi-Omics Analysis of the Gut-Liver Axis Reveals the Mechanism of Liver Injury in Colitis Mice. Front Immunol 2022; 12:773070. [PMID: 35069545 PMCID: PMC8770869 DOI: 10.3389/fimmu.2021.773070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Liver injury is a common complication of inflammatory bowel disease (IBD). However, the mechanisms of liver injury development are not clear in IBD patients. Gut microbiota is thought to be engaged in IBD pathogenesis. Here, by an integrated analysis of host transcriptome and colonic microbiome, we have attempted to reveal the mechanism of liver injury in colitis mice. In this study, dextran sulfate sodium (DSS) -induced mice colitis model was constructed. Liver transcriptome showed significant up- and down-regulation of pathways linked to immune response and lipid metabolism, respectively. Whilst the colon transcriptome exhibited dramatic alterations in immune response and pathways associated with cell growth and death. The microbiota of DSS-treated mice underwent strong transitions. Correlation analyses identified genes associated with liver and colon injury, whose expression was associated with the abundance of liver and gut health-related bacteria. Collectively, the results indicate that the liver injury in colitis mice may be related to the intestinal dysbiosis and host-microbiota interactions. These findings may provide new insights for identifying potential targets for the treatment of IBD and its induced liver injury.
Collapse
Affiliation(s)
- Luoyi Zhu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin Zong
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Xiao
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuanzhi Cheng
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Jie Fu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Wang L, Jiao T, Yu Q, Wang J, Wang L, Wang G, Zhang H, Zhao J, Chen W. Bifidobacterium bifidum Shows More Diversified Ways of Relieving Non-Alcoholic Fatty Liver Compared with Bifidobacterium adolescentis. Biomedicines 2021; 10:biomedicines10010084. [PMID: 35052765 PMCID: PMC8772902 DOI: 10.3390/biomedicines10010084] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
The occurrence of non-alcoholic fatty liver disease (NAFLD) is closely related to intestinal microbiota disturbance, and probiotics has become a new strategy to assist in alleviating NAFLD. In order to investigate the effect of Bifidobacterium on NAFLD and the possible pathway, a NAFLD model was established by using a high-fat diet (HFD) for 18 weeks. Fourteen strains of Bifidobacterium were selected (seven Bifidobacterium adolescentis and seven Bifidobacterium bifidum) for intervention. The effects of different bifidobacteria on NAFLD were evaluated from liver cell injury, liver fat deposition, liver inflammatory state and liver histopathology, and were taken as entry points to explore the mitigation approaches of bifidobacteria through energy intake, lipid metabolism, glucose metabolism and intestinal permeability. The results showed that Bifidobacterium exerts species-specific effects on NAFLD. B. bifidum exerted these effects mainly through regulating the intestinal microbiota, increasing the relative abundance of Faecalibaculum and Lactobacillus, decreasing the relative abundance of Tyzzerella, Escherichia-Shigella, Intestinimonas, Osillibacter and Ruminiclostridium, and further increasing the contents of propionic acid and butyric acid, regulating lipid metabolism and intestinal permeability, and ultimately inhibiting liver inflammation and fat accumulation to alleviate NAFLD. B. adolescentis exerted its effects mainly through changing the intestinal microbiota, increasing the content of propionic acid, regulating lipid metabolism and ultimately inhibiting liver inflammation to alleviate NAFLD.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Ting Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute, Wuxi Branch, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: ; Tel./Fax: +86-510-8591-2155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Gaspar R, Branco CC, Macedo G. Liver manifestations and complications in inflammatory bowel disease: A review. World J Hepatol 2021; 13:1956-1967. [PMID: 35070000 PMCID: PMC8727205 DOI: 10.4254/wjh.v13.i12.1956] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary manifestations are common in inflammatory bowel disease (IBD), with 30% of patients presenting abnormal liver tests and 5% developing chronic liver disease. They range from asymptomatic elevated liver tests to life-threatening disease and usually follow an independent course from IBD. The pathogenesis of liver manifestations or complications and IBD can be closely related by sharing a common auto-immune background (in primary sclerosing cholangitis, IgG4-related cholangitis, and autoimmune hepatitis), intestinal inflammation (in portal vein thrombosis and granulomatous hepatitis), metabolic impairment (in non-alcoholic fatty liver disease or cholelithiasis), or drug toxicity (in drug induced liver injury or hepatitis B virus infection reactivation). Their evaluation should prompt a full diagnostic workup to identify and readily treat all complications, improving management and outcome.
Collapse
Affiliation(s)
- Rui Gaspar
- Department of Gastroenterology and Hepatology, Centro Hospitalar de São João, Porto 4200, Portugal
| | - Catarina Castelo Branco
- Internal Medicine Department, Centro Hospitalar e Universitário do Porto, Porto 4200, Portugal
| | - Guilherme Macedo
- Department of Gastroenterology and Hepatology, Centro Hospitalar de São João, Porto 4200, Portugal
| |
Collapse
|
11
|
Voss J, Schneider CV, Kleinjans M, Bruns T, Trautwein C, Strnad P. Hepatobiliary phenotype of individuals with chronic intestinal disorders. Sci Rep 2021; 11:19954. [PMID: 34620902 PMCID: PMC8497585 DOI: 10.1038/s41598-021-98843-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the known functional relationship between the gut and the liver, the clinical consequences of this circuit remain unclear. We assessed the hepatobiliary phenotype of cohorts with celiac disease (CeD), Crohn´s disease (CD) and ulcerative colitis (UC). Baseline liver function tests and the frequency of hepatobiliary diseases were analyzed in 2377 CeD, 1738 CD, 3684 UC subjects and 488,941 controls from the population-based UK Biobank cohort. In this cohort study associations were adjusted for age, sex, BMI, diabetes, and alcohol consumption. Compared to controls, cohorts with CeD, but not CD/UC displayed higher AST/ALT values. Subjects with CD/UC but not CeD had increased GGT levels. Elevated ALP and cholelithiasis were significantly more common in all intestinal disorders. Non-alcoholic steatohepatitis and hepatocellular carcinoma (HCC) were enriched in CeD and CD (NASH: taOR = 4.9 [2.2-11.0] in CeD, aOR = 4.2 [1.7-10.3] in CD, HCC: aOR = 4.8 [1.8-13.0] in CeD, aOR = 5.9 [2.2-16.1] in CD), while cholangitis was more common in the CD/UC cohorts (aOR = 11.7 [9.1-15.0] in UC, aOR = 3.5 [1.8-6.8] in CD). Chronic hepatitis, autoimmune hepatitis (AIH) and cirrhosis were more prevalent in all intestinal disorders. In UC/CD, a history of intestinal surgery was associated with elevated liver enzymes and increased occurrence of gallstones (UC: aOR = 2.9 [2.1-4.1], CD: 1.7 [1.2-2.3]). Our data demonstrate that different intestinal disorders predispose to distinct hepatobiliary phenotypes. An increased occurrence of liver cirrhosis, NASH, AIH and HCC and the impact of surgery warrant further exploration.
Collapse
Affiliation(s)
- Jessica Voss
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Moritz Kleinjans
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Tony Bruns
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Liver test abnormalities in children with inflammatory bowel disease (IBD) are usually insidious in onset. By the time that symptoms referable to liver disease have appeared, the liver injury may be well advanced. It is, therefore, important that children with an incidental finding of abnormal liver tests are investigated in an appropriate and timely manner. RECENT FINDINGS The most prevalent cause of liver test elevations in paediatric IBD is immune-related liver disease, including primary sclerosing cholangitis, autoimmune sclerosing cholangitis, and autoimmune hepatitis. Although less common, drugs used in the treatment of IBD can also cause liver injury. The diagnosis of drug-induced liver injury relies largely on excluding other causes of liver injury, such as viral hepatitis, nonalcoholic fatty liver disease, and biliary and vascular complications. SUMMARY This review highlights an avenue to a step-wise approach for investigating children with IBD and silent liver test elevations. Central to the timing of diagnostic actions is grading the severity of liver test elevations.
Collapse
Affiliation(s)
- Patrick F van Rheenen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Groningen, University Medical Centre Groningen - Beatrix Children's Hospital, Groningen, The Netherlands
| |
Collapse
|
13
|
Shi L, Lu BL, Qiu Y, Huang L, Huang SY, Mao R, Lin JJ, Du JF, Feng ST, Li ZP, Sun CH, Li XH. Hepatic mosaic enhancement pattern correlates with increased inflammatory activity and adverse therapeutic outcomes in patients with Crohn's disease. Abdom Radiol (NY) 2021; 46:3149-3158. [PMID: 33646351 DOI: 10.1007/s00261-021-02979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE This study aimed to evaluate the role of hepatic mosaic enhancement pattern (HMEP) on computed tomography images in the disease activity and therapeutic outcome of Crohn's Disease (CD). METHODS Twenty-five CD patients with HMEP comprised the HMEP group, and 25 CD patients without HMEP, who had a similar onset age, sex, and disease course with those in the HMEP group, comprised the non-HMEP group. No underlying liver/biliary disease was observed in any of the patients. Clinical characteristics, laboratory test results, Lémann index, and CD endoscopic index of severity (CDEIS) were compared between the groups using the Student t-, Mann-Whitney U, Chi square, or Fisher's exact tests. Patients received top-down, step-up, or traditional treatment during the follow-up period. After the 1-year follow-up, therapeutic outcomes (active inflammation [CDEIS > 3.5 if the endoscopic data were available, or C-reactive protein level > 5 mg/L if the endoscopic data were unavailable] or remission) were evaluated. RESULTS The occurrence rate of fistulas/abscesses was higher in the HMEP group (84%, 21/25) than in the non-HMEP group (48%, 12/25) with no statistical significance (P = 0.056). The HMEP group showed a higher C-reactive protein level (P = 0.001), erythrocyte sedimentation rate (P = 0.013), and blood platelet count (P = 0.005). There was no significant difference in therapeutic strategies between the groups (P = 0.509). The HMEP group showed a significantly lower remission ratio after anti-inflammatory treatment than the non-HMEP group (P = 0.045). CONCLUSIONS HMEP was correlated with increased inflammatory activity and adverse therapeutic outcomes in CD. This finding provided insights regarding novel markers of CD diagnosis and treatment.
Collapse
Affiliation(s)
- Li Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150, People's Republic of China
| | - Bao-Lan Lu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Si-Yun Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Jin-Jiang Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Jin-Fang Du
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Zi-Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Can-Hui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.
| | - Xue-Hua Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
14
|
El-Shabrawi MHF, Tarek S, Abou-Zekri M, Meshaal S, Enayet A, Mogahed EA. Hepatobiliary manifestations in children with inflammatory bowel disease: A single-center experience in a low/middle income country. World J Gastrointest Pharmacol Ther 2020; 11:48-58. [PMID: 32844043 PMCID: PMC7416377 DOI: 10.4292/wjgpt.v11.i3.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/28/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There has been a worldwide increase in the reported incidence of inflammatory bowel disease (IBD) in children over the past 2-3 decades. The hepatobiliary (HB) manifestations of IBD have been well-studied in children in industrialized and developed countries but are infrequently reported in low- and middle-income countries (LMIC) such as Egypt.
AIM To determine the prevalence of the HB manifestations in a cohort of Egyptian children with IBD.
METHODS This cross-sectional observational study was carried out over a period of 6 mo (between June 2013 to December 2013) at the Paediatric Hepatology and Gastroenterology Units of Cairo University Children's Hospital, which is the largest paediatric tertiary care centre in the country.
RESULTS The study included 48 patients with confirmed IBD based upon clinical, laboratory, endoscopic and histopathological features, 29 (60.4%) were male. Twenty-four patients (50%) had ulcerative colitis (UC), 11 (22.9%) had Crohn's disease (CD) and 13 (27.1%) had unclassified-IBD (IBD-U), which was formerly known as indeterminate colitis. The mean age of the patients at the time of presentation was 8.14 (± SD 4.02) years and the mean age at the time of study enrolment was 10.16 (± SD 4.19) years. All patients were screened for HB manifestations by physical examination, liver function tests, imaging and liver biopsy when indicated. HB disorders were confirmed in 13 patients (27.1%). Transaminases were elevated in 3 patients (6.3%). Two patients (4.2%) had elevated biliary enzymes (one was diagnosed as primary sclerosing cholangitis (PSC) and the other was diagnosed with PSC/autoimmune hepatitis overlap syndrome and the third patient had hepatitis C virus infection. Ten patients (20.8%) had bright echogenic liver on ultrasound suggesting fatty infiltration as a sequel of malnutrition or medication toxicity.
CONCLUSION The commonest HB disorders in Egyptian children with IBD were abnormal liver function tests, fatty infiltration and PSC. These HB manifestations in paediatric patients in LMIC may be relatively more common than in industrialized countries. Therefore, IBD patients in LMIC should be meticulously screened for liver disease to allow prompt diagnosis and management.
Collapse
Affiliation(s)
- Mortada HF El-Shabrawi
- Department of Paediatrics, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt
| | - Sara Tarek
- Department of Paediatrics, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt
| | - Maha Abou-Zekri
- Department of Paediatrics, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt
| | - Safa Meshaal
- Department of Clinical Pathology, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt
| | - Afaf Enayet
- Department of Paediatrics, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt
| | - Engy Adel Mogahed
- Department of Paediatrics, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
15
|
Duan S, Du X, Chen S, Liang J, Huang S, Hou S, Gao J, Ding P. Effect of vitexin on alleviating liver inflammation in a dextran sulfate sodium (DSS)-induced colitis model. Biomed Pharmacother 2020; 121:109683. [DOI: 10.1016/j.biopha.2019.109683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/28/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022] Open
|
16
|
Konidari A, Dickens D, Pirmohamed M. Inflammatory Bowel Disease: A Personalized Approach. Front Pediatr 2020; 8:620545. [PMID: 33643966 PMCID: PMC7904676 DOI: 10.3389/fped.2020.620545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Anastasia Konidari
- B Pediatric Clinic, Paidon Aglaia Kyriakou Children's Hospital, Athens, Greece.,The Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | - David Dickens
- The Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- The Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Li S, Xie A, Li H, Zou X, Zhang Q. A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease. J Control Release 2019; 316:66-78. [PMID: 31682913 DOI: 10.1016/j.jconrel.2019.10.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/09/2023]
Abstract
A self-assembled and oxidation-degradable Janus-prodrug, termed as Bud-ATK-Tem (B-ATK-T), was fabricated by ROS-responsive aromatized thioketal (ATK) linked anti-inflammatory drug budesonide (Bud) and antioxidant tempol (Tem). Benefiting from the hydrophobic interactions and π-π stacking interactions of ATK, prodrug B-ATK-T could self-assemble into nanoparticles (NP) in water containing lecithin and DSPE-PEG2K. The morphology of B-ATK-T NP (approximate 100-120nm) was confirmed to be regular spherical by transmission electron microscope. B-ATK-T NP was endowed high drug loading content with 41.23% for Bud and 15.55% for Tem. The rapid drug release from B-ATK-T NP proceeded in an extensive reactive oxygen species (ROS)-dependent manner. More than 98% of Bud and Tem in B-ATK-T NP could release in the mimic inflammation microenvironment or phorbol-12-myristate-13-acetate (PMA)-stimulated macrophages within short time. The release of drugs in a simultaneous and proportional manner ensures that B-ATK-T NP can increase the combined efficacy of anti-inflammation and anti-oxidation. It is worth noting that B-ATK-T NP could be passively accumulated and dramatically increasing the maximum drugs concentration in the inflamed colon of mice with inflammatory bowel disease (IBD) by oral route, and avoiding potential systemic side effects. B-ATK-T NP could not only relieve colitis via inhibiting the expression of oxidative and proinflammatory mediators more than combination of free drugs, but also significantly reduce colitis-caused death. Taken together, the self-assembled, Janus-prodrug B-ATK-T NP is a promising candidate therapies for IBD, even for other inflammatory diseases.
Collapse
Affiliation(s)
- Shanshan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Aiqing Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Qixiong Zhang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|