1
|
Wang B, Wang X, Wang T, Meng K, Yu T, Xi Y, Hu S, Xiong H, Qu R, Yuan Z, Wang X, Zeng C, Zou W, Tian Y, Cai Y, Fu S, Fu X, Li L. Targeting PD-1 and CD85j can restore intratumoral CD4 + GzmB + T-cell functions to combat MHC-II-expressing tumors. J Immunother Cancer 2025; 13:e010890. [PMID: 40169283 PMCID: PMC11962805 DOI: 10.1136/jitc-2024-010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/16/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND A subset of CD4+ T cells with cytotoxic activity has been identified, and these cells exert their effects by expressing perforin and granzymes. Despite the progress made in characterizing cytotoxic CD4+ T cells in various diseases, the status of cytotoxic CD4+ T cells in non-small cell lung cancer (NSCLC) and the underlying mechanisms involved in promoting intratumoral cytotoxic CD4+ T-cell activation remain unclear. METHODS We used flow cytometry to examine the phenotypic and functional properties of CD4+GzmB+ T cells in the peripheral blood and tumor tissues of patients with NSCLC. Loss-of-function analyses and RNA sequencing were used to identify the underlying mechanisms involved in the effects of interleukin (IL)-15 on the restoration of CD4+GzmB+ T-cell function in vitro. A patient-derived lung cancer explant model and an animal model were used to verify the effects of immune checkpoint inhibitors on CD4+GzmB+ T-cell activation. RESULTS In patients with NSCLC, impaired cytolytic function of tumor-infiltrated granzyme B (GzmB)-expressing CD4+ T cells was restored by IL-15 through activation of the AKT-FOXO1-T-bet axis. Moreover, IL-15 stimulation increased solute carrier family 7 member 5 (SLC7A5) expression in CD4+GzmB+ T cells in an Protein Kinase B (AKT)-dependent manner, and inhibition of SLC7A5 abrogated the effect of IL-15 on CD4+GzmB+ T cells. Additionally, we showed that the immune checkpoint molecules programmed cell death-1 (PD-1) and CD85j were mutually exclusively expressed in CD4+GzmB+ T cells and that dual targeting of PD-1 and CD85j enhanced the effector function of CD4+GzmB+ T cells by activating the AKT pathway. Notably, tumor cells expressing major histocompatibility complex (MHC)-II and IL-15 determine the effectiveness of CD4+GzmB+ T-cell-mediated antitumor immunity in response to immunotherapy. CONCLUSIONS Our study demonstrated that tumor-infiltrating CD4+GzmB+ T cells fail to eliminate tumors. Dual blockade of PD-1 and CD85j alongside IL-15 restores the effector function of CD4+GzmB+ T cells and drives CD4+GzmB+ T-cell transformation in the tumor microenvironment to combat MHC-II-expressing tumors.
Collapse
Affiliation(s)
- Boyu Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xu Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Tianlai Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Kelin Meng
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Taiyan Yu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yu Xi
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Shaojie Hu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Hui Xiong
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Rirong Qu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xue Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Wenbin Zou
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yitao Tian
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yixin Cai
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Shengling Fu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Lequn Li
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| |
Collapse
|
2
|
Venken K, Jarlborg M, Stevenaert F, Malfait TLA, Vlieghe C, Abraham Y, Manuello T, Decruy T, Vanhee S, Wils H, Peeters PJ, Carron P, Van den Bosch F, Van Tendeloo V, Lambrecht BN, Wittoek R, Jacques P, Elewaut D. Shared lung and joint T cell repertoire in early rheumatoid arthritis driven by cigarette smoking. Ann Rheum Dis 2024:ard-2024-226284. [PMID: 39521450 DOI: 10.1136/ard-2024-226284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Smoking has been associated with an increased risk of developing rheumatoid arthritis (RA) in individuals carrying shared epitope (SE) HLA-DRB1 alleles. Yet, little is known about the regional and systemic T cell dynamics of smoking and a potential link to T cell infiltration in inflamed synovia. In this study, we, therefore, sought to study T cell features in lung and inflamed joints in smoking versus non-smoking patients. METHODS We set up a framework to monitor T cells in paired bronchoalveolar lavage fluid, blood and inflamed synovium tissue samples from 17 new-onset treatment naïve anticitrullinated protein antibody+RA patients. T cell receptor (TCR) repertoire of index-sorted tissue residing in T cells was determined by single-cell TCR sequencing coupled with deep immunophenotyping. RESULTS A significant enrichment of CD4+ and CD8+ T cells was seen in synovial samples from smoking versus non-smoking patients, along with an increase in expanded T cell clonotypes. This was particularly pronounced among SE+smokers, suggestive of a synergic gene-smoke effect. Strikingly, identical TCR clonalities were present in matched lung and joint samples of RA smokers, the majority being also detectable in circulation. This was mirrored by an increased clustering of lung and synovium TCRs across patients, suggesting a shared specificity by conserved motifs. The lung-joint shared T cell clonotypes showed a restricted TCR gene usage and exhibited a particular 4-1BB+CD57 hi effector profile within the inflamed synovium. CONCLUSION The data indicate a profound interplay between a strong MHC predisposition, smoking and induction of autoimmunity by shaping the TCR repertoire.
Collapse
Affiliation(s)
- Koen Venken
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Matthias Jarlborg
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | | | - Thomas L A Malfait
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Department of Respiratory Medicine, University Hospital Ghent, Gent, Belgium
| | - Carolien Vlieghe
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Yann Abraham
- Janssen Research and Development, Beerse, Belgium
| | - Teddy Manuello
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Tine Decruy
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Stijn Vanhee
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
| | - Hans Wils
- Janssen Research and Development, Beerse, Belgium
| | | | - Philippe Carron
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Filip Van den Bosch
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | | | - Bart N Lambrecht
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Department of Respiratory Medicine, University Hospital Ghent, Gent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Zwijnaarde, Belgium
| | - Ruth Wittoek
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Peggy Jacques
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Dirk Elewaut
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| |
Collapse
|
3
|
Pan W, Tsokos GC. Reverse aging to treat lupus. Eur J Immunol 2024; 54:e2451274. [PMID: 39031517 DOI: 10.1002/eji.202451274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multifaceted pathogenetic processes, including abnormalities of T-cell subset distribution and function. Accumulation of senescent CD4+ T cells has been found to contribute to the development of the disease. In this issue, Jiang et al. provide compelling evidence that links an expanded pool of CD4+CD57+ senescent T cells in patients with SLE to disease activity favored by interleukin-15. Importantly, treatment of lupus-prone mice with a senolytic drug resulted in decreased autoimmune pathology. The findings of this study suggest possible novel therapeutics to treat patients with SLE.
Collapse
Affiliation(s)
- Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Jiang J, Yang M, Zhu H, Long D, He Z, Liu J, He L, Tan Y, Akbar AN, Reddy V, Zhao M, Long H, Wu H, Lu Q. CD4 +CD57 + senescent T cells as promoters of systemic lupus erythematosus pathogenesis and the therapeutic potential of senolytic BCL-2 inhibitor. Eur J Immunol 2024; 54:e2350603. [PMID: 38752316 DOI: 10.1002/eji.202350603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 07/07/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by persistent activation of immune cells and overproduction of autoantibodies. The accumulation of senescent T and B cells has been observed in SLE and other immune-mediated diseases. However, the exact mechanistic pathways contributing to this process in SLE remain incompletely understood. In this study, we found that in SLE patients: (1) the frequency of CD4+CD57+ senescent T cells was significantly elevated and positively correlated with disease activity; (2) the expression levels of B-lymphoma-2 (BCL-2) family and interferon-induced genes (ISGs) were significantly upregulated; and (3) in vitro, the cytokine IL-15 stimulation increased the frequency of senescent CD4+ T cells and upregulated the expression of BCL-2 family and ISGs. Further, treatment with ABT-263 (a senolytic BCL-2 inhibitor) in MRL/lpr mice resulted in decreased: (1) frequency of CD4+CD44hiCD62L-PD-1+CD153+ senescent CD4+ T cells; (2) frequency of CD19+CD11c+T-bet+ age-related B cells; (3) level of serum antinuclear antibody; (4) proteinuria; (5) frequency of Tfh cells; and (6) renal histopathological abnormalities. Collectively, these results indicated a dominant role for CD4+CD57+ senescent CD4+ T cells in the pathogenesis of SLE and senolytic BCL-2 inhibitor ABT-263 may be the potential treatment in ameliorating lupus phenotypes.
Collapse
Affiliation(s)
- Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiang Su, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiang Su, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenghao He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liting He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Venkat Reddy
- Division of Medicine, University College London, London, United Kingdom
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiang Su, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiang Su, China
| | - Hai Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiang Su, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiang Su, China
| |
Collapse
|
5
|
Abstract
The immunopathogenesis of rheumatoid arthritis (RA) spans decades, beginning with the production of autoantibodies against post-translationally modified proteins (checkpoint 1). After years of asymptomatic autoimmunity and progressive immune system remodeling, tissue tolerance erodes and joint inflammation ensues as tissue-invasive effector T cells emerge and protective joint-resident macrophages fail (checkpoint 2). The transition of synovial stromal cells into autoaggressive effector cells converts synovitis from acute to chronic destructive (checkpoint 3). The loss of T cell tolerance derives from defective DNA repair, causing abnormal cell cycle dynamics, telomere fragility and instability of mitochondrial DNA. Mitochondrial and lysosomal anomalies culminate in the generation of short-lived tissue-invasive effector T cells. This differentiation defect builds on a metabolic platform that shunts glucose away from energy generation toward the cell building and motility programs. The next frontier in RA is the development of curative interventions, for example, reprogramming T cell defects during the period of asymptomatic autoimmunity.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
6
|
Bullenkamp J, Mengoni V, Kaur S, Chhetri I, Dimou P, Astroulakis ZMJ, Kaski JC, Dumitriu IE. Interleukin-7 and interleukin-15 drive CD4+CD28null T lymphocyte expansion and function in patients with acute coronary syndrome. Cardiovasc Res 2020; 117:1935-1948. [PMID: 32647892 PMCID: PMC8262639 DOI: 10.1093/cvr/cvaa202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Inflammation has important roles in atherosclerosis. CD4+CD28null (CD28null) T cells are a specialized T lymphocyte subset that produce inflammatory cytokines and cytotoxic molecules. CD28null T cells expand preferentially in patients with acute coronary syndrome (ACS) rather than stable angina and are barely detectable in healthy subjects. Importantly, ACS patients with CD28null T-cell expansion have increased risk for recurrent acute coronary events and poor prognosis, compared to ACS patients in whom this cell subset does not expand. The mechanisms regulating CD28null T-cell expansion in ACS remain elusive. We therefore investigated the role of cytokines in CD28null T-cell expansion in ACS. METHODS AND RESULTS High-purity sorted CD4+ T cells from ACS patients were treated with a panel of cytokines (TNF-α, IL-1β, IL-6, IL-7, and IL-15), and effects on the number, phenotype, and function of CD28null T cells were analysed and compared to the control counterpart CD28+ T-cell subset. IL-7- and IL-15-induced expansion of CD28null T cells from ACS patients, while inflammatory cytokines TNF-α, IL-1β, and IL-6 did not. The mechanisms underlying CD28null T-cell expansion by IL-7/IL-15 were preferential activation and proliferation of CD28null T cells compared to control CD28+ T cells. Additionally, IL-7/IL-15 markedly augmented CD28null T-cell cytotoxic function and interferon-γ production. Further mechanistic analyses revealed differences in baseline expression of component chains of IL-7/IL-15 receptors (CD127 and CD122) and increased baseline STAT5 phosphorylation in CD28null T cells from ACS patients compared to the control CD28+ T-cell subset. Notably, we demonstrate that CD28null T-cell expansion was significantly inhibited by Tofacitinib, a selective JAK1/JAK3 inhibitor that blocks IL-7/IL-15 signalling. CONCLUSION Our novel data show that IL-7 and IL-15 drive the expansion and function of CD28null T cells from ACS patients suggesting that IL-7/IL-15 blockade may prevent expansion of these cells and improve patient outcomes.
Collapse
Affiliation(s)
- Jessica Bullenkamp
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Veronica Mengoni
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Satdip Kaur
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Ismita Chhetri
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Paraskevi Dimou
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Zoë M J Astroulakis
- Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Ingrid E Dumitriu
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
7
|
Chen B, Morris SR, Panigrahi S, Michaelson GM, Wyrick JM, Komissarov AA, Potashnikova D, Lebedeva A, Younes SA, Harth K, Kashyap VS, Vasilieva E, Margolis L, Zidar DA, Sieg SF, Shive CL, Funderburg NT, Gianella S, Lederman MM, Freeman ML. Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57 + CD4 T Cells in HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2722-2733. [PMID: 32229536 PMCID: PMC7315224 DOI: 10.4049/jimmunol.1900734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Cytotoxic CD4 T cells are linked to cardiovascular morbidities and accumulate in both HIV and CMV infections, both of which are associated with increased risk of cardiovascular disease (CVD). In this study, we identify CMV coinfection as a major driver of the cytotoxic phenotype, characterized by elevated CD57 expression and reduced CD28 expression, in circulating CD4 T cells from people living with HIV infection, and investigate potential mechanisms linking this cell population to CVD. We find that human CD57+ CD4 T cells express high levels of the costimulatory receptor CD2 and that CD2/LFA-3 costimulation results in a more robust and polyfunctional effector response to TCR signals, compared with CD28-mediated costimulation. CD57+ CD4 T cells also express the vascular endothelium-homing receptor CX3CR1 and migrate toward CX3CL1-expressing endothelial cells in vitro. IL-15 promotes the cytotoxic phenotype, elevates CX3CR1 expression, and enhances the trafficking of CD57+ CD4 T cells to endothelium and may therefore be important in linking these cells to cardiovascular complications. Finally, we demonstrate the presence of activated CD57+ CD4 T cells and expression of CX3CL1 and LFA-3 in atherosclerotic plaque tissues from HIV-uninfected donors. Our findings are consistent with a model in which cytotoxic CD4 T cells contribute to CVD in HIV/CMV coinfection and in atherosclerosis via CX3CR1-mediated trafficking and CD2/LFA-3-mediated costimulation. This study identifies several targets for therapeutic interventions and may help bridge the gap in understanding how CMV infection and immunity are linked to increased cardiovascular risk in people living with HIV infection.
Collapse
Affiliation(s)
- Bonnie Chen
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Stephen R Morris
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Soumya Panigrahi
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Gillian M Michaelson
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Jonathan M Wyrick
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Alexey A Komissarov
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Daria Potashnikova
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
- Department of Cell Biology and Histology, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Anna Lebedeva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Karem Harth
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH 44106
| | - Vikram S Kashyap
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH 44106
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Leonid Margolis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - David A Zidar
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH 44106
| | - Scott F Sieg
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Carey L Shive
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210; and
| | - Sara Gianella
- Center for AIDS Research, Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Michael M Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Michael L Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106;
| |
Collapse
|
8
|
Chen X, Guo W, Chang Y, Chen J, Kang P, Yi X, Cui T, Guo S, Xiao Q, Jian Z, Li K, Gao T, Li S, Liu L, Li C. Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8 + T cells activation via JAK-STAT pathway in vitiligo. Free Radic Biol Med 2019; 139:80-91. [PMID: 31078730 DOI: 10.1016/j.freeradbiomed.2019.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
Abstract
Oxidative stress and effector memory CD8+ T cells have been greatly implicated in vitiligo pathogenesis. However, the crosstalk between these two crucial pathogenic factors has been merely investigated. IL-15 has been regarded as an important cytokine exerting its facilitative effect on memory CD8+ T cells function in various autoimmune diseases. In the present study, we initially discovered that the IL-15 expression was significantly increased in vitiligo epidermis and highly associated with epidermal H2O2 content. In addition, epidermal IL-15 expression was mainly derived from keratinocytes. Then, we showed that oxidative stress promoted IL-15 and IL-15Rα expression as well as IL-15 trans-presentation by activating NF-κB signaling in keratinocytes. What's more, the trans-presented IL-15, rather than the secreted one, was accounted for the potentiation of CD8+ TEMs activation. We further investigated the mechanism underlying trans-presented IL-15 in potentiating CD8+ TEMs activation and found that the blockage of IL-15-JAK-STAT signaling could be a potent therapeutic approach. Taken together, our results demonstrate that oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to the activation of CD8+ TEMs, providing a novel mechanism by which oxidative stress initiates autoimmunity in vitiligo.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qian Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Fessler J, Raicht A, Husic R, Ficjan A, Schwarz C, Duftner C, Schwinger W, Graninger WB, Stradner MH, Dejaco C. Novel Senescent Regulatory T-Cell Subset with Impaired Suppressive Function in Rheumatoid Arthritis. Front Immunol 2017; 8:300. [PMID: 28373873 PMCID: PMC5357868 DOI: 10.3389/fimmu.2017.00300] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/03/2017] [Indexed: 11/15/2022] Open
Abstract
Objective Premature senescence of lymphocytes is a hallmark of inflammatory rheumatic diseases such as rheumatoid arthritis (RA). Early T-cell aging affects conventional T-cells but is presumably not limited to this cell population; rather it might also occur in the regulatory T-cells (Tregs) compartment. In RA, Tregs fail to halt aberrant immune reactions and disease progression. Whether this is associated with early Treg senescence leading to phenotypic and functional changes of this subset is elusive so far. Methods Eighty-four RA patients and 75 healthy controls were prospectively enrolled into the study. Flow cytometry, magnetic-associated cell sorting, and cell culture experiments were performed for phenotypic and functional analyses of Treg subsets. T-cell receptor excision circle (TREC) levels and telomere lengths were determined using RT-PCR. Results In this paper, we describe the novel CD4+FoxP3+CD28− T-cell subset (CD28− Treg-like cells) in RA patients revealing features of both Tregs and senescent T-cells: Treg surface/intracellular markers such as CD25, CTLA-4, and PD-1 as well as FOXP3 were all expressed by CD28− Treg-like cells, and they yielded signs of premature senescence including reduced TREC levels and an accumulation of γH2AX. CD28− Treg-like could be generated in vitro by stimulation of (CD28+) Tregs with TNF-α. CD28− Treg-like cells insufficiently suppressed the proliferation of effector T-cells and yielded a pro-inflammatory cytokine profile. Conclusion In conclusion, we describe a novel T-cell subset with features of Tregs and senescent non-Tregs. These cells may be linked to an aberrant balance between regulatory and effector functions in RA.
Collapse
Affiliation(s)
- Johannes Fessler
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Andrea Raicht
- Department of Pediatric Hemato-Oncology, Medical University of Graz , Graz , Austria
| | - Rusmir Husic
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Anja Ficjan
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Christine Schwarz
- Department of Pediatric Hemato-Oncology, Medical University of Graz , Graz , Austria
| | - Christina Duftner
- Department of Internal Medicine VI, Innsbruck Medical University , Innsbruck , Austria
| | - Wolfgang Schwinger
- Department of Pediatric Hemato-Oncology, Medical University of Graz , Graz , Austria
| | - Winfried B Graninger
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Martin H Stradner
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Christian Dejaco
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria; Rheumatology Service, South Tyrolian Health Trust, Hospital Bruneck, Bruneck, Italy
| |
Collapse
|
10
|
Onyema OO, Decoster L, Njemini R, Forti LN, Bautmans I, De Waele M, Mets T. Shifts in subsets of CD8+ T-cells as evidence of immunosenescence in patients with cancers affecting the lungs: an observational case-control study. BMC Cancer 2015; 15:1016. [PMID: 26711627 PMCID: PMC4692066 DOI: 10.1186/s12885-015-2013-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/15/2015] [Indexed: 01/09/2023] Open
Abstract
Background Shifts in CD8+ T-cell subsets that are hallmarks of immunosenescence are observed in ageing and in conditions of chronic immune stimulation. Presently, there is limited documentation of such changes in lung cancer and other malignancies affecting the lungs. Methods Changes in CD8+ T-cell subsets, based on the expression of CD28 and CD57, were analysed in patients with various forms of cancer affecting the lungs, undergoing chemotherapy and in a control group over six months, using multi-colour flow cytometry. Results The differences between patients and controls, and the changes in the frequency of CD8+ T-cell subpopulations among lung cancer patients corresponded to those seen in immunosenescence: lower CD8-/CD8+ ratio, lower proportions of CD28+CD57- cells consisting of naïve and central memory cells, and higher proportions of senescent-enriched CD28-CD57+ cells among the lung cancer patients, with the stage IV lung cancer patients showing the most pronounced changes. Also observed was a tendency of chemotherapy to induce the formation of CD28+CD57+ cells, which, in line with the capacity of chemotherapy to induce the formation of senescent cells, might provide more evidence supporting CD28+CD57+ cells as senescent cells. Conclusion Immunosenescence was present before the start of the treatment; it appeared to be pronounced in patients with advanced cases of malignancies affecting the lungs, and might not be averted by chemotherapy.
Collapse
Affiliation(s)
- Oscar Okwudiri Onyema
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium.
| | - Lore Decoster
- Department of Medical Oncology, Oncologisch Centrum, Universitair Ziekenhuis Brussel & Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090, Brussel, Belgium.
| | - Rose Njemini
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium.
| | - Louis Nuvagah Forti
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium.
| | - Ivan Bautmans
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium.
| | - Marc De Waele
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090, Brussel, Belgium.
| | - Tony Mets
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium. .,Department of Geriatrics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090, Brussel, Belgium.
| |
Collapse
|
11
|
Infiltrating CD57+ inflammatory cells in head and neck squamous cell carcinoma: clinicopathological analysis and prognostic significance. Appl Immunohistochem Mol Morphol 2012; 20:285-90. [PMID: 22505010 DOI: 10.1097/pai.0b013e318228357b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study investigated the immunodetection of CD57+ inflammatory cells in patients with head and neck squamous cell carcinoma (HNSCC) and its association with clinicopathological parameters and overall survival. Data collected from the morphological analysis and immunohistochemical reaction testing of archived HNSCC specimens (n=70) were statistically analyzed by bivariate and multivariate statistical testing at a significance level of P<0.05. The results indicate that CD57+ inflammatory cells predominate within the peritumoral stroma of HNSCC lesions and the existence of two significant relationships: between high CD57+ cell density and the development of a tumor of a large size [odds ratio (OR)=5.610, 95% confidence interval (CI)=1.516-20.763) and between high CD57+ cell density and the development of locoregional metastatic disease (OR=3.401, 95% CI=1.162-9.951). A significant difference in the rate of survival was detected only in HNSCC patients that presented large size tumors (OR=4.747, 95% CI=1.281-17.594). Together, these results suggest that although high CD57+ inflammatory cell density is associated with HNSCC lesions of greater clinical severity, the variable of cell density is not an independent predictor of HNSCC patient survival. Our findings also suggest that the relatively aggressive infiltration of CD57+ inflammatory cells in the peritumoral stroma of head and neck carcinomas may contribute to an ineffective locoregional antitumoral response.
Collapse
|
12
|
Shegarfi H, Naddafi F, Mirshafiey A. Natural killer cells and their role in rheumatoid arthritis: friend or foe? ScientificWorldJournal 2012; 2012:491974. [PMID: 22547986 PMCID: PMC3322405 DOI: 10.1100/2012/491974] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/30/2011] [Indexed: 01/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a long-term disease that leads to inflammation of the joints and surrounding tissues. Natural killer (NK) cells are an important part of the innate immune system and are responsible for the first line of defense against pathogens during the initial immune challenge before the adaptive immune system eventually eliminates the infectious burden. NK cells have the capacity to damage normal cells or through interaction with other cells such as dendritic cells, macrophages, and T cells cause autoimmune diseases, such as RA. NK cells isolated from the joints of patients with RA suggest that they may play a role in this disease. However, the involvement of NK cells in RA pathology is not fully elucidated. Both protective and detrimental roles of NK cells in RA have recently been reported. A better understanding of NK cells' role in RA might help to develop new therapeutic strategies for treatment of the RA or other autoimmune diseases. We have decided in this paper to focus on the NK cell biology, and attempt to bring the interested readership of this Journal up to date on the NK cell, specifically its possible relation to RA.
Collapse
Affiliation(s)
- Hamid Shegarfi
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 0316 Oslo, Norway
| | - Fatemeh Naddafi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 6446 Tehran 14155, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 6446 Tehran 14155, Iran
| |
Collapse
|
13
|
Onyema OO, Njemini R, Bautmans I, Renmans W, De Waele M, Mets T. Cellular aging and senescence characteristics of human T-lymphocytes. Biogerontology 2011; 13:169-81. [PMID: 22102004 DOI: 10.1007/s10522-011-9366-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/03/2011] [Indexed: 02/06/2023]
Abstract
CD28-, CD57+ and KLRG1+ are cell surface markers that have been used to describe senescent T-lymphocytes in humans. However, the relationship among these phenotypes during aging, and their relationship with the concept of in vitro cellular aging have not been well established. Using five-colour flow cytometry, we analyzed peripheral blood T-lymphocytes for their expression of CD28, CD57 and KLRG1 in 11 young (Y) and 11 old (O) apparently healthy human subjects. The proportions of CD28- and CD57+ cells were significantly higher among the T-cell populations of O compared to Y subjects; the proportion of KLRG1+ cells was significantly higher only among CD8+ cells. Populations that were more frequent in the elderly participants were characterised as CD28+ CD57+, CD28- CD57+ or CD28- CD57-. The expression of p16 and p21, considered as markers for in vitro senescence, was higher in CD28+ CD57+ cells than in other subpopulations in both age groups. The expression of p21 was age-related, which was not the case for p16. Thus, although both p16 and p21 are involved in T-cell senescence, they appear to behave differently. CMV infection and shifts in subpopulations are unlikely as explanations of the observed differences. Their higher levels of p16 and p21 expression, coupled with their higher prevalence in the elderly participants make CD28+ CD57+ cells the subpopulation of T-cells most closely corresponding to the concept of senescent cells.
Collapse
Affiliation(s)
- Oscar Okwudiri Onyema
- Gerontology Department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Walsh CE, Ryan EJ, O'Farrelly C, Golden-Mason L, FitzGerald O, Veale DJ, Bresnihan B, Fearon U. Differential expression of NK receptors CD94 and NKG2A by T cells in rheumatoid arthritis patients in remission compared to active disease. PLoS One 2011; 6:e27182. [PMID: 22102879 PMCID: PMC3216944 DOI: 10.1371/journal.pone.0027182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022] Open
Abstract
Objective TNF inhibitors (TNFi) have revolutionised the treatment of rheumatoid arthritis (RA). Natural killer (NK) cells and Natural Killer Cell Receptor+ T (NKT) cells comprise important effector lymphocytes whose activity is tightly regulated through surface NK receptors (NKRs). Dysregulation of NKRs in patients with autoimmune diseases has been shown, however little is known regarding NKRs expression in patients with TNFi-induced remission and in those who maintain remission vs disease flare following TNFi withdrawal. Methods Patients with RA were recruited for this study, (i) RA patients in clinical remission following a minimum of one year of TNFi therapy (n = −15); (2) Active RA patients, not currently or ever receiving TNFi (n = 18); and healthy control volunteers (n = 15). Patients in remission were divided into two groups: those who were maintained on TNFi and those who withdrew from TNFi and maintained on DMARDS. All patients underwent full clinical assessment. Peripheral blood mononuclear cells were isolated and NKR (CD94, NKG2A, CD161, CD69, CD57, CD158a, CD158b) expression on T-(CD3+CD56−), NK-(CD3−CD56+) and NKT-(CD3+CD56+) cells was determined by flow cytometry. Results Following TNFi withdrawal, percentages and numbers of circulating T cells, NK cells or NKT cell populations were unchanged in patients in remission versus active RA or HCs. Expression of the NKRs CD161, CD57, CD94 and NKG2A was significantly increased on CD3+CD56-T cells from patients in remission compared to active RA (p<0.05). CD3+CD56-T cell expression of CD94 and NKG2A was significantly increased in patients who remained in remission compared with patients whose disease flared (p<0.05), with no differences observed for CD161 and CD57. CD3+CD56− cell expression of NKG2A was inversely related to DAS28 (r = −0.612, p<0.005). Conclusion High CD94/NKG2A expression by T cells was demonstrated in remission patients following TNFi therapy compared to active RA, while low CD94/NKG2A were associated with disease flare following withdrawal of therapy.
Collapse
Affiliation(s)
- Ceara E Walsh
- Translation Rheumatology Research Group, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Alonso-Arias R, Moro-García MA, Vidal-Castiñeira JR, Solano-Jaurrieta JJ, Suárez-García FM, Coto E, López-Larrea C. IL-15 preferentially enhances functional properties and antigen-specific responses of CD4+CD28(null) compared to CD4+CD28+ T cells. Aging Cell 2011; 10:844-52. [PMID: 21635686 DOI: 10.1111/j.1474-9726.2011.00725.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the most prominent changes during T-cell aging in humans is the accumulation of CD28(null) T cells, mainly CD8+ and also CD4+ T cells. Enhancing the functional properties of these cells may be important as they provide an antigen-specific defense against chronic infections. Recent studies have shown that IL-15 does in fact play an appreciable role in CD4 memory T cells under physiological conditions. We found that treatment with IL-15 increased the frequency of elderly CD4+CD28(null) T cells by the preferential proliferation of these cells compared to CD4+CD28+ T cells. IL-15 induced an activated phenotype in CD4+CD28(null) T cells. Although the surface expression of IL-15R α-chain was not increased, the transcription factor STAT-5 was preferentially activated. IL-15 augmented the cytotoxic properties of CD4+CD28(null) T cells by increasing both the mRNA transcription and storage of granzyme B and perforin for the cytolytic effector functions. Moreover, pretreatment of CD4+CD28(null) T cells with IL-15 displayed a synergistic effect on the IFN-γ production in CMV-specific responses, which was not observed in CD4+CD28+ T cells. IL-15 could play a role enhancing the effector response of CD4+CD28(null) T cells against their specific chronic antigens.
Collapse
Affiliation(s)
- Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias, C ⁄ Julián Clavería s ⁄ n,Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Pfannenstiel LW, Bolesta E, Montes CL, Zhang X, Chapoval AI, Gartenhaus RB, Strome SE, Gastman BR. Interleukin-7 inhibits tumor-induced CD27-CD28- suppressor T cells: implications for cancer immunotherapy. Clin Cancer Res 2011; 17:4975-86. [PMID: 21712448 DOI: 10.1158/1078-0432.ccr-10-3328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE We have previously reported that many types of tumors can induce changes in human T cells that lead to the acquisition of suppressive function and phenotypic alterations resembling those found in senescent T cells. In the present study, we find a role for interleukin 7 (IL-7) in protecting T cells from these changes and further define involved signaling pathways. EXPERIMENTAL DESIGN We evaluated the ability of IL-7 treatment to prevent the gain of suppressive function and phenotypic alterations in human T cells after a short coculture with tumor cells in vitro. We then used inhibitors of components of the phosphoinositide 3-kinase (PI3K)/AKT pathway and short interfering RNA knockdown of Mcl-1 and Bim to evaluate the role of these signaling pathways in IL-7 protection. RESULTS We found that IL-7 inhibits CD27/CD28 loss and maintains proliferative capacity, IL-2 production, and reduced suppressive function. The protective ability of IL-7 depended on activation of the PI3K/AKT pathway, which inhibited activation of glycogen synthase kinase 3β, which, in turn, prevented the phosphorylation and loss of Mcl-1. We further showed a key role for Mcl-1 in that its knockdown or inhibition abrogated the effects of IL-7. In addition, knockdown of the Mcl-1 binding partner and proapoptotic protein Bim protected T cells from these dysfunctional alterations. CONCLUSION These observations confirm the role for Bcl-2 family members in cytokine signaling and suggest that IL-7 treatment in combination with other immunotherapies could lead to new clinical strategies to maintain normal T-cell function and reduce tumor-induced generation of dysfunctional and suppressor T cells.
Collapse
Affiliation(s)
- Yue Zhang
- Institutes of Head and Neck, Dermatology and Plastic Surgery, Taussig Cancer Center and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Di Sabatino A, Calarota SA, Vidali F, MacDonald TT, Corazza GR. Role of IL-15 in immune-mediated and infectious diseases. Cytokine Growth Factor Rev 2011; 22:19-33. [DOI: 10.1016/j.cytogfr.2010.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/09/2010] [Accepted: 09/21/2010] [Indexed: 12/31/2022]
|
18
|
Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol 2009; 87:107-16. [PMID: 19880576 DOI: 10.1189/jlb.0809566] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD57(+) expression in T lymphocytes has been recognized for decades as a marker of in vitro replicative senescence. In recent years, accumulating evidences have pointed on the utility of this marker to measure functional immune deficiency in patients with autoimmune disease, infectious diseases, and cancers. We review here the relevant literature and implications in clinical settings.
Collapse
Affiliation(s)
- Daniele Focosi
- Division of Hematology, Azienda Ospedaliera Santa Chiara, University of Pisa, via Roma, Pisa, Italy.
| | | | | | | |
Collapse
|
19
|
Bigalke B, Schwimmbeck PL, Haas CS, Lindemann S. Effect of interleukin-15 on the course of myocarditis in Coxsackievirus B3-infected BALB/c mice. Can J Cardiol 2009; 25:e248-54. [PMID: 19584981 DOI: 10.1016/s0828-282x(09)70511-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Cytokines have an important role in both the initiation and perpetuation of viral myocarditis. Because a causative therapy of myocarditis is not yet well established and immunomodulation is a promising approach, the influence of interleukin (IL)-15, a proinflammatory cytokine, on the course of experimental myocarditis in Coxsackievirus B3 (CVB3)-infected mice was examined. METHODS Hearts from CVB3-infected (n=14), sham-infected (n=14) and CVB3-infected BALB/c mice treated with IL-15 (n=6) or a competitive IL-15 fusion protein (n=6) were analyzed for hemodynamic function, cellular infiltrates and myocardial collagen content. RESULTS Induction of myocarditis was associated with significant loss of body and heart weight, decreased left ventricular function, and increased collagen content and cellular infiltrates in the myocardium. Treatment of infected animals with IL-15 resulted in normalization of body and heart weight, and significantly improved systolic and diastolic left ventricular function, comparable with that of uninfected animals. This was paralleled by a significant reduction of myocardial collagen content to levels observed in animals without disease and by markedly reduced cellular infiltration of lymphocytes and macrophages in the myocardium. Inhibition of intrinsic IL-15 with IL-15 fusion protein tended to aggravate the disease. CONCLUSIONS Treatment with IL-15 has a positive effect on CVB3- induced murine myocarditis and seems to be a promising approach to modifying clinical course, hemodynamics and histopathology of virus-induced myocarditis. Further studies are needed to identify the underlying mechanisms.
Collapse
Affiliation(s)
- Boris Bigalke
- Medizinische Klinik III, Klinik für Kardiologie und Kreislauferkrankungen, Eberhard Kearls Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
20
|
Overexpression of interleukin-15 compromises CD4-dependent adaptive immune responses against herpes simplex virus 2. J Virol 2008; 83:918-26. [PMID: 19004955 DOI: 10.1128/jvi.01282-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin-15 (IL-15) is necessary for the development and function of NK/NKT cells and the maintenance of naive and memory CD8(+) T cells. In the absence of IL-15, protective innate immunity is not available; however, a functional adaptive immune response against vaginal herpes simplex virus 2 (HSV-2) is generated. Mice overexpressing IL-15 (IL-15tg mice) have higher numbers of NK cells, greater NK-derived gamma interferon, and more CD8(+) T cells. Here we examined the consequences of IL-15 overexpression for innate and adaptive immunity against genital HSV-2. Surprisingly, IL-15tg mice immunized against HSV-2 were not protected against genital HSV-2 challenge compared to control immunized mice. IL-15tg mice had a higher frequency of NK cells in the genital mucosa than control mice. However, immunized IL-15tg mice had significantly lower numbers of HSV-2-specific CD4(+) T cells than B6 mice. We then confirmed that CD4(+) T cells, but not CD8(+) T cells, are essential for protection against intravaginal HSV-2 challenge. Since we observed less protection in immunized IL-15tg mice, we then examined if the adaptive immune responses generated in an environment with overexpression of IL-15 could provide protection against HSV-2 in an environment with normal levels of IL-15 expression. We adoptively transferred immunized cells from IL-15tg and B6 mice into naive RAG-1(-/-) mice and found that the cells from immunized IL-15tg mice were able to provide protection in this IL-15-normal environment. Our data suggest that overexpression of IL-15 results in a reduced CD4(+) T cell-mediated adaptive immune response against genital HSV-2.
Collapse
|
21
|
Asarch A, Barak O, Loo DS, Gottlieb AB. Th17 cells: a new therapeutic target in inflammatory dermatoses. J DERMATOL TREAT 2008; 19:318-26. [PMID: 18626814 DOI: 10.1080/09546630802206660] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Th17 cells, named for their secretion of interleukin-17 (IL-17), are a new class of T-cells involved in a wide range of cutaneous autoimmune and inflammatory conditions. An overactive Th17 cell response in the skin can produce damaging results. There appears to be a partial role for the Th17 axis in the pathogenesis of a range of dermatological diseases including allergic contact dermatitis, atopic dermatitis, psoriasis, and scleroderma. Immunologists have also discovered a unique association between Th17 cells and cutaneous T-cell lymphoma. The Th17 branch has been linked to a number of additional systemic inflammatory diseases with significant cutaneous pathology such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, and Behcet's disease. Newly developed treatment modalities for neutralizing the Th17 branch of the immune system are proving to be valuable additions to the current therapeutic armamentarium.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Biomarkers/metabolism
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/immunology
- Drug Therapy, Combination
- Humans
- Immunologic Factors/therapeutic use
- Injections, Subcutaneous
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-23/genetics
- Interleukin-23/immunology
- Interleukins/genetics
- Interleukins/immunology
- Polymorphism, Genetic
- Psoriasis/drug therapy
- Psoriasis/immunology
- Randomized Controlled Trials as Topic
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/immunology
- Skin Diseases/drug therapy
- Skin Diseases/genetics
- Skin Diseases/immunology
- Treatment Outcome
- Ustekinumab
- Interleukin-22
Collapse
Affiliation(s)
- Adam Asarch
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|