1
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
2
|
Min Q, Csomos K, Li Y, Dong L, Hu Z, Meng X, Yu M, Walter JE, Wang JY. B cell abnormalities and autoantibody production in patients with partial RAG deficiency. Front Immunol 2023; 14:1155380. [PMID: 37475856 PMCID: PMC10354446 DOI: 10.3389/fimmu.2023.1155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Mutations in the recombination activating gene 1 (RAG1) and RAG2 in humans are associated with a broad spectrum of clinical phenotypes, from severe combined immunodeficiency to immune dysregulation. Partial (hypomorphic) RAG deficiency (pRD) in particular, frequently leads to hyperinflammation and autoimmunity, with several underlying intrinsic and extrinsic mechanisms causing a break in tolerance centrally and peripherally during T and B cell development. However, the relative contributions of these processes to immune dysregulation remain unclear. In this review, we specifically focus on the recently described tolerance break and B cell abnormalities, as well as consequent molecular and cellular mechanisms of autoantibody production in patients with pRD.
Collapse
Affiliation(s)
- Qing Min
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
3
|
Yonkof JR, Basu A, Redmond MT, Dobbs AK, Perelygina L, Notarangelo LD, Abraham RS, Rangarajan HG. Refractory, fatal autoimmune hemolytic anemia due to ineffective thymic-derived T-cell reconstitution following allogeneic hematopoietic cell transplantation for hypomorphic RAG1 deficiency. Pediatr Blood Cancer 2023; 70:e30183. [PMID: 36583469 PMCID: PMC10038854 DOI: 10.1002/pbc.30183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Jennifer R Yonkof
- Department of Pediatrics, Division of Allergy & Immunology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Amrita Basu
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Margaret T Redmond
- Department of Pediatrics, Division of Allergy & Immunology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Adam Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Hemalatha G Rangarajan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
4
|
Essadssi S, Benhsaien I, Bakhchane A, Charoute H, Abdelghaffar H, Bousfiha AA, Barakat A. A Homozygous RAG1 Gene Mutation in a Case of Combined Immunodeficiency: Clinical, Molecular, and Computational Analysis. Hum Hered 2020; 84:272-278. [PMID: 33075768 DOI: 10.1159/000510062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The recombination-activating gene 1 and 2 (RAG1/RAG2) proteins are essential to initiate the V(D)J recombination process, the result is a diverse repertoire of antigen receptor genes and the establishment of the adaptive immunity. RAG1 mutations can lead to multiple forms of combined immunodeficiency. METHODS In this report, whole exome sequencing was performed in a Moroccan child suffering from combined immunodeficiency, with T and B lymphopenia, autoimmune hemolytic anemia, and cytomegalovirus (CMV) infection. RESULTS After filtering data and Sanger sequencing validation, one homozygous mutation c.2446G>A (p.Gly816Arg) was identified in the RAG1 gene. CONCLUSION This finding expands the spectrum of immunological and genetic profiles linked to RAG1 mutation, it also illustrates the necessity to consider RAG1 immunodeficiency in the presence of autoimmune hemolytic anemia and CMV infection, even assuming the immunological phenotype appears more or less normal.
Collapse
Affiliation(s)
- Soukaina Essadssi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.,Laboratory of Biosciences, Integrated and Molecular Functional Exploration (LBEFIM), Faculty of Science and Technology of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Clinical Immunology Unit, Ibn Rochd Hospital, King Hassan II University-AinChok, Casablanca, Morocco
| | - Amina Bakhchane
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houria Abdelghaffar
- Laboratory of Biosciences, Integrated and Molecular Functional Exploration (LBEFIM), Faculty of Science and Technology of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Clinical Immunology Unit, Ibn Rochd Hospital, King Hassan II University-AinChok, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco,
| |
Collapse
|
5
|
Abstract
While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.
Collapse
|
6
|
Meshaal SS, El Hawary RE, Abd Elaziz DS, Eldash A, Alkady R, Lotfy S, Mauracher AA, Opitz L, Pachlopnik Schmid J, van der Burg M, Chou J, Galal NM, Boutros JA, Geha R, Elmarsafy AM. Phenotypical heterogeneity in RAG-deficient patients from a highly consanguineous population. Clin Exp Immunol 2019; 195:202-212. [PMID: 30307608 PMCID: PMC6330646 DOI: 10.1111/cei.13222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations affecting recombination activation genes RAG1 and RAG2 are associated with variable phenotypes, depending on the residual recombinase activity. The aim of this study is to describe a variety of clinical phenotypes in RAG-deficient patients from the highly consanguineous Egyptian population. Thirty-one patients with RAG mutations (from 28 families) were included from 2013 to 2017. On the basis of clinical, immunological and genetic data, patients were subdivided into three groups; classical T- B- severe combined immunodeficiency (SCID), Omenn syndrome (OS) and atypical SCID. Nineteen patients presented with typical T- B- SCID; among these, five patients carried a homozygous RAG2 mutation G35V and five others carried two homozygous RAG2 mutations (T215I and R229Q) that were detected together. Four novel mutations were reported in the T- B- SCID group; three in RAG1 (A565P, N591Pfs*14 and K621E) and one in RAG2 (F29S). Seven patients presented with OS and a novel RAG2 mutation (C419W) was documented in one patient. The atypical SCID group comprised five patients. Two had normal B cell counts; one had a previously undescribed RAG2 mutation (V327D). The other three patients presented with autoimmune cytopaenias and features of combined immunodeficiency and were diagnosed at a relatively late age and with a substantial diagnostic delay; one patient had a novel RAG1 mutation (C335R). PID disorders are frequent among Egyptian children because of the high consanguinity. RAG mutations stand behind several variable phenotypes, including classical SCID, OS, atypical SCID with autoimmunity and T- B+ CID.
Collapse
Affiliation(s)
- S. S. Meshaal
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. E. El Hawary
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - D. S. Abd Elaziz
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - A. Eldash
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. Alkady
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - S. Lotfy
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - A. A. Mauracher
- Division of ImmunologyUniversity Children’s Hospital ZurichZurichSwitzerland
| | - L. Opitz
- Functional Genomics Center ZürichUniversity of Zurich, ETH ZurichZurichSwitzerland
| | | | - M. van der Burg
- Department of ImmunologyErasmus MC, University Medical Center RotterdamRotterdamNetherlands
| | - J. Chou
- Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - N. M. Galal
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - J. A. Boutros
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. Geha
- Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - A. M. Elmarsafy
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| |
Collapse
|
7
|
Tirosh I, Yamazaki Y, Frugoni F, Ververs FA, Allenspach EJ, Zhang Y, Burns S, Al-Herz W, Noroski L, Walter JE, Gennery AR, van der Burg M, Notarangelo LD, Lee YN. Recombination activity of human recombination-activating gene 2 (RAG2) mutations and correlation with clinical phenotype. J Allergy Clin Immunol 2018; 143:726-735. [PMID: 29772310 DOI: 10.1016/j.jaci.2018.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mutations in recombination-activating gene (RAG) 1 and RAG2 are associated with a broad range of clinical and immunologic phenotypes in human subjects. OBJECTIVE Using a flow cytometry-based assay, we aimed to measure the recombinase activity of naturally occurring RAG2 mutant proteins and to correlate our results with the severity of the clinical and immunologic phenotype. METHODS Abelson virus-transformed Rag2-/- pro-B cells engineered to contain an inverted green fluorescent protein (GFP) cassette flanked by recombination signal sequences were transduced with retroviruses encoding either wild-type or 41 naturally occurring RAG2 variants. Bicistronic vectors were used to introduce compound heterozygous RAG2 variants. The percentage of GFP-expressing cells was evaluated by using flow cytometry, and high-throughput sequencing was used to analyze rearrangements at the endogenous immunoglobulin heavy chain (Igh) locus. RESULTS The RAG2 variants showed a wide range of recombination activity. Mutations associated with severe combined immunodeficiency and Omenn syndrome had significantly lower activity than those detected in patients with less severe clinical presentations. Four variants (P253R, F386L, N474S, and M502V) previously thought to be pathogenic were found to have wild-type levels of activity. Use of bicistronic vectors permitted us to assess more carefully the effect of compound heterozygous mutations, with good correlation between GFP expression and the number and diversity of Igh rearrangements. CONCLUSIONS Our data support genotype-phenotype correlation in the setting of RAG2 deficiency. The assay described can be used to define the possible disease-causing role of novel RAG2 variants and might help predict the severity of the clinical phenotype.
Collapse
Affiliation(s)
- Irit Tirosh
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Francesco Frugoni
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Francesca A Ververs
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Eric J Allenspach
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Siobhan Burns
- Institute for Immunity and Transplantation, University College London, London, United Kingdom; Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lenora Noroski
- Division of Allergy and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida and Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Andrew R Gennery
- Department of Pediatric Immunology, Newcastle Upon Tyne Hospital, NHS Foundation Trust, United Kingdom and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
8
|
Zafar R, Ver Heul A, Beigelman A, Bednarski JJ, Bayliss SJ, Dehner LP, Rosman IS, Coughlin CC. Omenn Syndrome Presenting with Striking Erythroderma and Extreme Lymphocytosis in a Newborn. Pediatr Dermatol 2017; 34:e37-e39. [PMID: 27862277 DOI: 10.1111/pde.13023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Omenn syndrome is an autosomal recessive form of "leaky" severe combined immune deficiency resulting in distinct phenotypic features. The patient described herein had an atypical presentation of Omenn syndrome, with conspicuous erythroderma and extreme lymphocytosis at birth, in contrast to the typical evolution of rash seen during the first few weeks of life. In addition, the skin findings were secondary to infiltration of CD8+ (cytotoxic) T-cells in contrast to the CD4+ (helper) T-cells typically seen, which broadens the Omenn syndrome phenotype.
Collapse
Affiliation(s)
- Rabia Zafar
- Department of Pediatrics, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri
| | - Aaron Ver Heul
- Division of Pediatric Allergy, Immunology & Pulmonary Medicine, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology & Pulmonary Medicine, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri
| | - Jeffrey J Bednarski
- Division of Pediatric Hematology and Oncology, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri
| | - Susan J Bayliss
- Department of Pediatrics, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri.,Division of Dermatology, Department of Medicine, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri
| | - Louis P Dehner
- Department of Pathology and Immunology, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri
| | - Ilana S Rosman
- Division of Dermatology, Department of Medicine, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri.,Department of Pathology and Immunology, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri
| | - Carrie C Coughlin
- Division of Dermatology, Department of Medicine, School of Medicine, Washington University, School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Govindaraj GM, Karuthedath Vellarikkal S, Jayarajan R, Ravi R, Verma A, Chakkiyar K, Jayakrishnan MP, Arakkal R, Raj R, Kunnaruvath R, Sivasubbu S, Scaria V. Case Report: Whole exome sequencing identifies variation c.2308G>A p.E770K in RAG1 associated with B- T- NK+ severe combined immunodeficiency. F1000Res 2016; 5:2532. [PMID: 29067161 PMCID: PMC5635439 DOI: 10.12688/f1000research.9473.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2017] [Indexed: 11/20/2022] Open
Abstract
Severe combined immunodeficiency is a large clinically heterogeneous group of disorders caused by a defect in the development of humoral or cellular immune responses. At least 13 genes are known to be involved in the pathophysiology of the disease and the mutation spectrum in SCID has been well documented. Mutations of the recombination-activating genes RAG 1 and RAG 2 are associated with a range of clinical presentations including, severe combined immunodeficiency and autoimmunity. Recently, our understanding of the molecular basis of immune dysfunction in RAG deficiency has improved tremendously with newer insights into the ultrastructure of the RAG complex. In this report, we describe the application of whole exome sequencing for arriving at a molecular diagnosis in a child suffering from B- T- NK+ severe combined immunodeficiency. Apart from making the accurate molecular diagnosis, we also add a genetic variation c.2308G>A p.E770K to the compendium of variations associated with the disease.
Collapse
Affiliation(s)
- Geeta Madathil Govindaraj
- Department of Pediatrics, Institute of Maternal and Child Health, Government Medical College, Kozhikode, India
| | - Shamsudheen Karuthedath Vellarikkal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Delhi, India.,Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Rijith Jayarajan
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Rowmika Ravi
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Ankit Verma
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Krishnan Chakkiyar
- Department of Pediatrics, Institute of Maternal and Child Health, Government Medical College, Kozhikode, India
| | | | - Riyaz Arakkal
- Department of Pediatrics, Institute of Maternal and Child Health, Government Medical College, Kozhikode, India
| | | | | | - Sridhar Sivasubbu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Delhi, India.,Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Delhi, India.,GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
10
|
Late Onset Hypomorphic RAG2 Deficiency Presentation with Fatal Vaccine-Strain VZV Infection. J Clin Immunol 2015; 35:754-60. [PMID: 26515615 DOI: 10.1007/s10875-015-0207-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Hypomorphic mutations in RAG1 and RAG2 are associated with significant clinical heterogeneity and symptoms of immunodeficiency or autoimmunity may be late in appearance. As a result, immunosuppressive medications may be introduced that can have life-threatening consequences. We describe a previously healthy 13-month-old girl presenting with rash and autoimmune hemolytic anemia, while highlighting the importance of vigilance and consideration of an underlying severe immunodeficiency disease prior to instituting immunosuppressive therapy. METHODS Given clinical deterioration of the patient and a temporal association with recently administered vaccinations, virus genotyping was carried out via 4 real-time Forster Resonance Energy Transfer PCR protocols targeting vaccine-associated single nucleotide polymorphisms. Genomic DNA was extracted from whole blood and analyzed via the next-generation sequencing method of sequencing-by-synthesis. Immune function studies included immunophenotyping of peripheral blood lymphocytes, mitogen-induced proliferation and TLR ligand-induced production of TNFα. Analysis of recombination activity of wild-type and mutant RAG2 constructs was performed. RESULTS Virus genotyping revealed vaccine-strain VZV, mumps, and rubella. Next-generation sequencing identified heterozygosity for RAG2 R73H and P180H mutations. Profound lymphopenia was associated with intense corticosteroid therapy, with some recovery after steroid reduction. Residual, albeit low, RAG2 protein activity was demonstrated. CONCLUSIONS Because of the association of RAG deficiency with late-onset presentation and autoimmunity, live virus vaccination and immunosuppressive therapies are often initiated and can result in negative consequences. Here, hypomorphic RAG2 mutations were linked to disseminated vaccine-strain virus infections following institution of corticosteroid therapy for autoimmune hemolytic anemia.
Collapse
|
11
|
Chan SK, Gelfand EW. Primary Immunodeficiency Masquerading as Allergic Disease. Immunol Allergy Clin North Am 2015; 35:767-78. [PMID: 26454318 DOI: 10.1016/j.iac.2015.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary immune deficiencies (PIDs) are an uncommon heterogeneous group of diseases that result from fundamental defects in the proteins and cells that enable specific immune responses. Common allergic reactions (eczema, allergic rhinitis, asthma, and food allergies) are exaggerated immune responses that may be manifestations of an underlying PID. Early diagnosis and treatment has significant bearing on outcome. Immune suppression with systemic corticosteroids in these immune compromised individuals can lead to life threatening dissemination of infections.
Collapse
Affiliation(s)
- Sanny K Chan
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | - Erwin W Gelfand
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
12
|
Kato T, Crestani E, Kamae C, Honma K, Yokosuka T, Ikegawa T, Nishida N, Kanegane H, Wada T, Yachie A, Ohara O, Morio T, Notarangelo LD, Imai K, Nonoyama S. RAG1 deficiency may present clinically as selective IgA deficiency. J Clin Immunol 2015; 35:280-8. [PMID: 25739914 DOI: 10.1007/s10875-015-0146-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recombination-activating gene (RAG) 1 and 2 deficiency is seen in patients with severe combined immunodeficiency (SCID) and Omenn syndrome. However, the spectrum of the disease has recently expanded to include a milder phenotype. OBJECTIVE We analyzed a 4-year-old boy who was initially given the diagnosis of selective immunoglobulin A deficiency (SIgAD) based on immunoglobulin serum levels without any opportunistic infections, rashes, hepatosplenomegaly, autoimmunity or granulomas. The patient was found to be infected with varicella zoster; however, the clinical course was not serious. He produced antiviral antibodies. METHODS We performed lymphocyte phenotyping, quantification of T cell receptor excision circles (TRECs) and kappa deleting recombination excision circles (KRECs), an analysis of target sequences of RAG1 and 2, a whole-genome SNP array, an in vitro V(D)J recombination assay, a spectratype analysis of the CDR3 region and a flow cytometric analysis of the bone marrow. RESULTS Lymphocyte phenotyping demonstrated that the ratio of CD4+ to CD8+ T cells was inverted and the majority of CD4+T cells expressed CD45RO antigens in addition to the almost complete lack of B cells. Furthermore, both TRECs and KRECs were absent. Targeted DNA sequencing and SNP array revealed that the patient carried a deletion of RAG1 and RAG2 genes on the paternally-derived chromosome 11, and two maternally-derived novel RAG1 missense mutations (E455K, R764H). In vitro analysis of recombination activity showed that both RAG1 mutant proteins had low, but residual function. CONCLUSIONS The current case further expands the phenotypic spectrum of mild presentations of RAG deficiency, and suggests that TRECs and KRECs are useful markers for detecting hidden severe, as well as mild, cases.
Collapse
Affiliation(s)
- Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, Notarangelo LD, Pan-Hammarström Q, Hammarström L. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol 2014; 134:1375-1380. [PMID: 24996264 DOI: 10.1016/j.jaci.2014.04.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recombination-activating gene 1 (RAG1) deficiency presents with a varied spectrum of combined immunodeficiency, ranging from a T(-)B(-)NK(+) type of disease to a T(+)B(+)NK(+) phenotype. OBJECTIVE We sought to assess the genetic background of patients with common variable immunodeficiency (CVID). METHODS A patient given a diagnosis of CVID, who was born to a consanguineous family and thus would be expected to show an autosomal recessive inheritance, was subjected to clinical evaluation, immunologic assays, homozygosity gene mapping, exome sequencing, Sanger sequencing, and functional analysis. RESULTS The 14-year-old patient, who had liver granuloma, extranodal marginal zone B-cell lymphoma, and autoimmune neutropenia, presented with a clinical picture resembling CVID. Genetic analysis of this patient showed a homozygous hypomorphic RAG1 mutation (c.1073 G>A, p.C358Y) with a residual functional capacity of 48% of wild-type protein. CONCLUSION Our finding broadens the range of disorders associated with RAG1 mutations and might have important therapeutic implications.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ning Wang
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yu Nee Lee
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Francesco Frugoni
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Luigi D Notarangelo
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
14
|
Lee YN, Frugoni F, Dobbs K, Walter JE, Giliani S, Gennery AR, Al-Herz W, Haddad E, LeDeist F, Bleesing JH, Henderson LA, Pai SY, Nelson RP, El-Ghoneimy DH, El-Feky RA, Reda SM, Hossny E, Soler-Palacin P, Fuleihan RL, Patel NC, Massaad MJ, Geha RS, Puck JM, Palma P, Cancrini C, Chen K, Vihinen M, Alt FW, Notarangelo LD. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. J Allergy Clin Immunol 2014; 133:1099-108. [PMID: 24290284 PMCID: PMC4005599 DOI: 10.1016/j.jaci.2013.10.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND The recombination-activating gene (RAG) 1/2 proteins play a critical role in the development of T and B cells by initiating the VDJ recombination process that leads to generation of a broad T-cell receptor (TCR) and B-cell receptor repertoire. Pathogenic mutations in the RAG1/2 genes result in various forms of primary immunodeficiency, ranging from T(-)B(-) severe combined immune deficiency to delayed-onset disease with granuloma formation, autoimmunity, or both. It is not clear what contributes to such heterogeneity of phenotypes. OBJECTIVE We sought to investigate the molecular basis for phenotypic diversity presented in patients with various RAG1 mutations. METHODS We have developed a flow cytometry-based assay that allows analysis of RAG recombination activity based on green fluorescent protein expression and have assessed the induction of the Ighc locus rearrangements in mouse Rag1(-/-) pro-B cells reconstituted with wild-type or mutant human RAG1 (hRAG1) using deep sequencing technology. RESULTS Here we demonstrate correlation between defective recombination activity of hRAG1 mutant proteins and severity of the clinical and immunologic phenotype and provide insights on the molecular mechanisms accounting for such phenotypic diversity. CONCLUSIONS Using a sensitive assay to measure the RAG1 activity level of 79 mutations in a physiologic setting, we demonstrate correlation between recombination activity of RAG1 mutants and the severity of clinical presentation and show that RAG1 mutants can induce specific abnormalities of the VDJ recombination process.
Collapse
Affiliation(s)
- Yu Nee Lee
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Francesco Frugoni
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Kerry Dobbs
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Jolan E Walter
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass; Division of Pediatric Allergy/Immunology, Massachusetts General Hospital for Children, Boston, Mass
| | - Silvia Giliani
- A. Nocivelli Institute for Molecular Medicine, Pediatric Clinic, University of Brescia, and the Section of Genetics, Department of Pathology Spedali Civili, Brescia, Italy
| | - Andrew R Gennery
- Department of Paediatric Immunology, Newcastle Upon Tyne Hospital, NHS Foundation Trust, United Kingdom and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Elie Haddad
- Department of Pediatrics and Department of Microbiology, Infectiology and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Francoise LeDeist
- Department of Pediatrics and Department of Microbiology, Infectiology and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Jack H Bleesing
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren A Henderson
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, Mass
| | - Robert P Nelson
- Divisions of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Ind
| | - Dalia H El-Ghoneimy
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reem A El-Feky
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shereen M Reda
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Elham Hossny
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Pere Soler-Palacin
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ramsay L Fuleihan
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Niraj C Patel
- Immunology Clinic, Levine Children's Hospital, Carolinas Medical Center, Charlotte, NC
| | - Michel J Massaad
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Jennifer M Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Paolo Palma
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Caterina Cancrini
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Karin Chen
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and the Department of Genetics, Harvard Medical School, Boston, Mass.
| | - Luigi D Notarangelo
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
15
|
Chen K, Wu W, Mathew D, Zhang Y, Browne SK, Rosen LB, McManus MP, Pulsipher MA, Yandell M, Bohnsack JF, Jorde LB, Notarangelo LD, Walter JE. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J Allergy Clin Immunol 2014; 133:880-2.e10. [PMID: 24472623 PMCID: PMC4107635 DOI: 10.1016/j.jaci.2013.11.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 11/23/2022]
Affiliation(s)
- Karin Chen
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah.
| | - Wilfred Wu
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Divij Mathew
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Sarah K Browne
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lindsey B Rosen
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meghann P McManus
- Division of Hematology/Blood and Marrow Transplantation, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Pulsipher
- Division of Hematology/Blood and Marrow Transplantation, University of Utah School of Medicine, Salt Lake City, Utah
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - John F Bohnsack
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Luigi D Notarangelo
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Jolan E Walter
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Pediatric Immunodeficiency Program, Division of Allergy, Massachusetts General Hospital for Children, Boston, Mass
| |
Collapse
|
16
|
Schuetz C, Pannicke U, Jacobsen EM, Burggraf S, Albert MH, Hönig M, Niehues T, Feyen O, Ehl S, Debatin KM, Friedrich W, Schulz AS, Schwarz K. Lesson from hypomorphic recombination-activating gene (RAG) mutations: Why asymptomatic siblings should also be tested. J Allergy Clin Immunol 2013; 133:1211-5. [PMID: 24331380 DOI: 10.1016/j.jaci.2013.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany.
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | | | | | - Manfred Hönig
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Tim Niehues
- Center for Child and Adolescent Health, HELIOS Klinikum Krefeld, Academic Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Feyen
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Children's Hospital, University Düsseldorf, Heinrich Heine University, Düsseldorf, Germany; Tavarlin AG, Darmstadt, Germany
| | - Stephan Ehl
- Centre of Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Wilhelm Friedrich
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Ansgar S Schulz
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Württemberg-Hessen, Germany
| |
Collapse
|
17
|
Wada T, Muraoka M, Toma T, Imai T, Shigemura T, Agematsu K, Haraguchi K, Moriuchi H, Oh-Ishi T, Kitoh T, Ohara O, Morio T, Yachie A. Rapid detection of intracellular p47phox and p67phox by flow cytometry; useful screening tests for chronic granulomatous disease. J Clin Immunol 2013; 33:857-64. [PMID: 23306776 DOI: 10.1007/s10875-012-9859-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/20/2012] [Indexed: 11/24/2022]
Abstract
Chronic granulomatous disease (CGD) is caused by defects of NADPH oxidase. The diagnosis of CGD can be made by analysis of NADPH oxidase activity, however, identification of the CGD subgroups is required before performing mutation analysis. The membrane-bound subunits, gp91phox and p22phox, can be quickly analyzed by flow cytometry, unlike the cytosolic components, p47phox and p67phox. We evaluated the feasibility of flow cytometric detection of p47phox and p67phox with specific monoclonal antibodies in two patients with p47phox deficiency and 7 patients with p67phox deficiency. Consistent with previous observations, p47phox and p67phox were expressed in phagocytes and B cells, but not in T or natural killer cells, from normal controls. In contrast, patients with p47phox and p67phox deficiency showed markedly reduced levels of p47phox and p67phox, respectively. These techniques will be useful to rapidly assess the expression of the cytosolic components, p47phox and p67phox, and represents important secondary screening tests for CGD.
Collapse
Affiliation(s)
- Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8641, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Late-onset combined immune deficiency associated to skin granuloma due to heterozygous compound mutations in RAG1 gene in a 14 years old male. Hum Immunol 2012; 74:18-22. [PMID: 23085344 DOI: 10.1016/j.humimm.2012.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/26/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022]
Abstract
We report a male with atypical severe combined immunodeficiency caused by heterozygous compound mutations c.256-257del and c.C1331T in RAG1 gene. The patient presents with recurrent bronchopneumonias with obstruction, chronic fibrosing alveolitis, complicated by respiratory failure, pulmonary hypertension and hepatosplenomegaly. He was diagnosed with agammaglobulinemia at the age of 9. His condition was complicated by granulomatous skin disease at the age of 12 despite regular IVIg substitution. Immunological presentation included profound hypogammaglobulinemia and absence of B cells. Under immunoglobulin substitution for 5 years patient has permanent lymphopenia, skewed phenotype of T cells and diminished number of recent thymic emigrants.
Collapse
|
19
|
Kutukculer N, Gulez N, Karaca NE, Aksu G, Berdeli A. Novel mutatıons and diverse clinical phenotypes in recombinase-activating gene 1 deficiency. Ital J Pediatr 2012; 38:8. [PMID: 22424479 PMCID: PMC3394211 DOI: 10.1186/1824-7288-38-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 03/16/2012] [Indexed: 06/22/2024] Open
Abstract
Background Severe combined immunodeficiency is within a heterogeneous group of inherited defects throughout the development of T- and/or B-lymphocytes. Mutations in recombinase-activating genes 1 or 2 (RAG1/2) represent approximately 10% of all SCID cases. RAG1/2 are essential for V(D)J rearrangement of the B- and T-cell receptors. Objectives The aim of this study was to review clinical, immunological and molecular findings of Turkish SCID patients with RAG1 defects and to draw attention to novel mutations, genotype-phenotype correlations and the high rate of BCG infections within this group. Methods Eleven patients (F/M: 6/5) were included. Molecular, immunological and clinical data were evaluated. Results Five patients were classified as T-B-NK + SCID, four patients as T + B-NK + SCID (two of these patients were diagnosed as classical Omenn syndrome) and two patients as T + B + NK + SCID with respect to clinical presentations and immunological data. Mean age of the whole study group, mean age at onset of symptoms and mean age at diagnosis were: 33.0 ± 42.8, 3.1 ± 3.3 and 10.4 ± 13.5 months, respectively. Consanguinity rate was 54%. Some novel mutations were found in RAG1 gene in addition to previously reported mutations. Genotype-phenotype correlation was not significantly apparent in most of the cases. BCG infection was observed in 36.4% of patients (two BCG-osis and two BCG-itis). Conclusion Epigenetic factors such as compound genetic defects, enviromental factors, and exposure to recurrent infections may modify phenotypical characteristics of RAG deficiencies. Inoculation of live vaccines such as BCG should be postponed until primary immunodeficiency disease is excluded with appropriate screening tests in suspected cases.
Collapse
Affiliation(s)
- Necil Kutukculer
- Department of Pediatrics, Faculty of Medicine, Ege University, 35100 Bornova, Izmir, Turkey
| | | | | | | | | |
Collapse
|
20
|
Dalal I, Tasher D, Somech R, Etzioni A, Garti BZ, Lev D, Cohen S, Somekh E, Leshinsky-Silver E. Novel mutations in RAG1/2 and ADA genes in Israeli patients presenting with T-B-SCID or Omenn syndrome. Clin Immunol 2011; 140:284-90. [PMID: 21624848 DOI: 10.1016/j.clim.2011.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 12/30/2022]
Abstract
The relative frequency of the different forms of SCID may vary in different countries. The most frequent form in Israel is the autosomal-recessive T-B- SCID or Omenn syndrome while X-linked SCID is rare. We report our immunological and genetic analyses in multicentre study of patients presenting with either T-B- SCID or Omenn syndrome. Among 16 patients, we identified 7 novel mutations in 6 patients. In the RAG1 gene we detected two novel mutations: L454Q and 469 fs-4bpdel. In the RAG 2 gene: 3 novel mutations: D65Y, G157V, and E480X. One T-B- SCID patient was found to be a compound heterozygote for new mutations in the ADA gene: W264X and R235W. Prenatal diagnosis was performed in 8 families while others refused due to religious reasons. Identification of the new mutations expands our knowledge regarding the unique features of SCID phenotype in Israel and may help the families seeking for genetic counseling.
Collapse
Affiliation(s)
- Ilan Dalal
- Pediatric Infectious/Allergy/Inmunology Unit, E. Wolfson Medical Center, Holon, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|