1
|
Sharma U. The SLE Conundrum: A Comprehensive Analysis of Pathogenesis, Recent Developments, and the Future of Therapeutic Interventions. Crit Rev Immunol 2025; 45:41-54. [PMID: 39612276 DOI: 10.1615/critrevimmunol.2024053504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with multifactorial interactions among various susceptibility factors. Significant strides have been made in understanding the pathogenesis of SLE, leading to the development of targeted therapies and the exploration of alternative treatments. The approval of new therapies has expanded patient treatment options, and ongoing clinical trials promise to enhance the treatment landscape further. The future of SLE treatment lies in personalized, targeted therapies that minimize side effects and improve patient outcomes. This review comprehensively analyzes SLE's current status and prospects based on recent studies, patents, clinical trials, and formulations. Continued research and clinical trials are crucial to uncovering new therapeutic options and ultimately transforming the treatment landscape for SLE. With sustained efforts and advancements in medical science, we can offer a better quality of life and improved survival rates for SLE patients.
Collapse
|
2
|
Seillet C, Xiong L. ILC1 as critical gatekeepers in autoimmune kidney damage. Immunol Cell Biol 2025; 103:9-11. [PMID: 39642908 DOI: 10.1111/imcb.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
A recent article has shown that blocking NKp46 signaling reduces injury, highlighting these cells as key drivers of organ damage and potential therapeutic targets in autoimmune diseases. In lupus nephritis, NKp46+ ILC1s orchestrate kidney inflammation by producing CSF2, driving the expansion of pro-inflammatory macrophages that infiltrate epithelial niches and exacerbate tissue damage.
Collapse
Affiliation(s)
- Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Le Xiong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Dao LTM, Vu TT, Nguyen QT, Hoang VT, Nguyen TL. Current cell therapies for systemic lupus erythematosus. Stem Cells Transl Med 2024; 13:859-872. [PMID: 38920310 PMCID: PMC11386214 DOI: 10.1093/stcltm/szae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.
Collapse
Affiliation(s)
- Lan T M Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thu Thuy Vu
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thanh Liem Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vinmec International Hospital, Center of Regenerative Medicine and Cell Therapy, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vin University, College of Health Sciences, Hanoi 100000, Vietnam
| |
Collapse
|
4
|
Chen Y, Gu X, Cao K, Tu M, Liu W, Ju J. The role of innate lymphoid cells in systemic lupus erythematosus. Cytokine 2024; 179:156623. [PMID: 38685155 DOI: 10.1016/j.cyto.2024.156623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Systemic lupus erythematosus (SLE) is a connective tissue disorder that affects various body systems. Both the innate and adaptive immunity contribute to the onset and progression of SLE. The main mechanism of SLE is an excessive immune response of immune cells to autoantigens, which leads to systemic inflammation and inflammation-induced organ damage. Notably, a subset of innate immune cells known as innate lymphoid cells (ILCs) has recently emerged. ILCs are pivotal in the early stages of infection; participate in immune responses, inflammation, and tissue repair; and regulate the immune function of the body by resisting pathogens and regulating autoimmune inflammation and metabolic homeostasis. Thus, ILCs dysfunction can lead to autoimmune diseases. This review discusses the maturation of ILCs, the potential mechanisms by which ILCs exacerbate SLE pathogenesis, and their contributions to organ inflammatory deterioration in SLE.
Collapse
Affiliation(s)
- Yong Chen
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xiaotian Gu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Miao Tu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wan Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jiyu Ju
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
5
|
Liu Y, Hu Y, Li B, Su R, Han Z, Jin B, Li T, Zheng X, Han Y. Innate lymphoid cell subsets in the pathogenesis of primary biliary cholangitis. J Gastroenterol Hepatol 2024; 39:1431-1441. [PMID: 38606537 DOI: 10.1111/jgh.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND AIM Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by destructive lymphocytic cholangitis and specific anti-mitochondrial antibodies. Innate lymphoid cells (ILCs) have been reported to play a role in liver homeostasis and autoimmunity. METHODS We evaluated the features of peripheral ILC1s and ILC3 in patients with PBC and hepatic ILC1 and ILC3 in two different PBC mouse models (dominant-negative transforming growth factor-beta receptor II [dnTGFβRII] and 2-octynoic acid-bovine serum albumin [2OA-BSA]). RESULTS A total of 115 patients and 18 healthy controls were enrolled in the study. Decreased circulating ILC1/3s were observed in early-stage PBC patients, and the numbers of ILC1/3s were negatively correlated with specific parameters and the proportion of T-helper (Th) 1 and Th17 cells. Reduced numbers of ILC1s were observed in PBC mouse models with different etiologies. ILC1-deficient mice had more severe hepatic inflammation after inducing the 2OA-BSA model. Continuous low-dose injections of lipopolysaccharide (LPS) reduced ILC1 levels in mice, consistent with the lower level of ILC1s in PBC patients with high LPS (> 50 ng/mL), and aggravated hepatic lymphocyte infiltration. CONCLUSION Patients with PBC had decreased ILC1s, which were negatively correlated with CD4+ T cells. Deficient ILC1 populations led to disease exacerbations in mice. Our results indicated that ILC1s may participate in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Yansheng Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Bo Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Rui Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zheyi Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ting Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ying Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Hanlon N, Gillan N, Neil J, Seidler K. The role of the aryl hydrocarbon receptor (AhR) in modulating intestinal ILC3s to optimise gut pathogen resistance in lupus and benefits of nutritional AhR ligands. Clin Nutr 2024; 43:1199-1215. [PMID: 38631087 DOI: 10.1016/j.clnu.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Dysbiosis is emerging as a potential trigger of systemic lupus erythematosus (SLE). Group 3 innate lymphoid cells (ILC3s) are recognised as key regulators of intestinal homeostasis. The aryl hydrocarbon receptor (AhR) is critical to intestinal ILC3 development and function. This mechanistic review aimed to investigate whether AhR activation of gut ILC3s facilitates IL-22-mediated antimicrobial peptide (AMP) production to enhance colonisation resistance and ameliorate SLE pathology associated with intestinal dysbiosis. Furthermore, nutritional AhR ligand potential to enhance pathogen resistance was explored. METHODOLOGY This mechanistic review involved a three-tranche systematic literature search (review, mechanism, intervention) using PubMed with critical appraisal. Data was synthesised into themes and summarised in a narrative analysis. RESULTS Preclinical mechanistic data indicate that AhR modulation of intestinal ILC3s optimises pathogen resistance via IL-22-derived AMPs. Pre-clinical research is required to validate this mechanism in SLE. Data on systemic immune consequences of AhR modulation in lupus suggest UVB-activated ligands induce aberrant AhR signalling while many dietary ligands exert beneficial effects. Data on xenobiotic-origin ligands is varied, although considerable evidence has demonstrated negative effects on Th17 to Treg balance. Limited human evidence supports the role of nutritional AhR ligands in modulating SLE pathology. Preclinical and clinical data support anti-inflammatory effects of dietary AhR ligands. CONCLUSION Current evidence is insufficient to fully validate the hypothesis that AhR modulation of intestinal ILC3s can enhance pathogen resistance to ameliorate lupus pathology driven by dysbiosis. However, anti-inflammatory effects of dietary AhR ligands suggest a promising role as a therapeutic intervention for SLE.
Collapse
Affiliation(s)
- Niamh Hanlon
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Natalie Gillan
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - James Neil
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| |
Collapse
|
7
|
Tchitchek N, Binvignat M, Roux A, Pitoiset F, Dubois J, Marguerit G, Saadoun D, Cacoub P, Sellam J, Berenbaum F, Hartemann A, Amouyal C, Lorenzon R, Mariotti-Ferrandiz E, Rosenzwajg M, Klatzmann D. Deep immunophenotyping reveals that autoimmune and autoinflammatory disorders are spread along two immunological axes capturing disease inflammation levels and types. Ann Rheum Dis 2024; 83:638-650. [PMID: 38182406 PMCID: PMC11041612 DOI: 10.1136/ard-2023-225179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVES Based on genetic associations, McGonagle and McDermott suggested a classification of autoimmune and autoinflammatory diseases as a continuum ranging from purely autoimmune to purely autoinflammatory diseases and comprising diseases with both components. We used deep immunophenotyping to identify immune cell populations and molecular targets characterising this continuum. METHODS We collected blood from 443 patients with one of 15 autoimmune or autoinflammatory diseases and 71 healthy volunteers. Deep phenotyping was performed using 13 flow cytometry panels characterising over 600 innate and adaptive cell populations. Unsupervised and supervised analyses were conducted to identify disease clusters with their common and specific cell parameters. RESULTS Unsupervised clustering categorised these diseases into five clusters. Principal component analysis deconvoluted this clustering into two immunological axes. The first axis was driven by the ratio of LAG3+ to ICOS+ in regulatory T lymphocytes (Tregs), and segregated diseases based on their inflammation levels. The second axis was driven by activated Tregs and type 3 innate lymphoid cells (ILC3s), and segregated diseases based on their types of affected tissues. We identified a signature of 23 cell populations that accurately characterised the five disease clusters. CONCLUSIONS We have refined the monodimensional continuum of autoimmune and autoinflammatory diseases as a continuum characterised by both disease inflammation levels and targeted tissues. Such classification should be helpful for defining therapies. Our results call for further investigations into the role of the LAG3+/ICOS+ balance in Tregs and the contribution of ILC3s in autoimmune and autoinflammatory diseases. TRIAL REGISTRATION NUMBER NCT02466217.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Marie Binvignat
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Alexandra Roux
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Fabien Pitoiset
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Johanna Dubois
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Gwendolyn Marguerit
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - David Saadoun
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Department of Internal Medicine and Clinical Immunology and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Reference Center for Autoinflammatory Disorders (CEREMAIA); Reference Center for Systemic Autoimmune Diseases, Paris, France
| | - Patrice Cacoub
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Department of Internal Medicine and Clinical Immunology and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Reference Center for Autoinflammatory Disorders (CEREMAIA); Reference Center for Systemic Autoimmune Diseases, Paris, France
| | - Jérémie Sellam
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Francis Berenbaum
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Agnès Hartemann
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Diabetology-Metabolism Department, AP-HP, Institut Hospitalo-Universitaire de Cardiometabolisme et Nutrition (ICAN), Pitié-Salpêtrière-Charles Foix Hospital, Sorbonne Université, Paris, France
| | - Chloé Amouyal
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Diabetology-Metabolism Department, AP-HP, Institut Hospitalo-Universitaire de Cardiometabolisme et Nutrition (ICAN), Pitié-Salpêtrière-Charles Foix Hospital, Sorbonne Université, Paris, France
| | - Roberta Lorenzon
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Encarnita Mariotti-Ferrandiz
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michelle Rosenzwajg
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - David Klatzmann
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| |
Collapse
|
8
|
Li F, Liang Z, Zhong H, Hu X, Tang Z, Zhu C, Shen J, Han X, Lin R, Zheng R, Tang R, Peng H, Zheng X, Mo C, Chen P, Wang X, Wen Q, Li J, Xia X, Ye H, Qiu Y, Yu J, Fu D, Liu J, Wang R, Xie H, Guo Y, Li X, Fan J, Liu Q, Mao H, Chen W, Zhou Y. Group 3 Innate Lymphoid Cells Exacerbate Lupus Nephritis by Promoting B Cell Activation in Kidney Ectopic Lymphoid Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302804. [PMID: 37915129 PMCID: PMC10724443 DOI: 10.1002/advs.202302804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/28/2023] [Indexed: 11/03/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s) represent a new population in immune regulation, yet their role in lupus nephritis (LN) remains elusive. In the present work, systemic increases in ILC3s, particularly in the kidney, are observed to correlate strongly with disease severity in both human and murine LN. Using MRL/lpr lupus mice and a nephrotoxic serum-induced LN model, this study demonstrates that ILC3s accumulated in the kidney migrate predominantly from the intestine. Furthermore, intestinal ILC3s accelerate LN progression, manifested by exacerbated autoimmunity and kidney injuries. In LN kidneys, ILC3s are located adjacent to B cells within ectopic lymphoid structures (ELS), directly activating B cell differentiation into plasma cells and antibody production in a Delta-like1 (DLL1)/Notch-dependent manner. Blocking DLL1 attenuates ILC3s' effects and protects against LN. Altogether, these findings reveal a novel pathogenic role of ILC3s in B cell activation, renal ELS formation and autoimmune injuries during LN, shedding light on the therapeutic value of targeting ILC3s for LN.
Collapse
Affiliation(s)
- Feng Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Zhou Liang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Haojie Zhong
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital, Shenzhen UniversityShenzhen518000China
| | - Xinrong Hu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Ziwen Tang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Changjian Zhu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jiani Shen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Xu Han
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Ruoni Lin
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Ruilin Zheng
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Ruihan Tang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Huajing Peng
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Xunhua Zheng
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Chengqiang Mo
- Department of UrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
| | - Peisong Chen
- Department of Laboratory MedicineThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
| | - Xin Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Qiong Wen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jianbo Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Xi Xia
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Hongjian Ye
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Yagui Qiu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jianwen Yu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Dongying Fu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jiaqi Liu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Rong Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Huixin Xie
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Yun Guo
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Xiaoyan Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jinjin Fan
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Haiping Mao
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| |
Collapse
|
9
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Zhang C, Cai S, Li Y, Xu X, Liu Y, Qiao H, Wong CK, Wu G, Jin H, Gao X. Elevation of Metrnβ and Its Association with Disease Activity in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:13607. [PMID: 37686413 PMCID: PMC10563073 DOI: 10.3390/ijms241713607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an auto-immune disease, the pathogenesis of which remains to be fully addressed. Metrnβ is a novel cytokine involved in the pathogenesis of inflammatory disease, but its regulatory roles in SLE are unclear. We aimed to comprehensively investigate the clinical value of Metrnβ in SLE. A massive elevation of circulating Metrnβ levels was observed in SLE, and patients with an active phase displayed higher Metrnβ concentrations than those with inactive phases. Additionally, we found that Metrnβ expression was positively correlated with clinical indicators of SLE. Longitudinal cytokine and chemokine profiles revealed a disturbed immune response in SLE, with high activity profiles displayed severe pathogenic inflammation, and a positive correlation of the serum Metrnβ with CXCL9, IL10, IL18 and IL1RA was observed as well. Moreover, Metrnβ expressions exhibited an inverse correlation with Treg and B10. Of note, a significant decrease of ILC2 was found in SLE, and there was a negative correlation of Metrnβ with ILC2 as well. Further ROC analysis showed that the area under the curve (AUC) for Metrnβ was 0.8250 (95% CI: 0.7379-0.9121), with a cutoff value of 1131 pg/mL to effectively distinguish SLE patients from healthy controls. Our study herein demonstrated for the first time that Metrnβ values were increased and were immunologically correlated with SLE activity, which could be utilized as an alternative biomarker for the early identification and predicting of the immuno-response of SLE.
Collapse
Affiliation(s)
- Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shijie Cai
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, China
| | - Ying Li
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Xiaoyan Xu
- Department of Rheumatology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Yonghui Liu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Huaiyu Qiao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
11
|
Lu Z, Wang H, Gong Z, Guo P, Li C, Bi K, Li X, Chen Y, Pan A, Xu Y, Zhou P, Wei Z, Jiang H, Cao Y. The enrichment of Arg1 +ILC2s and ILCregs facilitates the progression of endometriosis: A preliminary study. Int Immunopharmacol 2023; 121:110421. [PMID: 37302364 DOI: 10.1016/j.intimp.2023.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Innate lymphoid cells (ILCs) are a kind of lymphocytes that reside in the tissue and have an essential function in the immune microenvironment. However, the relationship between endometriosis (EMS) and ILCs is complex and not fully understood. This study examines several groups of ILCs in the peripheral blood (PB), peritoneal fluid (PF) and endometrium of patients with EMS via flow cytometry. The study observed an increase in PB ILCs, particularly ILC2s and ILCregs subsets and Arg1+ILC2s in the EMS patients were highly activated. EMS patients had significantly higher levels of serum interleukin (IL)-10/33/25 compared to controls. We also found an elevation of Arg1+ILC2s in the PF and higher levels of ILC2s and ILCregs in ectopic endometrium compared with eutopic. Importantly, a positive correlation was observed between the enrichment of Arg1+ILC2s and ILCregs in the PB of EMS patients. The findings indicate that the involvement of Arg1+ILC2s and ILCregs fosters potentially endometriosis progression.
Collapse
Affiliation(s)
- Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhangyun Gong
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xuqing Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ya Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Anan Pan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
12
|
Bagheri-Hosseinabadi Z, Mirzaei MR, Aliakbari M, Abbasifard M. Association of interleukin 33 gene polymorphisms with susceptibility and regulation of inflammatory mediators in Systemic lupus erythematosus patients. Clin Rheumatol 2023; 42:2187-2197. [PMID: 37067648 DOI: 10.1007/s10067-023-06575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Studies have indicated the involvement of interleukin (IL)-33 in the pathogenesis of Systemic lupus erythematosus (SLE). This research intended to evaluate the association of IL33 gene rs1929992 and rs7044343 Single nucleotide polymorphisms (SNPs) with risk of SLE. In addition, the association between these SNPs and inflammatory cytokines was determined. METHODS In this study, 200 SLE cases and 200 healthy subjects were recruited. Using allelic discrimination Real-time PCR, IL33 gene rs1929992 and rs7044343 SNPs were genotyped. The mRNA expression levels of IL-1β, IL-6, IL-33, TNF-α were determined in the peripheral blood mononuclear cells (PBMCs). The serum levels of cytokines were also measured. RESULTS The G allele (OR = 1.57, CI: 1.18-2.08, P = 0.0017), GG genotype (OR = 2.52, CI: 1.33-4.77, P = 0.0043), and GA genotype (OR = 2.12, CI: 1.34-3.34, P = 0.0011) of rs1929992 SNP was significantly associated with an increased SLE risk. The C allele (OR = 1.44, CI: 1.08-1.90; P = 0.0105), CC genotype (OR = 2.07, CI: 1.15-3.71; P = 0.0146), and CT genotype (OR = 1.61, CI: 1.02-2.53, P = 0.0395) of rs7044343 was significantly associated with increased SLE risk. The PBMC mRNA expression and serum levels of IL-1β, IL-6, IL-33, TNF-α were significantly increased in the SLE patients compared to controls. However, there was no significant difference in the mRNA expression and serum levels of IL-1β, IL-6, IL-33, and TNF-α among the SLE patients with three genotypes for both rs1929992 and rs7044343 polymorphisms. CONCLUSIONS IL33 gene rs1929992 and rs7044343 SNPs are involved in SLE pathogenesis but they might not influence on the inflammatory pathway.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mina Aliakbari
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
13
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
14
|
Zhu Y, Su J, Zhang P, Deng M, Wu R, Liu Y, Su Y, Li S. The dysregulation of circulating innate lymphoid cells is related to autoantibodies in pemphigus vulgaris. Int Immunopharmacol 2023; 117:109921. [PMID: 36841156 DOI: 10.1016/j.intimp.2023.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a typical autoimmune disease caused by autoantibodies. Innate lymphoid cells (ILCs) are non-antigen-dependent populations composed of different subsets, also known as "mirror cells" of T cells, which play a crucial role in immune inflammatory diseases. However, the characteristics of ILCs in PV are unclear. METHODS Patients diagnosed with PV along with healthy controls in Second Xiangya Hospital of Central South University were studied. Flow cytometry was used to detect the proportion of ILC subsets in the peripheral blood. Anti-desmoglein (DSG) 1 and anti-DSG3 antibody levels of PV patients were detected. RESULTS Thirty-eight PV patients and 37 healthy controls were enrolled. There were no differences in sex or age between the two groups. Compared with controls, ILCs/CD45+ lymphocytes were significantly decreased in patients with PV. The frequency of ILC1s increased in patients with PV and was positively correlated with anti-DSG3 antibodies. However, the frequency of ILC3s decreased in patients with PV and was negatively correlated with anti-DSG1 antibodies. After methylprednisolone treatment, ILC1/ILC levels significantly decreased. CONCLUSIONS Circulating ILC subsets are associated with PV pathogenesis. Upregulated ILC1s seem to correlate positively with PV severity and can be restored after treatment.
Collapse
Affiliation(s)
- Yanshan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jian Su
- School of Architecture and Art, Central South University, Changsha, Hunan 410083, China
| | - Peng Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Min Deng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yidan Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Siying Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
15
|
Liu R, Peng Y, Ye H, Xia X, Chen W, Huang F, Li Z, Yang X. Peripheral Eosinophil Count Associated with Disease Activity and Clinical Outcomes in Hospitalized Patients with Lupus Nephritis. Nephron Clin Pract 2023; 147:408-416. [PMID: 36657400 DOI: 10.1159/000528486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/13/2022] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION The aim of this study was to evaluate the association of peripheral eosinophil (EOS) count with disease activity and kidney outcomes in lupus nephritis (LN) patients. METHODS A total of 453 hospitalized and biopsy-proven LN patients at our hospital from 2006 to 2013 were enrolled, of which 388 patients had repeated measurements of EOS. Relationships were explored between average EOS and disease activity at baseline, using the systemic lupus erythematosus disease activity (SLEDAI) and activity index (AI) on kidney biopsy. Follow-up data were available through December 2016. The primary outcome measure was a composite of doubling of serum creatinine and end-stage kidney disease after a median follow-up of 51 months. RESULTS The mean age of the enrolled 388 LN patients was 33.1 ± 10.8 years old, and 335 (86%) were female. The median average peripheral EOS count was 0.033 (0.015-0.057) ×109/L. Mean AI and SLEDAI score were 6.8 ± 2.5 and 14.9 ± 5.4, respectively. Logistic regression models showed that decreased average EOS was independently associated with higher AI (≥6) and higher SLEDAI (≥15) (odds ratio [OR] 0.93, 95% confidence interval [CI] 0.90-0.97; and OR 0.96, 95% CI: 0.93-0.99, respectively). There was a parabolic relationship between average EOS and the primary outcome, with hazard ratio (HR) > 1 for both levels ≤0.033 and >0.16 × 109/L. CONCLUSION Lower EOS count was independently associated with severe disease activity and kidney progression in LN.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yuan Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xi Xia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Fengxian Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
16
|
Wang R, Zhang J, Li D, Liu G, Fu Y, Li Q, Zhang L, Qian L, Hao L, Wang Y, Harris DCH, Wang D, Cao Q. Imbalance of circulating innate lymphoid cell subpopulations in patients with chronic kidney disease. Clin Immunol 2022; 239:109029. [PMID: 35525476 DOI: 10.1016/j.clim.2022.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
Innate lymphoid cells (ILCs) are a newly identified heterogeneous family of innate immune cells. We conducted this study to investigate the frequency of circulating ILC subsets in various chronic kidney diseases (CKD). In DN, the proportion of total ILCs and certain ILC subgroups increased significantly. Positive correlations between proportion of total ILCs, ILC1s and body mass index, glycated hemoglobin were observed in DN. In LN, a significantly increased proportion of ILC1s was found in parallel with a reduced proportion of ILC2s. The proportions of total ILCs and ILC1s were correlated with WBC count and the level of C3. In all enrolled patients, the proportion of total ILCs and ILC1s was significantly correlated with the levels of ACR and GFR. In the present study, the proportion of circulating ILC subsets increased significantly in various types of CKD and correlated with clinico-pathological features, which suggests a possible role for ILCs in CKD.
Collapse
Affiliation(s)
- Ruifeng Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia; Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dandan Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guiling Liu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqin Fu
- Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing Li
- The Central Laboratory of Medical Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Qian
- Department of Rheumatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Hao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Zhang L, Lin Q, Jiang L, Wu M, Huang L, Quan W, Li X. Increased circulating innate lymphoid cell (ILC)1 and decreased circulating ILC3 are involved in the pathogenesis of Henoch-Schonlein purpura. BMC Pediatr 2022; 22:201. [PMID: 35413831 PMCID: PMC9003988 DOI: 10.1186/s12887-022-03262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Innate lymphoid cell (ILC) dysfunction is involved in numerous immune diseases, but this has not been demonstrated in Henoch-Schonlein purpura (HSP). This study aimed to investigate whether ILC dysfunction or imbalance participate in the pathogenesis of HSP. Methods This was a prospective study in patients with HSP who were hospitalized at the Children’s Hospital of Soochow University from June to December 2019. Age- and sex-matched controls were also enrolled. ILC subsets and lymphocyte subpopulations were determined by flow cytometry. The transmission immune turbidimetric method also facilitated the exploration of correlations between ILC subset frequency and lymphocyte subpopulation, as well as serum IgA in HSP patients. Results Fifty-one patients with HSP and 22 control patients were included. There were no differences in age and sex between the two groups. Compared with controls, patients with HSP had higher ILCs in relation to lymphocytes (P = 0.036), higher ILCs in relation to PBMCs (P = 0.026), higher ILC1s (P < 0.001), lower ILC3s (P < 0.05), and higher ILC1/ILC3 ratio (P < 0.001). Sixteen patients underwent routine therapy combined with methylprednisolone for 7–10 days; ILC1s were significantly decreased (P < 0.001) and ILC3s were increased (P = 0.033), and ILC1/ILC3 was significantly decreased (P < 0.001). Compared with the controls, the ratios of ILCs/lymphocytes and ILCs/PBMC were higher in patients in the arthritis and mixed groups (all P < 0.05). ILC1 were elevated in the purpura, arthritis, abdominal, and mixed groups (P = 0.027, P = 0.007, P < 0.001, and P < 0.001, respectively). ILC1/ILCs were positively correlated with CD3 + CD8 + T lymphocytes (r = 0.3701, P = 0.0075). The level of IgA did not correlate with ILCs. Conclusions Higher circulating ILC1s and lower circulating ILC3s appear to be involved in the pathogenesis of HSP. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03262-w.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Nephrology, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215003, Jiangsu, China.,Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Qiang Lin
- Department of Nephrology, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215003, Jiangsu, China
| | - Lijun Jiang
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Mingfu Wu
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Linlin Huang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, 215003, Jiangsu, China
| | - Wei Quan
- Department of Nephrology, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215003, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
18
|
Li H, Zhan H, Cheng L, Yan S, Wang L, Li Y. Imbalanced distribution of group 2 innate lymphoid cells (ILCs) and ILC precursors in peripheral blood of patients with primary biliary cholangitis. Scand J Immunol 2022; 96:e13166. [PMID: 35315090 DOI: 10.1111/sji.13166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Innate lymphoid cells (ILCs), a novel group of innate immune cells, play a key role in the early immune response via rapidly reacting to signals expressed by tissue-resident cells. ILCs contribute to some autoimmune diseases. We aim to investigate the proportions of circulating ILC subgroups in patients with primary biliary cholangitis (PBC). Overall, 48 patients with PBC and 24 healthy controls (HCs) were enrolled. Circulating ILCs and cytokine production were detected by flow cytometry. The proportions of total ILCs, ILC precursors (ILCPs), and ILCP/ILC2 ratio increased and that of ILC2s decreased in patients with PBC. ILC2 proportion was negatively correlated with gamma-glutamyl transpeptidase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). The proportion of ILCPs and ILCP/ILC2 ratio were positively correlated with alkaline phosphatase, GGT, ALT, and AST. ILC2 proportion was significantly decreased in the ursodeoxycholic acid (UDCA) -non-responder group compared with the UDCA-responder group, whereas the proportion of ILCPs and ILCP/ILC2 were ratio significantly increased. The proportions of CD38+ ILC2s, CD38+ ILCPs, CD45RO+ ILC2s, and CD45RO+ ILCPs were significantly higher in patients with PBC than in HCs. Levels of IL-17A producing ILCs were higher in patients with PBC than in HCs. PBC is accompanied by alterations in circulating ILCs. The proportions of ILC2s, ILCPs, and ILCP/ILC2 ratio were associated with the PBC disease activity. The proportions of ILCPs and ILCP/ILC2 ratio may reflect the UDCA treatment failure in patients with PBC. ILC2s and ILCPs from patients with PBC get activated, these cells may be involved in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Wang
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Bolouri N, Akhtari M, Farhadi E, Mansouri R, Faezi ST, Jamshidi A, Mahmoudi M. Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus. Inflamm Res 2022; 71:537-554. [PMID: 35298669 DOI: 10.1007/s00011-022-01554-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE), the most common form of lupus, is a multisystemic rheumatic disease with different clinical features that generally affect women of childbearing age. The common symptoms of SLE are very similar to other autoimmune and non-autoimmune disorders, thereby it is known as a thousand faces disease. In this article, we are going to discuss some of the most updated information about immune system-related factors, cells, and cytokines involved in SLE pathogenesis. METHODS Different electronic databases, especially PubMed/MEDLINE, Scopus, and Google Scholar, were searched to review and analyze relevant literature on the role of innate and adaptive immune cells and cytokines in the pathogenesis of SLE. A search for relevant literature was accomplished using various keywords including systemic lupus erythematosus, apoptosis, autoantibodies, immunopathogenesis of SLE, adaptive and innate immune cells, inflammatory cytokines, hormones, etc. RESULTS AND CONCLUSION: The most important characteristic of SLE is the production of antibodies against different nuclear autoantigens like double-strand DNA and RNA. The depositions of the immune complexes (ICs) that are generated between autoantibodies and autoantigens, along with aberrant clearance of them, can lead to permanent inflammation and contribute to tissue or organ damage. Related mechanisms underlying the initiation and development of SLE have not been clarified yet. Although, defects in immune tolerance, enhanced antigenic load, hyperactivity of T cells, and inappropriate regulation of B cells contribute to the pathogenic autoantibodies generation. Besides, sex hormones that influence the immune system seem to act as triggers or protectors of SLE development.
Collapse
Affiliation(s)
- Nasim Bolouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Mansouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Tahereh Faezi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Sarrand J, Soyfoo M. Involvement of IL-33 in the Pathophysiology of Systemic Lupus Erythematosus: Review. Int J Mol Sci 2022; 23:ijms23063138. [PMID: 35328556 PMCID: PMC8949418 DOI: 10.3390/ijms23063138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
IL-33 is a newly discovered cytokine displaying pleiotropic localizations and functions. More specifically, it also functions as an alarmin, following its release from cells undergoing cell death or necrosis, to alert the innate immune system. The role of IL-33 has been underlined in several inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE). The expressions of IL-33 as well as its receptor, ST2, are significantly upregulated in SLE patients and in patients with lupus nephritis. This review discusses the involvement of IL-33 in the pathology of SLE.
Collapse
|
21
|
Murphy JM, Ngai L, Mortha A, Crome SQ. Tissue-Dependent Adaptations and Functions of Innate Lymphoid Cells. Front Immunol 2022; 13:836999. [PMID: 35359972 PMCID: PMC8960279 DOI: 10.3389/fimmu.2022.836999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident immune cells reside in distinct niches across organs, where they contribute to tissue homeostasis and rapidly respond to perturbations in the local microenvironment. Innate lymphoid cells (ILCs) are a family of innate immune cells that regulate immune and tissue homeostasis. Across anatomical locations throughout the body, ILCs adopt tissue-specific fates, differing from circulating ILC populations. Adaptations of ILCs to microenvironmental changes have been documented in several inflammatory contexts, including obesity, asthma, and inflammatory bowel disease. While our understanding of ILC functions within tissues have predominantly been based on mouse studies, development of advanced single cell platforms to study tissue-resident ILCs in humans and emerging patient-based data is providing new insights into this lymphocyte family. Within this review, we discuss current concepts of ILC fate and function, exploring tissue-specific functions of ILCs and their contribution to health and disease across organ systems.
Collapse
Affiliation(s)
- Julia M. Murphy
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Clottu AS, Humbel M, Fluder N, Karampetsou MP, Comte D. Innate Lymphoid Cells in Autoimmune Diseases. Front Immunol 2022; 12:789788. [PMID: 35069567 PMCID: PMC8777080 DOI: 10.3389/fimmu.2021.789788] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Innate lymphoid cells (ILC) are a heterogeneous group of immune cells characterized by lymphoid morphology and cytokine profile similar to T cells but which do not express clonally distributed diverse antigen receptors. These particular cells express transcription factors and cytokines reflecting their similarities to T helper (Th)1, Th2, and Th17 cells and are therefore referred to as ILC1, ILC2, and ILC3. Other members of the ILC subsets include lymphoid tissue inducer (LTi) and regulatory ILC (ILCreg). Natural killer (NK) cells share a common progenitor with ILC and also exhibit a lymphoid phenotype without antigen specificity. ILC are found in low numbers in peripheral blood but are much more abundant at barrier sites such as the skin, liver, airways, lymph nodes, and the gastrointestinal tract. They play an important role in innate immunity due to their capacity to respond rapidly to pathogens through the production of cytokines. Recent evidence has shown that ILC also play a key role in autoimmunity, as alterations in their number or function have been identified in systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Here, we review recent advances in the understanding of the role of ILC in the pathogenesis of autoimmune diseases, with particular emphasis on their role as a potential diagnostic biomarker and as therapeutic targets.
Collapse
Affiliation(s)
- Aurelie S Clottu
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Morgane Humbel
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Natalia Fluder
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Denis Comte
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Wang ZM, Zhang J, Wang F, Zhou G. The Tipped Balance of ILC1/ILC2 in Peripheral Blood of Oral Lichen Planus Is Related to Inflammatory Cytokines. Front Cell Dev Biol 2022; 9:725169. [PMID: 35174155 PMCID: PMC8842723 DOI: 10.3389/fcell.2021.725169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oral lichen planus (OLP) is an immune-inflammatory disease mediated by T cells. Innate lymphoid cells (ILCs) constitute a novel family of immune cells that initially originate from common innate lymphoid progenitors. Termed “T cells counterparts,” ILCs play a prominent role in inflammatory-immune diseases. However, the characterization of ILCs and their related induced factors were unclear in OLP. In the present study, the phenotypic characteristics of ILCs and their correlation with inflammatory cytokines were explored in the peripheral blood of OLP patients and healthy controls. We found that the proportion of total ILCs was expanded in OLP and was positively correlated with disease severity. The highly skewed distribution of ILC subpopulations was notable in OLP. Specifically, the frequency of ILC1s was significantly increased, while that of ILC2s was significantly reduced in total ILCs of OLP, resulting in the markedly elevated ILC1/ILC2 ratio in OLP. Correspondingly, ILCs in OLP displayed high expression of T-bet but low expression of GATA3. In addition, the IFN-γ expression level was elevated in ILC1s, whereas the IL-4 expression level was decreased in ILC2s. Moreover, ILC-associated activators IL-12, IL-18, and IL-1β were upregulated in OLP plasma, with IL-12 and IL-1β both positively correlated with the ILC1/ILC2 ratio. Further in vitro stimulation tests indicated that OLP plasma remarkedly increased the ILC1/ILC2 ratio, especially that IL-12 and IL-1β tipped the balance between ILC1s and ILC2s toward ILC1s in total ILCs. Overall, elevated levels of IL-12 and IL-1β might act as environmental cues in tipping the balance of ILC1/ILC2 in the peripheral blood of OLP, contributing to the immune dysregulation in OLP.
Collapse
Affiliation(s)
- Zi-Ming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Gang Zhou,
| |
Collapse
|
24
|
Zhang P, Liu Z, Peng L, Zhou J, Wang M, Li J, Lu H, Hu C, Zhao L, Yang H, Wang Q, Fei Y, Zhang X, Zhao Y, Zeng X, Zhang W. Phenotype, function and clinical significance of innate lymphoid cells in immunoglobulin G4-related disease. Rheumatology (Oxford) 2021; 61:2197-2209. [PMID: 34554231 DOI: 10.1093/rheumatology/keab610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Innate immune system participates in immunoglobulin G4 related disease (IgG4-RD). While the role of innate lymphoid cells (ILCs) in IgG4-RD remains to be elucidated, we aimed to evaluate the phenotype, function and clinical significance of ILCs in IgG4-RD patients. METHODS Sixty-seven untreated IgG4-RD patients, age and sex matched healthy controls (HCs) were enrolled. Circulating and tissue infiltration of ILCs were detected by flow cytometry. Serum suppression of tumorigenicity 2 (sST2) was detected by ELISA and membrane-bound ST2 (ST2L) was detected by flow cytometry. Tissue infiltration of IL-33 was measured by immunohistochemistry staining. RT-qPCR was performed to analyze the expression pattern of ILC2 associated genes between HCs and IgG4-RD patients. In addition, correlation analysis was performed in order to evaluate clinical significance of ILCs in IgG4-RD. RESULTS The frequency of circulating pan ILCs in IgG4-RD patients was lower than in HCs. ILC2s was higher in IgG4-RD compared with HCs, whereas ILC1s was lower in IgG4-RD. sST2 and ST2L were increased in IgG4-RD than HC. Infiltration of ILC1s in submandibular glands of IgG4-RD was more prominent than ILC2s. Intracellular secretion of IL-9 was increased in ILC2s of IgG4-RD than in HCs. Circulating ILC2s correlated positively with Treg cells, the surface expression of CD154, PD-1 and CXCR5 in ILC2s correlated positively with CD19+B cells, serum IgG4 level and serum IgE, respectively. CONCLUSION ILCs and their subsets were significantly altered in IgG4-RD. We demonstrated the dysfunction of ILC2s in IgG4-RD by phenotype, correlation analysis, and function investigation, revealing ILC2s participated in the pathogenesis of IgG4-RD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Liu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Linyi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Mu Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jieqiong Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Hui Lu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Lidan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Huaxia Yang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Yunyun Fei
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Yan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
25
|
Dong Y, Zhong J, Dong L. IL-33 in Rheumatic Diseases. Front Med (Lausanne) 2021; 8:739489. [PMID: 34589505 PMCID: PMC8473687 DOI: 10.3389/fmed.2021.739489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Interleukin-33 (IL-33) is a nuclear factor mainly expressed in barrier epithelium, endothelial cells, and fibroblast reticular cells. Some inflammatory cells also express IL-33 under certain conditions. The important role of IL-33 in allergic reactions, helminth infection, cancer, tissue fibrosis, chronic inflammation, organ transplantation, and rheumatic immune diseases has been extensively studied in recent years. IL-33 primarily activates various circulating and tissue-resident immune cells, including mast cell, group 2 innate lymphoid cell (ILC2), regulatory T cell (Treg), T helper 2 cell (Th2), natural killer cell (NK cell), and macrophage. Therefore, IL-33 plays an immunomodulatory role and shows pleiotropic activity in different immune microenvironments. The IL-33/serum stimulation-2 (ST2) axis has been shown to have a detrimental effect on rheumatoid arthritis, systemic lupus erythematosus, and other rheumatic diseases. Interestingly, IL-33 also plays a protective role in the repair of barrier epithelium and the activation of Tregs. Therefore, the role of IL-33/ST2 depends on the underlying pathological conditions in rheumatic diseases. This review focuses on the dual role of the IL-33/ST2 axis in rheumatic diseases.
Collapse
Affiliation(s)
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Deng C, Peng N, Tang Y, Yu N, Wang C, Cai X, Zhang L, Hu D, Ciccia F, Lu L. Roles of IL-25 in Type 2 Inflammation and Autoimmune Pathogenesis. Front Immunol 2021; 12:691559. [PMID: 34122457 PMCID: PMC8194343 DOI: 10.3389/fimmu.2021.691559] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17E (IL-25) is a member of the IL-17 cytokine family that includes IL-17A to IL-17F. IL-17 family cytokines play a key role in host defense responses and inflammatory diseases. Compared with other IL-17 cytokine family members, IL-25 has relatively low sequence similarity to IL-17A and exhibits a distinct function from other IL-17 cytokines. IL-25 binds to its receptor composed of IL-17 receptor A (IL-17RA) and IL-17 receptor B (IL-17RB) for signal transduction. IL-25 has been implicated as a type 2 cytokine and can induce the production of IL-4, IL-5 and IL-13, which in turn inhibits the differentiation of T helper (Th) 17. In addition to its anti-inflammatory properties, IL-25 also exhibits a pro-inflammatory effect in the pathogenesis of Th17-dominated diseases. Here, we review recent advances in the roles of IL-25 in the pathogenesis of inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Yu
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lijun Zhang
- Department of Rheumatology, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Eissa E, Morcos B, Abdelkawy RFM, Ahmed HH, Kholoussi NM. Association of microRNA-125a with the clinical features, disease activity and inflammatory cytokines of juvenile-onset lupus patients. Lupus 2021; 30:1180-1187. [PMID: 33866896 DOI: 10.1177/09612033211010328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with marked variation in its clinical presentation. Juvenile-onset SLE (jSLE) exhibits an aggressive clinical phenotype and severe complications. Dysregulated expression of microRNAs (miRs) in immune cells from patients with SLE has been found. We aim to evaluate the association of miR-125a with the clinical and laboratory characteristics, disease activity and inflammatory cytokines of jSLE patients. METHODS 60 jSLE patients and 25 normal controls were involved in the study. The expression pattern of miR-125a was determined in plasma of all subjects using qRT-PCR. In addition, plasma levels of IL-17 and IFN-γ were examined using ELISA. The correlation of miR-125a expression with the clinical manifestations and disease activity of jSLE patients was analyzed. Also, its association with the inflammatory cytokines was investigated in jSLE patients. RESULTS Our findings showed that miR-125a expression levels were significantly reduced in jSLE patients compared to normal controls (p < 0.01) and these expression levels differed based on the clinical variability of patients. In addition, plasma levels of IL-17 and IFN-γ in jSLE patients were significantly higher than healthy controls (p < 0.01). Finally, miR-125a expression had significant negative associations with each of SLEDAI-2K (p < 0.01), SLICC (p < 0.01), ESR (p < 0.05), proteinuria (p < 0.01) and IL-17 levels (p < 0.01) in jSLE patients. CONCLUSION Our findings postulate that miR-125a could act as a candidate therapeutic target for its possible regulation of inflammation in jSLE patients.
Collapse
Affiliation(s)
- Eman Eissa
- Human Genetics and Genome Research Division, Immunogenetics Department, National Research Centre, Giza, Egypt
| | - Botros Morcos
- Human Genetics and Genome Research Division, Immunogenetics Department, National Research Centre, Giza, Egypt
| | | | - Hanan H Ahmed
- Department of Rheumatology and Rehabilitation, Al Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Naglaa M Kholoussi
- Human Genetics and Genome Research Division, Immunogenetics Department, National Research Centre, Giza, Egypt
| |
Collapse
|
28
|
Ramezani F, Babaie F, Aslani S, Hemmatzadeh M, Mohammadi FS, Gowhari-Shabgah A, Jadidi-Niaragh F, Ezzatifar F, Mohammadi H. The Role of the IL-33/ST2 Immune Pathway in Autoimmunity: New Insights and Perspectives. Immunol Invest 2021; 51:1060-1086. [PMID: 33522348 DOI: 10.1080/08820139.2021.1878212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-33, a member of IL-1 cytokine family, is produced by various immune cells and acts as an alarm to alert the immune system after epithelial or endothelial cell damage during cell necrosis, infection, stress, and trauma. The biological functions of IL-33 largely depend on its ligation to the corresponding receptor, suppression of tumorigenicity 2 (ST2). The pathogenic roles of this cytokine have been implicated in several disorders, including allergic disease, cardiovascular disease, autoimmune disease, infectious disease, and cancers. However, alerted levels of IL-33 may result in either disease amelioration or progression. Genetic variations of IL33 gene may confer protective or susceptibility risk in the onset of autoimmune diseases. The purpose of this review is to discuss the involvement of IL-33 and ST2 in the pathogenesis of a variety of autoimmune disorders, such as autoimmune rheumatic, neurodegenerative, and endocrine diseases.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
29
|
Li M, Yang C, Wang Y, Song W, Jia L, Peng X, Zhao R. The Expression of P2X7 Receptor on Th1, Th17, and Regulatory T Cells in Patients with Systemic Lupus Erythematosus or Rheumatoid Arthritis and Its Correlations with Active Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1752-1762. [PMID: 32868411 DOI: 10.4049/jimmunol.2000222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
Abstract
P2X7 receptor (P2X7R) is highly expressed on immune cells, triggering the release of cytokines and regulating autoimmune responses. To investigate P2X7R surface expression on T helper (Th) 1, Th17, and regulatory T (Treg) cells in patients with systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA) and correlations with disease activity, 29 SLE and 29 RA patients and 18 healthy controls (HCs) were enrolled. We showed that SLE and RA patients had significantly higher levels of plasma cytokines (IFN-γ, IL-1β, IL-6, IL-17A, and IL-23), frequencies of Th1 and Th17 cells, and expression of P2X7R on Th1 and Th17 than HCs, and the Th17/Treg ratio was significantly increased, whereas Treg cell levels were significantly decreased. The Ca2+ influx increase following BzATP stimulation was significantly higher in CD4+PBMCs from SLE and RA patients than in HCs. Blood levels of shed P2X7R were increased in SLE and RA patients. Furthermore, 28-joint Disease Activity Score and SLE Disease Activity Index score showed negative correlations with Treg cell levels and positive correlations with Th17/Treg ratio and Th17 cell P2X7R expression. Interestingly, Th17 cell P2X7R expression was closely correlated with IL-1β, C-reactive protein, the erythrocyte sedimentation rate, anticyclic citrullinated peptide Abs, albumin, and C4. These data indicate that increased Th17 cell P2X7R expression is functionally and positively related to disease activity and some inflammatory mediators in SLE and RA patients, and P2X7R could be critical in promoting the Th17 immune response and contributing to the complex pathogenesis of SLE and RA.
Collapse
Affiliation(s)
- Mingxuan Li
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Chuanyu Yang
- Department of Blood Transfusion, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; and
| | - Yunhai Wang
- Department of Clinical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Wei Song
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Lina Jia
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Xiaoxiang Peng
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China;
| | - Ronglan Zhao
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China;
| |
Collapse
|
30
|
Zhou S, Li Q, Wu H, Lu Q. The pathogenic role of innate lymphoid cells in autoimmune-related and inflammatory skin diseases. Cell Mol Immunol 2020; 17:335-346. [PMID: 32203190 PMCID: PMC7109064 DOI: 10.1038/s41423-020-0399-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Innate lymphoid cells (ILCs), as an important component of the innate immune system, arise from a common lymphoid progenitor and are located in mucosal barriers and various tissues, including the intestine, skin, lung, and adipose tissue. ILCs are heterogeneous subsets of lymphocytes that have emerging roles in orchestrating immune response and contribute to maintain metabolic homeostasis and regulate tissue inflammation. Currently, more details about the pathways for the development and differentiation of ILCs have largely been elucidated, and cytokine secretion and downstream immune cell responses in disease pathogenesis have been reported. Recent research has identified that several distinct subsets of ILCs at skin barriers are involved in the complex regulatory network in local immunity, potentiating adaptive immunity and the inflammatory response. Of note, additional studies that assess the effects of ILCs are required to better define how ILCs regulate their development and functions and how they interact with other immune cells in autoimmune-related and inflammatory skin disorders. In this review, we will distill recent research progress in ILC biology, abnormal functions and potential pathogenic mechanisms in autoimmune-related skin diseases, including systemic lupus erythematosus (SLE), scleroderma and inflammatory diseases, as well as psoriasis and atopic dermatitis (AD), thereby giving a comprehensive review of the diversity and plasticity of ILCs and their unique functions in disease conditions with the aim to provide new insights into molecular diagnosis and suggest potential value in immunotherapy.
Collapse
Affiliation(s)
- Suqing Zhou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Qianwen Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
31
|
Ryu S, Lee EY, Kim DK, Kim YS, Chung DH, Kim JH, Lee H, Kim HY. Reduction of circulating innate lymphoid cell progenitors results in impaired cytokine production by innate lymphoid cells in patients with lupus nephritis. Arthritis Res Ther 2020; 22:63. [PMID: 32223753 PMCID: PMC7104540 DOI: 10.1186/s13075-020-2114-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Innate lymphoid cells (ILCs) play an essential role in maintaining homeostasis; however, they can also cause chronic inflammation and autoimmune disease. This study aimed to identify the role of ILCs in the pathogenesis of lupus nephritis (LN). Methods The percentage of ILCs within the peripheral blood mononuclear cell (PBMC) population and urine of patients with LN (n = 16), healthy controls (HC; n = 8), and disease controls (ANCA-associated vasculitis (AAV; n = 6), IgA nephropathy (IgAN; n = 9), and other glomerular diseases (n = 5)) was determined by flow cytometry analysis. In addition, ILCs were sorted and cultured with plasma from LN patients or HC to elucidate whether the reduced population of CD117+ ILCs observed in LN was due to changes in the ILC progenitor population. Results The percentage of total ILCs and CD117+ ILCs in LN was significantly lower than that in HC. The percentage of cytokine-secreting ILCs was also lower in LN; however, when the disease stabilized, cytokine production was restored to levels similar to those in HC. The increase in the number of exhausted ILCs (cells unable to secrete cytokines) correlated positively with disease activity. When CD117+ ILCs were cultured with LN plasma, the number of CD117+ ILCs fell, but that of other ILC subsets increased. Conclusions The percentage of CD117+ ILCs and the capacity of ILCs to secrete cytokines fell as LN severity increased, suggesting that an inflammatory environment of LN induces persistent differentiation and exhaustion of ILCs.
Collapse
Affiliation(s)
- Seungwon Ryu
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Dong Ki Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea. .,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|