1
|
Kononets V, Zharmakhanova G, Balmagambetova S, Syrlybayeva L, Berdesheva G, Zhussupova Z, Tautanova A, Kurmambayev Y. Tandem mass spectrometry in screening for inborn errors of metabolism: comprehensive bibliometric analysis. Front Pediatr 2025; 13:1463294. [PMID: 40051910 PMCID: PMC11882580 DOI: 10.3389/fped.2025.1463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Tandem mass spectrometry (MS/MS) for detection of inborn errors of metabolism (IEM) is recognized as an ethical, safe, simple, and reliable screening test. Presented bibliometric analysis aims to describe the network structure of the scientific community in the study area at the level of countries, institutions, authors, papers, keywords, and sources; scientific productivity, directions, and collaboration efforts in a considered period (1991-2024, May). Using the PRISMA method, we conducted a systematic search for articles reporting using MS/MS to screen for inherited metabolic disorders and inborn errors of metabolism collected from the Web of Science Core Collection (WoSCC). A total of 677 articles out of 826, by 3,714 authors, published in 245 journals, with 21,193 citations in 11,295 citing articles, with an average citation of 31.3 per article, and an H-index of 69 were retrieved from the WoSCC. The research status of MS/MS in IEM screening was identified. The most relevant current research directions and future areas of interest were revealed: "selective screening for IEM," "new treatments for IEM," "new disorders considered for MS/MS testing," "ethical issues associated with newborn screening," "new technologies that may be used for newborn screening," and "use of a combination of MS/MS and gene sequencing".
Collapse
Affiliation(s)
- Victoria Kononets
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulmira Zharmakhanova
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Saule Balmagambetova
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Lyazzat Syrlybayeva
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulshara Berdesheva
- Department of General Hygiene, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neonatal Pathology, Aktobe Regional Tertiary Care Center, Aktobe, Kazakhstan
| | - Aidana Tautanova
- Department of Microbiology and Virology, Named After Sh.I. Sarbasova, Astana Medical University, Astana, Kazakhstan
| | - Yergen Kurmambayev
- Consultative and Diagnostic Department, Medical Center of West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
2
|
Longo S, Cicalini I, Pieragostino D, De Laurenzi V, Legramante JM, Menghini R, Rizza S, Federici M. A Metabolomic Approach to Unexplained Syncope. Biomedicines 2024; 12:2641. [PMID: 39595205 PMCID: PMC11591916 DOI: 10.3390/biomedicines12112641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: This study aims to identify a metabolomic signature that facilitates the classification of syncope and the categorization of the unexplained syncope (US) to aid in its management. Methods: We compared a control group (CTRL, n = 10) with a transient loss of consciousness (TLC) group divided into the OH group (n = 23) for orthostatic syncope, the NMS group (n = 26) for neuromediated syncope, the CS group (n = 9) for cardiological syncope, and the US group (n = 27) for US defined as syncope without a precise categorization after first- and second-level diagnostic approaches. Results: The CTRL and the TLC groups significantly differed in metabolic profile. A new logistic regression model has been developed to predict how the US will be clustered. Using differences in lysophosphatidylcholine with 22 carbon atom (C22:0-LPC) levels, 96% of the US belongs to the NMS and 4% to the CS subgroup. Differences in glutamine and lysine (GLN/LYS) levels clustered 95% of the US in the NMS and 5% in the CS subgroup. Conclusions: We hypothesize a possible role of C22:0 LPC and GLN/LYS in re-classifying US and differentiating it from cardiological syncope.
Collapse
Affiliation(s)
- Susanna Longo
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (S.L.); (J.M.L.); (R.M.); (S.R.)
| | - Ilaria Cicalini
- Department of Innovative Technologies in Medicine and Dentistry, “G. d‘Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), “G. d‘Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, “G. d‘Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), “G. d‘Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, “G. d‘Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), “G. d‘Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Jacopo M. Legramante
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (S.L.); (J.M.L.); (R.M.); (S.R.)
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (S.L.); (J.M.L.); (R.M.); (S.R.)
| | - Stefano Rizza
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (S.L.); (J.M.L.); (R.M.); (S.R.)
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (S.L.); (J.M.L.); (R.M.); (S.R.)
| |
Collapse
|
3
|
Zhu H, Xu K, Qiu J, Yao R, Zhang S, Lu X, Li X. Research on double resonant excitation in a triangular electrode ion trap with asymmetric geometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9776. [PMID: 38797953 DOI: 10.1002/rcm.9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE The triangular electrode linear ion trap with asymmetric geometry has been reported to possess a high ion unidirectional ejection efficiency and a reasonable mass resolution. To further improve its performance, a double resonant excitation method involving a dipolar and a quadrupolar resonant excitation was applied here. METHODS The dipolar excitation method was carried out by applying a supplementary alternating voltage out of phase to one pair of the electrodes, whereas the quadrupolar excitation (QE) method was carried out by adding a supplementary alternating voltage in phase to another pair of electrodes. Numerical simulations were performed to explore the impact of the frequency difference between the alternating current (AC) and the QE voltage (∆ω), the frequency of the AC voltage (ωAC), and the QE voltage amplitude (VQE). RESULTS The mass resolution could be improved to ~4700m / ∆ m $$ \left(m/\Delta m\right) $$ , which was approximately twice compared to that with only dipolar resonant excitation, and the ion unidirectional ejection efficiency could be improved to 97%. Even with a high scan rate of 6000 Da/s, there was minimal loss of mass resolution caused by increased scan rate in double resonant excitation mode. CONCLUSIONS By employing the double resonant excitation method, the mass resolution could be further increased while maintaining a considerably high ion unidirectional ejection efficiency, which might be a simple and practical approach for developing a high-performance miniature ion trap mass analyzer.
Collapse
Affiliation(s)
- Huijun Zhu
- Department of Automation Engineering, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Kai Xu
- Department of Automation Engineering, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Junwei Qiu
- Department of Automation Engineering, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Rujiao Yao
- Department of Automation Engineering, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Shuo Zhang
- Department of Automation Engineering, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Xinxin Lu
- Department of Automation Engineering, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Xiaoxu Li
- Department of Automation Engineering, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| |
Collapse
|
4
|
He F, Xie T, Huang X, Zhang J, Tang T. Retrospective analysis of reference intervals for dried blood spot based ms/ms newborn screening programs in Chinese preterm neonates: a nationwide study. BMC Pediatr 2024; 24:424. [PMID: 38956494 PMCID: PMC11220950 DOI: 10.1186/s12887-024-04865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVES Although recent discoveries regarding the biomarkers of newborn screening (NBS) programs by tandem mass spectrometry (MS/MS) highlight the critical need to establish reference intervals (RIs) specifically for preterm infants, no such RIs has been formally published yet. This study addressed the gap by offering a comprehensive set of reference intervals (RIs) for preterm neonates, and illustrating the dynamic changes of each biomarker with age. DESIGN AND METHODS The NBS data of 199,693 preterm newborns (< 37 weeks of gestation) who met the inclusion and exclusion criteria from the NNSCP database were included in study analysis. The birth weight stratified dynamic trend of each biomarker were captured by their concentrations over age. Reference partitions were determined by the method of Harris and Boyd. RIs, corresponding to the 2.5th and 97.5th percentiles, as well as the 0.5th, 25th, 50th, 75th and 99.5th percentiles were calculated using a non-parametric rank approach. RESULTS Increasing birth weight is associated with an elevation in the levels of arginine, citrulline, glycine, leucine and isobarics, methionine, ornithine, phenylalanine, and valine, whereas the levels of alanine, proline and tyrosine decrease. Additionally, two short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and isovalerylcarnitine + methylbutyrylcarnitine) and a median-chain acylcarnitine (octenoylcarnitine) decrease, while four long-chain acylcarnitines (tetradecanoylcarnitine, palmitoylcarnitine, palmitoleylcarnitine and oleoylcarnitine) increase with increasing birth weight. Age impacts the levels of all MS/MS NBS biomarkers, while sex only affects the level of malonylcarnitine + 3-hydroxybutyrylcarnitine (C3-DC + C4-OH) in very low birth weight preterm neonates. CONCLUSION The current study developed reference intervals (RIs) specific to birth weight, age, and/or sex for 35 MS/MS biomarkers, which can help in the timely evaluation of the health and disease of preterm neonates.
Collapse
Affiliation(s)
- Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing, P. R. China
| | - Tiancheng Xie
- Department of Laboratory Sciences, West China School of Public Health and West China No.4 Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P. R. China
| | - Jinming Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing, P. R. China
| | - Tian Tang
- Department of Laboratory Sciences, West China School of Public Health and West China No.4 Hospital, Sichuan University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
5
|
Xiao G, Feng Z, Xu C, Huang X, Chen M, Zhao M, Li Y, Gao Y, Wu S, Shen Y, Peng Y. 206,977 newborn screening results reveal the ethnic differences in the spectrum of inborn errors of metabolism in Huaihua, China. Front Genet 2024; 15:1387423. [PMID: 38784038 PMCID: PMC11112075 DOI: 10.3389/fgene.2024.1387423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Background Inborn errors of metabolism (IEMs) are rare diseases caused by inherited defects in various biochemical pathways that strongly correlate with early neonatal mortality and stunting. Currently, no studies have reported on the incidence of IEMs of multi-ethnic groups in Huaihua, China. Methods A total of 206,977 neonates with self-reported ethnicity who underwent IEM screening at Huaihua from 2015 to 2021 were selected for observation. Among them, 69 suspected IEM-positive neonates were referred for urine gas chromatography-mass spectrometry analysis, biochemical detection, next-generation sequencing, and Sanger sequencing. Results Sixty-nine newborns were diagnosed with IEMs, with an overall incidence of 1:3,000. The two most common disorders were 2-methylbutyryl glycinuria (1:7,137) and phenylalanine hydroxylase deficiency (1:22,997). Moreover, the incidence of IEMs in the minority ethnic group (Miao, Dong, Tujia and Yao) (1:1,852) was markedly higher than in the Han ethnic group (1:4,741). Some ethnic features variants were identified; NM_001609.4:c.1165A>G in the ACADSB gene for Miao and Dong ethnic groups, NM_014251.2:c.852_855del in the SLC25A13 gene for Miao ethnic groups. Conclusion This study revealed the IEM incidence within the minority ethnic groups is markedly higher than among the Han nationality and the gene variant spectrum is dramatically different in Huaihua, China. Hence, It serves as a theoretical reference for the screening and diagnosing of neonatal IEMs of multi-ethnic groups in the Huaihua area, and across China.
Collapse
Affiliation(s)
- Gang Xiao
- Neonatal Disease Screening Center, Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan Province, China
| | - Zonghui Feng
- Neonatal Disease Screening Center, Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan Province, China
| | - Chaochao Xu
- Technical Support Center, Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, Zhejiang Province, China
| | - Xuzhen Huang
- Technical Support Center, Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, Zhejiang Province, China
| | - Maosheng Chen
- Neonatal Disease Screening Center, Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan Province, China
| | - Min Zhao
- Neonatal Disease Screening Center, Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan Province, China
| | - Yanbin Li
- Neonatal Disease Screening Center, Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan Province, China
| | - Yang Gao
- Neonatal Disease Screening Center, Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan Province, China
| | - Shulin Wu
- Neonatal Disease Screening Center, Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan Province, China
| | - Yuyan Shen
- Neonatal Disease Screening Center, Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan Province, China
| | - Ying Peng
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
| |
Collapse
|
6
|
Duan C, Zhang J, Xian T, Li L, Zhang Y, He X, Li P. Direct Performance of Triple-Stage Tandem Mass Spectrometry Analysis Using Dual-Direction Dipolar Excitation in a Digital Linear Ion Trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:551-560. [PMID: 38270642 DOI: 10.1021/jasms.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The ion trap mass spectrometer offers a unique advantage over other mass spectrometers by enabling multistage tandem mass spectrometry analysis with a single mass analyzer. It is employed to generate fragment ions through collision-induced dissociation (CID) usually by applying alternating current (AC) signals to a pair of electrodes for dipole excitation. The process of achieving double-stage tandem mass spectrometry analysis (MS/MS) in the mass spectrometer involves successive stages of injection, cooling, isolation, excitation, and scanning. For triple-stage tandem mass spectrometry analysis (MS/MS/MS), additional stages of isolation, cooling, and excitation need to be added based on the MS/MS analysis, resulting in a complex and time-consuming mass spectrometry workflow. In this study, a digital ion trap technology with the method of simultaneously applying dipole excitation signals to two pairs of electrodes in the ion trap was developed. This allows fragmentation of the precursor ion in one direction while exciting the first-generation product ions in the other direction, enabling direct acquisition of MS/MS/MS spectra. This approach simplifies the process of tandem mass spectrometry, as demonstrated by experimental studies on methamphetamine, which show that dual-direction excitation effectively reduces workflow and enhances the intensity of product ions. Additionally, the method of direct MS/MS/MS spectra achieved through dual-direction excitation in a digital ion trap mass spectrometer allows for a lower q value of the precursor ion owing to a pseudopotential well depth that is 1.648 times greater than that of a traditional sinusoidal ion trap. The experiments of analyzing high concentration n-butyl acetate and isobutyl acetate have shown that the implementation of MS/MS/MS analysis using dual-direction excitation can provide more mass spectral information and effectively distinguish between the two isomeric samples. The results of direct triple-stage spectra obtained by this technique for several typical volatile hazardous chemicals demonstrate the method's capability for rapid analysis and detection of such substances. In summary, the developed method of dual-directional excitation coupled with digital ion trap technology enables direct performance of triple-stage tandem mass spectrometry analysis, improving fragment ion intensities and providing more valuable mass spectral information. It offers advantages such as simplified workflows, faster analysis, and enhanced accuracy for analyzing compounds with low mass fragment ions.
Collapse
Affiliation(s)
- Changxuan Duan
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Jiashu Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Tianxin Xian
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- Suzhou Weimu Intelligent System Co., Ltd., Suzhou 215163, China
| | - Yunjing Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Xingli He
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- Suzhou Weimu Intelligent System Co., Ltd., Suzhou 215163, China
| |
Collapse
|
7
|
Victoria Zhang Y, Garg U. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology. Methods Mol Biol 2024; 2737:1-13. [PMID: 38036805 DOI: 10.1007/978-1-0716-3541-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mass spectrometry (MS) coupled with liquid chromatography (LC) or gas chromatography (GC) has been proven to be a powerful platform in research and specialized clinical laboratories for decades. In clinical laboratories, it is used for compound identification and quantification. Due to the ability to provide specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100) in recent years, application of MS in routine clinical laboratories has increased significantly. Although MS is used in many laboratory areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology remain the primary focuses of the field. Due to rapid increase in the number of prescription drugs and drugs of abuse (e.g., novel psychoactive substances), clinical laboratories are challenged with developing new MS assays to meet the clinical needs of the patients. We are here to present "off-the-shelf" and "ready-to-use" protocols of recent developments in new assays to help the clinical laboratory community adopt the technology and analysis for the betterment of patient care.
Collapse
Affiliation(s)
- Y Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - Uttam Garg
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA.
- University of Missouri School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
8
|
Jafri L, Khan AH, Ilyas M, Nisar I, Khalid J, Majid H, Hotwani A, Jehan F. Metabolomics of a neonatal cohort from the Alliance for Maternal and Newborn Health Improvement biorepository: Effect of preanalytical variables on reference intervals. PLoS One 2023; 18:e0279931. [PMID: 36607993 PMCID: PMC9821480 DOI: 10.1371/journal.pone.0279931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/18/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The study was conducted to determine reference interval (RI) and evaluate the effect of preanalytical variables on Dried blood spot (DBS)-amino acids, acylcarnitines and succinylacetone of neonates. METHODOLOGY DBS samples were collected within 48-72 hours of life. Samples were analyzed for biochemical markers on tandem mass spectrometer at the University of Iowa. Comparison of RI across various categorical variables were performed. RESULTS A total of 610 reference samples were selected based on exclusion criteria; 53.2% being females. Mean gestational age (GA) of mothers at the time of delivery was 38.7±1.6 weeks; 24.5% neonates were of low birth weight and 14.3% were preterm. Out of the total 610 neonates, 23.1% were small for GA. Reference intervals were generated for eleven amino acids, thirty-two acylcarnitines and succinylacetone concentrations. Markers were evaluated with respect to the influence of gender, GA, weight and time of sampling and statistically significant minimal differences were observed for some biomarkers. CONCLUSION RI for amino acids, succinylacetone and acylcarnitine on DBS has been established for healthy neonates, which could be of use in the clinical practice. Clinically significant effect of GA, weight, gender and time of sampling on these markers were not identified.
Collapse
Affiliation(s)
- Lena Jafri
- Department of Pathology and Laboratory Medicine, Chemical Pathology, Aga Khan University, Karachi, Pakistan
- * E-mail: (LJ); (FJ)
| | - Aysha Habib Khan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Muhammad Ilyas
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Imran Nisar
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Javairia Khalid
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Hafsa Majid
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fyezah Jehan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- * E-mail: (LJ); (FJ)
| |
Collapse
|
9
|
Rudenko KV, Nevmerzhytska LO, Unitska OM, Danchenko PA, Leiko NS. Fabry Disease, a Rare Disorder with Cardiac Manifestations. The Problem of Diagnosis and Treatment: a Literature Review. UKRAINIAN JOURNAL OF CARDIOVASCULAR SURGERY 2022. [DOI: 10.30702/ujcvs/22.30(04)/rn047-7380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disease caused by a mutation in the gene encoding α-galactosidase A and leads to reduced activity or complete absence of this enzyme, which causes the accumulation of globotriaosylceramide (Gb3) and its deacylated form (lyso-Gb3) in cells of the whole body. FD can occur both with multisystem manifestations, including damage to the nervous system, kidneys, and skin, and can affect only the heart. Cardiac involvement is a major cause of poor quality of life and death in patients with FD and an underrecognized cause of heart failure with preserved ejection fraction and ventricular arrhythmias in men over 30 years of age and women over 40 years of age. Cardiac damage begins at an early age, progresses subclinically until the appearance of significant symptoms, and usually manifests as leftventricular hypertrophy, mimicking hypertrophic cardiomyopathy.
After the introduction of enzyme replacement therapy, early recognition of FD and differential diagnosis with other causes of leftventricular hypertrophy have become crucial to limit the progression of the disease. Recent advances in the understanding of cardiac pathophysiology and imaging have improved diagnostic and therapeutic approaches to the cardiac manifestations of this pathology.
Modern achievements in the study of cardiac manifestations of FD have made it possible to significantly improve diagnostic and therapeutic approaches, in particular, in relation to the identification of pathogenetic mechanisms of organ damage and early disruption of their function. A better understanding of secondary pathogenic pathways, such as myocardial inflammation, may influence future therapeutic strategies and timely diagnosis of FD.
Delay in diagnosis and untimely initiation of treatment remain critical problems for many patients with FD, especially for patients with late-onset cardiovascular manifestations, in whom treatment effects may be more limited and ineffective.
Cooperation between specialists in genetic diseases and cardiologists remains important to identify patients before the appearance of cardiac symptoms in order to obtain maximum therapeutic effects.
Collapse
|
10
|
Zhang H, Wang Y, Qiu Y, Zhang C. Expanded newborn screening for inherited metabolic disorders by tandem mass spectrometry in a northern Chinese population. Front Genet 2022; 13:801447. [PMID: 36246604 PMCID: PMC9562093 DOI: 10.3389/fgene.2022.801447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Tandem mass spectrometry (MS/MS) has been developed as one of the most important diagnostic platforms for the early detection and screening of inherited metabolic disorders (IMDs). To determine the disease spectrum and genetic characteristics of IMDs in Suqian city of Jiangsu province in the northern Chinese population, dried blood spots from 2,04,604 newborns, were assessed for IMDs by MS/MS from January 2016 to November 2020. Suspected positive patients were diagnosed through next-generation sequencing (NGS) and validated by Sanger sequencing. One hundred patients with IMDs were diagnosed, resulting in an overall incidence of 1/2,046, of which 56 (1/3,653), 22 (1/9,300), and 22 (1/9,300) were confirmed amino acids disorders (AAs), organic acids disorders (OAs), fatty acid oxidation disorders (FAODs) positive cases, respectively. The highest incidence of IMDs is phenylalanine hydroxylase deficiency (PAHD) (45 cases), with a total incidence of 1:4,546. Hot spot mutations in phenylalanine hydroxylase (PAH)-related genes are c.158G > A (24.44%), c.728G > A (16.67%), c.611A > G (7.78%), and c.331C>T (7.78%). The related hot spot mutation of the MMACHC gene is c.609G > A (45.45%). Short-chain acyl-CoA dehydrogenase deficiency (SCAD)-related ACADS gene hotspot mutations are c.164C > T (33.33%) and c.1031A > G (33.33%). Our work indicated that the overall incidence of IMDs is high, and the mutations in PAH, ACADS, and MMACHC genes are the leading causes of IMDs in Suqian city. The incidence of AAs in Suqian city is higher than in other Chinese areas. The disease spectrum and genetic backgrounds were elucidated, contributing to the treatment and prenatal genetic counseling of these disorders in this region.
Collapse
Affiliation(s)
- Hong Zhang
- Suqian Maternal and Child Health Care Hospital, Suqian, China
| | - Yanyun Wang
- Nanjing Maternal and Child Health Care Hospital, Nanjing, China
| | - Yali Qiu
- Suqian Maternal and Child Health Care Hospital, Suqian, China
| | - Chao Zhang
- Suqian Maternal and Child Health Care Hospital, Suqian, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
11
|
Introduction to Mass Spectrometry for Bimolecular Analysis in a Clinical Laboratory. Methods Mol Biol 2022; 2546:1-12. [PMID: 36127573 DOI: 10.1007/978-1-0716-2565-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Mass spectrometry is a technique that identifies analytes based on mass-to-charge (m/z) ratio and structural fragments. Although this technique has been used in research and specialized clinical laboratories for decades, only in recent years has mass spectrometry become popular in routine clinical laboratories. Mass spectrometry, especially when coupled with gas chromatography or liquid chromatography, provides very specific and often sensitive analysis of many analytes. Other advantages of mass spectrometry include simultaneous analysis of multiple analytes (>100) and generally limited requirement for specialized reagents. Commonly measured analytes by mass spectrometry include metabolites, drugs, hormones, and proteins.
Collapse
|
12
|
Chen M, Yin Y, Liu H, Peng Y, Ye L, Luo Q, Miao J. Screening for newborn fatty acid oxidation disorders in Chongqing and the follow-up of confirmed children. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:290-297. [PMID: 36207828 PMCID: PMC9511477 DOI: 10.3724/zdxbyxb-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the incidence, clinical characteristics, gene mutations and prognosis of fatty acid oxidation disorders (FAOD) in newborns in Chongqing. METHODS Blood samples were collected from 35 374 newborns for screening of FAOD in the Neonatal Screening Center of Women and Children's Hospital of Chongqing Medical University from July 2020 to February 2022. The acylcarnitine spectrum was detected by tandem mass spectrometry, the positive children in primary screening were recalled within 2 weeks, and the diagnosis of FAOD was confirmed by urine organic acid measurement, blood biochemistry testing and genetic analysis. The confirmed children were given early intervention, treatment and followed-up. RESULTS Among 35 374 newborns, there were 267 positive children in primary screening, with a positive rate of 0.75%. Five children with FAOD were diagnosed by gene detection, with an incidence rate of 1/7075. Among them, there were 3 cases of primary carnitine deficiency (PCD, 1/11 791), 1 case of short-chain acyl-CoA dehydrogenase deficiency (SCADD, 1/35 374) and 1 case of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, 1/35 374). The c.1400C>G and c.338G>A were the common mutations of SLC22A5 gene in 3 children with PCD, while c.621G>T was a novel mutation. There were no clinical manifestations during the follow-up period in 2 children with supplementation of L-carnitine. Another child with PCD did not follow the doctor's advice of L-carnitine treatment, and had acute attack at the age of 6 months. The child recovered after treatment, and developed normally during the follow-up. The detected ACADS gene mutations were c.417G>C and c.1054G>A in child with SCADD, who showed normal intelligence and physical development without any clinical symptoms. The mutations of ACADVL gene were c.1349G>A and c.1843C>T in child with VLCADD, who showed acute attack in the neonatal period and recovered after treatment; the child was fed with milk powder rich in medium-chain fatty acids and had normal development during the follow-up. CONCLUSIONS The incidence of FAOD in Chongqing area is relatively high. PCD is the most common type, and the clinical phenotype of VLCADD is serious. After early diagnosis through neonatal screening, standardized treatment and management is followed, most of FAOD children can have good prognosis.
Collapse
|
13
|
Guan SY, Liu YY, Guo Y, Shen XX, Liu Y, Jin HX. Potential biomarkers for clinical outcomes of IVF cycles in women with/without PCOS: Searching with metabolomics. Front Endocrinol (Lausanne) 2022; 13:982200. [PMID: 36120473 PMCID: PMC9478024 DOI: 10.3389/fendo.2022.982200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinological and metabolic disorder which is the common cause of female infertility. The dysmetabolism displayed in it has not been completely ascertained. Metabonomics may shed light on understanding many small molecule endogenous metabolites and their associated metabolic pathways. OBJECTIVE To analyze the different metabolites and related metabolic pathways in follicular fluid and embryo culture fluid of PCOS and non-PCOS groups. Finding markers predictable for clinical outcomes of in vitro fertilization-embryo transfer (IVF-ET) treatment. POPULATION AND SAMPLE 60 women who underwent IVF-ET were selected, including 30 with PCOS and 30 with the fallopian tubal issues only. We collected the first tube follicular fluid (FF) of all patients at the time of oocyte pick up and the waste embryo culture medium (ECM) after D3 high-quality embryo transplant. METHODS All samples were performed nontargeted Ultra High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-QE-MS) analysis. Related metabolic pathways were screened by KEGG annotation. To search potential indicators, the logistic regression was made combined with clinical data. MEAN OUTCOME MEASURES Predictive performance of markers of clinical outcomes (pregnancy rate, delivery rate, live birth rate, miscarriage rate) of assisted reproductive technology (ART). RESULTS Comparing the PCOS group against the non-PCOS group, we found 11 significantly different metabolites in the FF and 56 in the ECM. There are a total of 11 kinds of biomarkers associated with clinical outcomes. Androsterone sulfate, Glycerophosphocholine, and Elaidic carnitine seem robust to predict the abortion rate of the PCOS group, with an AUC of 0.941, 0.933, 0.933, respectively. The glycerol phospholipid metabolic pathway is enriched in both the follicular fluid and embryo culture fluid. CONCLUSIONS The differential metabolites were mainly a variety of lipids. Some of them can predict clinical outcomes to a certain extent.
Collapse
Affiliation(s)
- Shang-yue Guan
- Center for Reproductive Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Yuan-yuan Liu
- Center for Reproductive Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Yuhan Guo
- Center for Reproductive Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Xiao-xue Shen
- Center for Reproductive Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Yan Liu
- Center for Reproductive Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Hai-xia Jin
- Center for Reproductive Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
- *Correspondence: Hai-xia Jin,
| |
Collapse
|
14
|
Ueno Y, Maeda T, Okamoto S, Taniguchi H. Evaluation of Urea Cycle Activity by Metabolic Flux Analysis Using Mass Spectrometry. Methods Mol Biol 2022; 2544:129-144. [PMID: 36125715 DOI: 10.1007/978-1-0716-2557-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatocytes play an important role in maintaining homeostasis in living organisms by carrying out various metabolic functions. The urea cycle, one of the metabolic pathways taking place in hepatocytes, is an important metabolic pathway that converts toxic ammonia to nontoxic urea. Performing quantitative assessments of individual metabolite levels using a mass spectrometer is useful for assessing the metabolic state of the urea cycle in hepatocytes. In addition, metabolic flux analysis using stable isotopes and a mass spectrometer is a new technique for measuring the metabolic state. It enables conducting specific, objective, and quantitative measurement of the activated state of the target metabolic pathway regardless of external disturbing factors. This section describes the technical background and methodology of performing metabolic flux analysis of the urea cycle by mass spectrometry.
Collapse
Affiliation(s)
- Yasuharu Ueno
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Takuji Maeda
- Department of Regenerative Medicine, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Regenerative Medicine, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
15
|
Dhyani R, Jain S, Bhatt A, Kumar P, Navani NK. Genetic regulatory element based whole-cell biosensors for the detection of metabolic disorders. Biosens Bioelectron 2021; 199:113869. [PMID: 34915213 DOI: 10.1016/j.bios.2021.113869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022]
Abstract
Clinicians require simple, and cost-effective diagnostic tools for the quantitative determination of amino acids in physiological fluids for the detection of metabolic disorder diseases. Besides, amino acids also act as biological markers for different types of cancers and cardiovascular diseases. Herein, we applied an in-silico based approach to identify potential amino acid-responsive genetic regulatory elements for the detection of metabolic disorders in humans. Identified sequences were further transcriptionally fused with GFP, thus generating an optical readout in response to their cognate targets. Screening of genetic regulatory elements led us to discover two promoter elements (pmetE::GFP and ptrpL::GFP) that showed a significant change in the fluorescence response to homocysteine and tryptophan, respectively. The developed biosensors respond specifically and sensitively with a limit of detection of 3.8 μM and 3 μM for homocysteine and tryptophan, respectively. Furthermore, the clinical utility of this assay was demonstrated by employing it to identify homocystinuria and tryptophanuria diseases through the quantification of homocysteine and tryptophan in plasma and urine samples within 5 h. The precision and accuracy of the biosensors for disease diagnosis were well within an acceptable range. The general strategy used in this system can be expanded to screen different genetic regulatory elements present in other gram-negative and gram-positive bacteria for the detection of metabolic disorders.
Collapse
Affiliation(s)
- Rajat Dhyani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Shubham Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Ankita Bhatt
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
16
|
Schwaiger-Haber M, Stancliffe E, Arends V, Thyagarajan B, Sindelar M, Patti GJ. A Workflow to Perform Targeted Metabolomics at the Untargeted Scale on a Triple Quadrupole Mass Spectrometer. ACS MEASUREMENT SCIENCE AU 2021; 1:35-45. [PMID: 34476422 PMCID: PMC8377714 DOI: 10.1021/acsmeasuresciau.1c00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 05/25/2023]
Abstract
The thousands of features commonly observed when performing untargeted metabolomics with quadrupole time-of-flight (QTOF) and Orbitrap mass spectrometers often correspond to only a few hundred unique metabolites of biological origin, which is in the range of what can be assayed in a single targeted metabolomics experiment by using a triple quadrupole (QqQ) mass spectrometer. A major benefit of performing targeted metabolomics with QqQ mass spectrometry is the affordability of the instruments relative to high-resolution QTOF and Orbitrap platforms. Optimizing targeted methods to profile hundreds of metabolites on a QqQ mass spectrometer, however, has historically been limited by the availability of authentic standards, particularly for "unknowns" that have yet to be structurally identified. Here, we report a strategy to develop multiple reaction monitoring (MRM) methods for QqQ instruments on the basis of high-resolution spectra, thereby enabling us to use data from untargeted metabolomics to design targeted experiments without the need for authentic standards. We demonstrate that using high-resolution fragmentation data alone to design MRM methods results in the same quantitative performance as when methods are optimized by measuring authentic standards on QqQ instruments, as is conventionally done. The approach was validated by showing that Orbitrap ID-X data can be used to establish MRM methods on a Thermo TSQ Altis and two Agilent QqQs for hundreds of metabolites, including unknowns, without a dependence on standards. Finally, we highlight an application where metabolite profiling was performed on an ID-X and a QqQ by using the strategy introduced here, with both data sets yielding the same result. The described approach therefore allows us to use QqQ instruments, which are often associated with targeted metabolomics, to profile knowns and unknowns at a comprehensive scale that is typical of untargeted metabolomics.
Collapse
Affiliation(s)
- Michaela Schwaiger-Haber
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Ethan Stancliffe
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Valerie Arends
- Department
of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bharat Thyagarajan
- Department
of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Miriam Sindelar
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Gary J. Patti
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
17
|
Ahn HT, Jang IS, Dang TV, Kim YH, Lee DH, Choi HS, Yu BJ, Kim MI. Effective Cryopreservation of a Bioluminescent Auxotrophic Escherichia coli-Based Amino Acid Array to Enable Long-Term Ready-to-Use Applications. BIOSENSORS-BASEL 2021; 11:bios11080252. [PMID: 34436054 PMCID: PMC8393857 DOI: 10.3390/bios11080252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
Amino acid arrays comprising bioluminescent amino acid auxotrophic Escherichia coli are effective systems to quantitatively determine multiple amino acids. However, there is a need to develop a method for convenient long-term preservation of the array to enable its practical applications. Here, we reported a potential strategy to efficiently maintain cell viability within the portable array. The method involves immobilization of cells within agarose gel supplemented with an appropriate cryoprotectant in individual wells of a 96-well plate, followed by storage under freezing conditions. Six cryoprotectants, namely dimethyl sulfoxide, glycerol, ethylene glycol, polyethylene glycol, sucrose, and trehalose, were tested in the methionine (Met) auxotroph-based array. Carbohydrate-type cryoprotectants (glycerol, sucrose, and trehalose) efficiently preserved the linearity of determination of Met concentration. In particular, the array with 5% trehalose exhibited the best performance. The Met array with 5% trehalose could determine Met concentration with high linearity (R2 value = approximately 0.99) even after storage at −20 °C for up to 3 months. The clinical utilities of the Met and Leu array, preserved at −20 °C for 3 months, were also verified by successfully quantifying Met and Leu in spiked blood serum samples for the diagnosis of the corresponding metabolic diseases. This long-term preservation protocol enables the development of a ready-to-use bioluminescent E. coli-based amino acid array to quantify multiple amino acids and can replace the currently used laborious analytical methods.
Collapse
Affiliation(s)
- Hee Tae Ahn
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - In Seung Jang
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Thinh Viet Dang
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - Yi Hyang Kim
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Dong Hoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - Hyeun Seok Choi
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Byung Jo Yu
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
- Correspondence: (B.J.Y.); (M.I.K.); Tel.: +82-41-589-8456 (B.J.Y.); +82-31-750-8563 (M.I.K.)
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
- Correspondence: (B.J.Y.); (M.I.K.); Tel.: +82-41-589-8456 (B.J.Y.); +82-31-750-8563 (M.I.K.)
| |
Collapse
|
18
|
Analytical Evaluation of the Ideal Strategy for High-Throughput Flow Injection Analysis by Tandem Mass Spectrometry in Routine Newborn Screening. Metabolites 2021; 11:metabo11080473. [PMID: 34436414 PMCID: PMC8399422 DOI: 10.3390/metabo11080473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
The introduction of tandem mass spectrometry (MS/MS) to clinical laboratories and the advent of expanded newborn screening (NBS) were crucial changes to public health programs worldwide. Speed, robustness, accuracy, selectivity, and specificity of analysis are all requirements of expanded NBS and are needed to minimize false positive results risks, to possibly eliminate false negatives, and to improve the positive predictive value of NBS. In this study, we firstly evaluated the analytical performances of the RenataDX Screening System, a fully integrated flow-injection MS/MS (FIA-MS/MS) IVD system for high-throughput dried blood spot (DBS) analysis in a routine NBS laboratory. Since a choice of several commercial NBS kits is available, we sought to compare NeoBaseTM 2 (PerkinElmer®) and MassChrom® (Chromsystems) non-derivatized kits on the RenataDX platform by evaluating their analytical performances. Moreover, we verified the degree of correlation between data obtained by the two different NBS MS/MS kits by FIA-MS/MS of over 500 samples. Our data suggest that both methods correlate well with clinically insignificant differences that do not impact the NBS result. Finally, while NeoBase™ 2 offers an easier and faster sample preparation, MassChrom® provides a cleaner sample extract which empirically should improve instrument reliability.
Collapse
|
19
|
Stevens KG, Pukala TL. Conjugating immunoassays to mass spectrometry: Solutions to contemporary challenges in clinical diagnostics. Trends Analyt Chem 2020; 132:116064. [PMID: 33046944 PMCID: PMC7539833 DOI: 10.1016/j.trac.2020.116064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developments in immunoassays and mass spectrometry have independently influenced diagnostic technology. However, both techniques possess unique strengths and limitations, which define their ability to meet evolving requirements for faster, more affordable and more accurate clinical tests. In response, hybrid techniques, which combine the accessibility and ease-of-use of immunoassays with the sensitivity, high throughput and multiplexing capabilities of mass spectrometry are continually being explored. Developments in antibody conjugation methodology have expanded the role of these biomolecules to applications outside of conventional colorimetric assays and histology. Furthermore, the range of different mass spectrometry ionisation and analysis technologies has enabled its successful adaptation as a detection method for numerous clinically relevant immunological assays. Several recent examples of combined mass spectrometry-immunoassay techniques demonstrate the potential of these methods as improved diagnostic tests for several important human diseases. The present challenges are to continue technological advancements in mass spectrometry instrumentation and develop improved bioconjugation methods, which can overcome their existing limitations and demonstrate the clinical significance of these hybrid approaches.
Collapse
|
20
|
High resolution mass spectrometry newborn screening applications for quantitative analysis of amino acids and acylcarnitines from dried blood spots. Anal Chim Acta 2020; 1120:85-96. [PMID: 32475395 PMCID: PMC10046147 DOI: 10.1016/j.aca.2020.04.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
Amino acid and acylcarnitine first-tier newborn screening typically employs derivatized or non-derivatized sample preparation methods followed by FIA coupled to triple quadrupole (TQ) MS/MS. The low resolving power of TQ instruments results in difficulties distinguishing nominal isobaric metabolites, especially those with identical quantifying product ions such as malonylcarnitine (C3DC) and 4-hydroxybutylcarnitine (C4OH). Twenty-eight amino acids and acylcarnitines extracted from dried blood spots (DBS) were analyzed by direct injection (DI)-HRMS on a Q-Exactive Plus across available mass resolving powers in SIM, in PRM at 17,000 full width at half maximum (FWHM), and a developed SIM/PRM hybrid MS method. Most notably, quantitation of C3DC and C4OH was successful by HRMS in non-derivatized samples, thus, potentially eliminating sample derivatization requirements. Quantitation differed between SIM and PRM acquired data for several metabolites, and it was determined these quantitative differences were due to collision energy differences or kinetic isotope effects between the unlabeled metabolites and the corresponding labeled isotopologue internal standards. Overall quantitative data acquired by HRMS were similar to data acquired on TQ MS/MS platform. A proof-of-concept hybrid DI-HRMS and SIM/PRM/FullScan method was developed demonstrating the ability to hybridize targeted newborn screening with metabolomic screening.
Collapse
|
21
|
Yang N, Gong LF, Zhao JQ, Yang HH, Ma ZJ, Liu W, Wan ZH, Kong YY. Inborn errors of metabolism detectable by tandem mass spectrometry in Beijing. J Pediatr Endocrinol Metab 2020; 33:639-645. [PMID: 32304307 DOI: 10.1515/jpem-2019-0420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022]
Abstract
Background Individual inborn errors of metabolism (IEMs) are rare disorders. Expanded newborn screening for IEMs by tandem mass spectrometry (TMS) is an efficient approach for early diagnosis. Here we provide the newborn screening program for the application of this approach (between July 2014 and March 2019) to the identification of newborns in Beijing at risk of developing a potentially fatal disease. Methods The amino acids and acylcarnitines in dried blood spots were analyzed by TMS. Diagnoses of newborns with elevated metabolites were confirmed by gas chromatography-mass spectrometry, biochemical studies, and genetic analysis. Results Among the healthy newborns, 16 metabolic disorder cases were confirmed, giving a total birth prevalence of 1:3666 live births. Organic acidemia (OA) was the most common (9/16 patients; 56%), and methylmalonic acidemia was the most frequently observed OA (7/9 patients; 89%). Five infants were diagnosed with methylmalonic acidemia with homocystinuria type CblC, two with isolated methylmalonic acidemia, one with propionic acidemia, and one with isovaleric acidemia. Four patients (4/16, 25%) were diagnosed with hyperphenylalaninemia. One suffered with medium-chain acyl CoA dehydrogenase deficiency, one with carnitine uptake deficiency, and one with citrin deficiency. Eleven cases underwent genetic analysis. Seventeen mutations in eight IEM-associated genes were identified in 11 confirmed cases. Symptoms were already present within 2 days after birth in 44% (7/16) cases. The infant with propionic acidemia died at 7 days after birth. The other cases received timely diagnosis and treatment, and most of them grew well. Conclusions The results illustrate challenges encountered in disease management highlighting the importance of newborn screening for inherited metabolic disorders, which is not yet nationally available in our country. Regional newborn screening programs will provide a better estimation of the incidence of IEM.
Collapse
Affiliation(s)
- Nan Yang
- Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang District, Beijing, P.R. China
| | - Li-Fei Gong
- Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang District, Beijing, P.R. China
| | - Jin-Qi Zhao
- Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang District, Beijing, P.R. China
| | - Hai-He Yang
- Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang District, Beijing, P.R. China
| | - Zhi-Jun Ma
- Newborn Screening Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Wei Liu
- Newborn Screening Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Zhi-Hui Wan
- Newborn Screening Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Yuan-Yuan Kong
- Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang District, Beijing, P.R. China
| |
Collapse
|
22
|
Wang S, Leng J, Diao C, Wang Y, Zheng R. Genetic characteristics and follow-up of patients with fatty acid β-oxidation disorders through expanded newborn screening in a Northern Chinese population. J Pediatr Endocrinol Metab 2020; 33:683-690. [PMID: 32447334 DOI: 10.1515/jpem-2019-0551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
Background Fatty acid β-oxidation disorders (FAODs) include more than 15 distinct disorders and have a wide variety of symptoms, usually not evident between episodes of acute decompensation. After the introduction of newborn screening (NBS) using tandem mass spectrometry (MS/MS), early identification of FAODs has become feasible. We analyzed the MS/MS results in Tianjin, China during a six-year period to evaluate the incidence, disease spectrum, and genetic characteristics of FAODs. Methods We analyzed the MS/MS results for screening FAODs from May 2013 to December 2018 in Tianjin, China. Infants with positive screening results were confirmed through next-generation sequencing and validated by Sanger sequencing. Results A total of 220,443 infants were screened and 25 FAODs patients were identified (1:8,817). Primary carnitine deficiency (PCD) with an incidence rate up to 1:20,040 was the most common disorder among all FAODs. Recurrent mutations of relatively common diseases, like PCD and short-chain acyl-CoA dehydrogenase deficiency (SCADD), were identified. During the follow-up, two patients suffered from sudden death due to carnitine palmitoyl transferase-Ⅱ deficiency (CPT Ⅱ) and very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD). Conclusion Our data indicated that FAODs are relatively common in Tianjin and may even cause infant death in certain cases. The elucidated disease spectrum and genetic backgrounds elucidated in this study may contribute to the treatment and prenatal genetic counseling of FAODs.
Collapse
Affiliation(s)
- Shuting Wang
- Pediatric Department, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Women and Children's Health Center, Tianjin, PR China
| | - Junhong Leng
- Tianjin Women and Children's Health Center, Tianjin, PR China
| | - Chengming Diao
- Tianjin Women and Children's Health Center, Tianjin, PR China
| | - Yuan Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, PR China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, PR China
| | - Rongxiu Zheng
- Pediatric Department, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, PR China
| |
Collapse
|
23
|
Pellegrinelli L, Alberti L, Pariani E, Barbi M, Binda S. Diagnosing congenital Cytomegalovirus infection: don't get rid of dried blood spots. BMC Infect Dis 2020; 20:217. [PMID: 32164599 PMCID: PMC7069171 DOI: 10.1186/s12879-020-4941-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/01/2020] [Indexed: 11/22/2022] Open
Abstract
Background Congenital Cytomegalovirus (cCMV) is a serious global public health issue that can cause irreversible fetal and neonatal congenital defects in symptomatic or asymptomatic newborns at birth. In absence of universal cCMV screening, the retrospective diagnosis of cCMV infection in children is only possible by examining Dried Blood Spot (DBS) samples routinely collected at birth and stored for different time spans depending on the newborn screening regulations in force in different countries. In this article, we summarize the arguments in favor of long-term DBS sample storage for detecting cCMV infection. Main text CMV infection is the most common cause of congenital infection resulting in severe defects and anomalies that can be apparent at birth or develop in early childhood. Sensorineural hearing loss is the most frequent consequence of cCMV infection and may have a late onset and progress in the first years of life. The virological diagnosis of cCMV is essential for clinical research and public health practices. In fact, in order to assess the natural history of CMV infection and distinguish between congenital or acquired infection, children should be diagnosed early by analyzing biological samples collected in the first weeks of life (3 weeks by using viral culture and 2 weeks by molecular assays), which, unfortunately, are not always available for asymptomatic or mildly symptomatic children. It now seems possible to overcome this problem since the CMV-DNA present in the blood of congenitally infected newborns can be easily retrieved from the DBS samples on the Guthrie cards routinely collected and stored within 3 days from birth in the neonatal screening program for genetic and congenital diseases. Early collection and long-term storage are inexpensive methods for long-term bio-banking and are the key points of DBS testing for the detection of cCMV. Conclusion DBS sampling is a reliable and inexpensive method for long-term bio-banking, which enables to diagnose known infectious diseases - including cCMV - as well as diseases not jet recognized, therefore their storage sites and long-term storage conditions and durations should be the subject of political decision-making.
Collapse
Affiliation(s)
- Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Luisella Alberti
- Newborn Screening Laboratory, ASST Fatebenefratelli Sacco-PO Ospedale dei Bambini "V. Buzzi", Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Maria Barbi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Andrade F, Vitoria I, Martín Hernández E, Pintos-Morell G, Correcher P, Puig-Piña R, Quijada-Fraile P, Peña-Quintana L, Marquez AM, Villate O, García Silva MT, de Las Heras J, Ceberio L, Rodrigues E, Almeida Campos T, Yahyaoui R, Blasco J, Vives-Piñera I, Gil D, Del Toro M, Ruiz-Pons M, Cañedo E, Barba Romero MA, García-Jiménez MC, Aldámiz-Echevarría L. Quantification of urinary derivatives of Phenylbutyric and Benzoic acids by LC-MS/MS as treatment compliance biomarkers in Urea Cycle disorders. J Pharm Biomed Anal 2019; 176:112798. [PMID: 31394303 DOI: 10.1016/j.jpba.2019.112798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Salts of phenylacetic acid (PAA) and phenylbutyric acid (PBA) have been used for nitrogen elimination as a treatment for hyperammonaemia caused by urea cycle disorders (UCD). A new analytical method for PBA measurement in urine which helps to evaluate the drug adherence has been implemented. METHODS Urine specimens from UCD patients receiving PBA were analysed by tandem mass spectrometry to measure urine phenylacetylglutamine (PAGln). Some clinical and biochemical data for each patient were collected. RESULTS Our study included 87 samples from 40 UCD patients. The PAGln levels did not correlate with height, weight or age. However, the PAGln values showed correlation with PBA dose (r = 0.383, P = 0.015). Plasma glutamine and ammonia levels presented a positive correlation (r = 0.537, P < 0.001). The stability for PAGln in urine was determined at different storage temperatures. CONCLUSIONS We have developed a simple method for the determination of PAGln in urine, which acts as useful biomarker of effective drug delivery. PAGln in urine is stable at room temperature at least for 15 days, and for several months when frozen at -20 °C. This procedure is useful for the optimization and monitorization of the drug dose allowing the use of spot urine samples.
Collapse
Affiliation(s)
- Fernando Andrade
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Isidro Vitoria
- Unit of Metabolopathies, La Fe University Hospital, Valencia, Spain
| | - Elena Martín Hernández
- Pediatric Rare Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, 12 de Octubre University Hospital, Research Institute (i+12), Madrid, Spain
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d´Hebron, Barcelona. Research Institute Germans Trias I Pujol (IGTP), CIBERER-GCV08, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Rocío Puig-Piña
- Department of Endocrinology and Nutrition. Adult Metabolic Unit. University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Pilar Quijada-Fraile
- Pediatric Rare Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, 12 de Octubre University Hospital, Research Institute (i+12), Madrid, Spain
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Mother-Child University Hospital of Canarias, Ciber OBN, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Mª Marquez
- Pediatric Gastroenterology and Nutrition Unit, Mother-Child Hospital of Badajoz, Spain
| | - Olatz Villate
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Mª Teresa García Silva
- Pediatric Rare Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, 12 de Octubre University Hospital, Research Institute (i+12), Madrid, Spain
| | - Javier de Las Heras
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Leticia Ceberio
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | | | | | - Raquel Yahyaoui
- Inherited Metabolic Disease Laboratory, Institute of Biomedical Research in Málaga (IBIMA), Málaga Regional University Hospital, Málaga, Spain
| | - Javier Blasco
- Gastroenterology, Hepatology and Child Nutrition Unit, Carlos Haya University Hospital, Málaga, Spain
| | | | - David Gil
- Gastroenterology Unit, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Mireia Del Toro
- Pediatric Neurology Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mónica Ruiz-Pons
- Pediatric Nutrition Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
| | - Elvira Cañedo
- Gastroenterology and Nutrition Unit, Niño Jesús University Hospital, Madrid, Spain
| | | | | | - Luis Aldámiz-Echevarría
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain.
| |
Collapse
|
25
|
Sobrido MJ, Bauer P, de Koning T, Klopstock T, Nadjar Y, Patterson MC, Synofzik M, Hendriksz CJ. Recommendations for patient screening in ultra-rare inherited metabolic diseases: what have we learned from Niemann-Pick disease type C? Orphanet J Rare Dis 2019; 14:20. [PMID: 30665446 PMCID: PMC6341610 DOI: 10.1186/s13023-018-0985-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rare and ultra-rare diseases (URDs) are often chronic and life-threatening conditions that have a profound impact on sufferers and their families, but many are notoriously difficult to detect. Niemann-Pick disease type C (NP-C) serves to illustrate the challenges, benefits and pitfalls associated with screening for ultra-rare inborn errors of metabolism (IEMs). A comprehensive, non-systematic review of published information from NP-C screening studies was conducted, focusing on diagnostic methods and study designs that have been employed to date. As a key part of this analysis, data from both successful studies (where cases were positively identified) and unsuccessful studies (where the chosen approach failed to identify any cases) were included alongside information from our own experiences gained from the planning and execution of screening for NP-C. On this basis, best-practice recommendations for ultra-rare IEM screening are provided. Twenty-six published screening studies were identified and categorised according to study design into four groups: 1) prospective patient cohort and family-based secondary screenings (18 studies); 2) analyses of archived 'biobank' materials (one study); 3) medical chart review and bioinformatics data mining (five studies); and 4) newborn screening (two studies). NPC1/NPC2 sequencing was the most common primary screening method (Sanger sequencing in eight studies and next-generation sequencing [gene panel or exome sequencing] in five studies), followed by biomarker analyses (usually oxysterols) and clinical surveillance. CONCLUSIONS Historically, screening for NP-C has been based on single-patient studies, small case series, and targeted cohorts, but the emergence of new diagnostic methods over the last 5-10 years has provided opportunities to screen for NP-C on a larger scale. Combining clinical, biomarker and genetic diagnostic methods represents the most effective way to identify NP-C cases, while reducing the likelihood of misdiagnosis. Our recommendations are intended as a guide for planning screening protocols for ultra-rare IEMs in general.
Collapse
Affiliation(s)
- María-Jesús Sobrido
- Neurogenetics Research Group, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
| | - Peter Bauer
- Insititute of Medical Genetics and Applied Genomics, Tübingen University, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | | | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany, and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yann Nadjar
- Department of Neurology, Reference Centre for Lysosomal Diseases (CRML), UF Neurogenetics and Metabolism, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | |
Collapse
|
26
|
Skrinjar P, Schwarz M, Lexmüller S, Mechtler TP, Zeyda M, Greber-Platzer S, Trometer J, Kasper DC, Mikula H. Rapid and Modular Assembly of Click Substrates To Assay Enzyme Activity in the Newborn Screening of Lysosomal Storage Disorders. ACS CENTRAL SCIENCE 2018; 4:1688-1696. [PMID: 30648152 PMCID: PMC6311692 DOI: 10.1021/acscentsci.8b00668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Synthetic substrates play a pivotal role in the development of enzyme assays for medical diagnostics. However, the preparation of these chemical tools often requires multistep synthetic procedures complicating structural optimization and limiting versatility. In particular, substrates for enzyme assays based on tandem mass spectrometry need to be designed and optimized to fulfill the requirements to finally enable the development of robust diagnostic assays. In addition, isotope-labeled standards need to be prepared to facilitate accurate quantification of enzyme assay products. Here we report the development of a building block strategy for rapid and modular assembly of enzyme substrates using click chemistry as a key step. These click substrates are made up of a sugar moiety as enzyme responsive unit, a linker that can easily be isotope-labeled for the synthesis of internal standards, and a modifier compound that can readily be exchanged for structural optimization and analytical/diagnostic tuning. Moreover, the building block assembly eliminates the need for extensive optimization of different glycosylation reactions as it enables the divergent synthesis of substrates using a clickable enzyme responsive unit. The outlined strategy has been applied to obtain a series of synthetic α-l-iduronates and sulfated β-d-galactosides as substrates for assaying α-l-iduronidase and N-acetylgalactosamine-6-sulfate sulfatase, enzymes related to the lysosomal storage disorders mucopolysaccharidosis type I and type IVa, respectively. Selected click substrates were finally shown to be suitable to assay enzyme activities in dried blood spot samples from affected patients and random newborns.
Collapse
Affiliation(s)
- Philipp Skrinjar
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
| | - Markus Schwarz
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
- ARCHIMED
Life Science GmbH, 1110 Vienna, Austria
| | - Stefan Lexmüller
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
| | | | - Maximilian Zeyda
- Department
of Pediatrics and Adolescent Medicine, Medical
University of Vienna, 1090 Vienna, Austria
| | - Susanne Greber-Platzer
- Department
of Pediatrics and Adolescent Medicine, Medical
University of Vienna, 1090 Vienna, Austria
| | - Joe Trometer
- PerkinElmer,
Diagnostics, Waltham, Massachusetts 02451, United States
| | | | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
- E-mail:
| |
Collapse
|
27
|
Yi F, Wang L, Wang M, Yuan XL, Wan HJ, Li JY. [Combined effect of gestational age and birth weight on metabolites related to inherited metabolic diseases in neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:352-357. [PMID: 29764569 PMCID: PMC7389062 DOI: 10.7499/j.issn.1008-8830.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To study the combined effect of gestational age and birth weight on metabolites related to inherited metabolic diseases (IMD). METHODS A total of 3 381 samples ruled out of IMD by follow-up were randomly selected from 38 931 newborns who participated in the neonatal IMD screening during 2014-2016. The 3 381 neonates were categorized into seven groups according to their gestational age and birth weight: extremely preterm appropriate-for-gestational age (AGA) group (n=12), preterm small-for-gestational age (SGA) group (n=18), preterm AGA group (n=219), preterm large-for-gestational age (LGA) group (n=18), full-term SGA group (n=206), full-term AGA group (n=2 677), and full-term LGA group (n=231). Heel blood samples were collected from each group on postnatal days 3-7 after adequate breastfeeding. Levels of 17 key IMD-related metabolic indices in dried blood spots were measured using tandem mass spectrometry. Spearman′s correlation analysis was used to investigate the relationships between 17 IMD-related metabolic indices and their influencing factors, while covariance analysis was used to compare the metabolic indices between these groups. RESULTS After adjusting the influencing factors such as physiological and pathological status, compared with the full-term AGA group, the extremely preterm AGA, preterm SGA, and preterm AGA groups had significantly reduced levels of leucine\isoleucine\hydroxyproline and valine (P<0.05); the preterm AGA group had a significantly decreased ornithine level (P<0.05); the extremely preterm AGA and preterm AGA groups had a significantly reduced proline level (P<0.05). Besides, the phenylalanine level in the extremely preterm AGA and preterm AGA groups, the methionine level in the preterm SGA group, and the tyrosine level in the preterm AGA group all significantly increased (P<0.05). The increased levels of free carnitine, acetylcarnitine, and propionylcarnitine were found in the preterm SGA and preterm AGA groups. The oleylcarnitine level also significantly increased in the preterm SGA group (P<0.05). Most carnitine indices showed significant differences between the SGA group and the AGA/LGA group in both preterm and full-term infants (P<0.05). CONCLUSIONS Low gestational age and low birth weight may result in abnormal results in IMD screening. Therefore, gestational age and birth weight should be considered to comprehensively judge the abnormal results in IMD screening.
Collapse
Affiliation(s)
- Fang Yi
- West China School of Public Health, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | |
Collapse
|
28
|
Abdel Maksoud M, ELsayed SM, Shatla RH, Imam AA, Elsayed RM, Mosabah AA, Sherif AM. Frequency of inborn errors of metabolism screening for children with unexplained acute encephalopathy at an emergency department. Neuropsychiatr Dis Treat 2018; 14:1715-1720. [PMID: 29988750 PMCID: PMC6029674 DOI: 10.2147/ndt.s165833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Our study aimed to estimate the frequency of inborn errors of metabolism (IEMs) in patients presenting with acute encephalopathy-like picture at an emergency department (ED). SUBJECTS AND METHODS Our study was a prospective observational study conducted on 30 patients admitted to the pediatric ED with unexplained acute encephalopathy. The study included 30 children with an age ranging from 1 month to 5 years. All patients were subjected to full history taking, thorough clinical examination, and laboratory investigations including serum ammonia, serum lactate, arterial blood gases, tandem mass spectroscopy, organic acid of urine, cerebrospinal fluid examination to exclude central nervous system infection plus the routine laboratory tests (kidney functions, liver functions, random blood glucose, complete blood picture), and brain imaging computed tomography and/or magnetic resonance imaging brain. RESULTS Thirty children presented with acute encephalopathy at the ED. All were screened for suspected IEMs. Ten (33.3%) of them was positive in the initial screening test. There were four (13.3%) patients with possible mitochondrial diseases, four (13.3%) patients with possible organic acidemia, one (3.3%) patient with possible urea cycle defect, and one (3.3%) patient with possible nonketotic hyperglycinemia. CONCLUSION Any case of unexplained acute encephalopathy presenting to the ED should be investigated for suspected IEM, especially in high-risk families, as early interventions will lead to improved outcome.
Collapse
Affiliation(s)
| | | | - Rania H Shatla
- Pediatric Department, Ain Shams University, Cairo, Egypt
| | | | - Riad M Elsayed
- Pediatric Neurology Unit, Pediatric Department, Mansoura University, Mansoura, Dakahlia, Egypt,
| | | | | |
Collapse
|
29
|
Newborn screening by matrix-assisted laser desorption/ionization mass spectrometry based on parylene-matrix chip. Anal Biochem 2017; 530:31-39. [DOI: 10.1016/j.ab.2017.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/01/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022]
|
30
|
Jurdáková H, Górová R, Addová G, Behúlová D, Ostrovský I. The state of treatment approach and diagnostics in Canavan disease with focus on the determination of N-acetylasparic acid. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-016-0033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Huang KT, Ludy S, Calligaris D, Dunn IF, Laws E, Santagata S, Agar NYR. Rapid Mass Spectrometry Imaging to Assess the Biochemical Profile of Pituitary Tissue for Potential Intraoperative Usage. Adv Cancer Res 2016; 134:257-282. [PMID: 28110653 DOI: 10.1016/bs.acr.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pituitary adenomas are relatively common intracranial neoplasms that are frequently treated with surgical resection. Rapid visualization of pituitary tissue remains a challenge as current techniques either produce little to no information on hormone-secreting function or are too slow to practically aid in intraoperative or even perioperative decision-making. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) represents a powerful method by which molecular maps of tissue samples can be created, yielding a two-dimensional representation of the expression patterns of small molecules and proteins from biologic samples. In this chapter, we review the use of MALDI MSI, its application to the characterization of the pituitary gland, and its potential applications for guiding the management of pituitary adenomas.
Collapse
Affiliation(s)
- K T Huang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - S Ludy
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - D Calligaris
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - I F Dunn
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - E Laws
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - S Santagata
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - N Y R Agar
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
32
|
Abstract
Mass spectrometry (MS) is a technique that can identify analytes on the basis of mass-to-charge (m/z) ratio. Although this technique has been used in research and specialized clinical laboratories for decades, however, in recent years, MS has been increasingly used in routine clinical laboratories. MS, especially when coupled to gas chromatography or liquid chromatography, provides very specific and often sensitive analysis of many analytes. Other advantages of MS include simultaneous analysis of multiple analytes (>100) and generally without need for specialized reagents. Commonly measured analytes by MS include drugs, hormones, and proteins.
Collapse
Affiliation(s)
- Uttam Garg
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, 2401 Gillham Road, Kansas City, MO, 64108, USA.
- University of Missouri School of Medicine, Kansas City, MO, USA.
| | - Yan Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
33
|
Garg U, Zhang YV. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology. Methods Mol Biol 2016; 1383:1-10. [PMID: 26660168 DOI: 10.1007/978-1-4939-3252-8_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has been used in research and specialized clinical laboratories for decades as a very powerful technology to identify and quantify compounds. In recent years, application of MS in routine clinical laboratories has increased significantly. This is mainly due to the ability of MS to provide very specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100). The coupling of tandem mass spectrometry with gas chromatography (GC) or liquid chromatography (LC) has enabled the rapid expansion of this technology. While applications of MS are used in many clinical areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology are still the primary focuses of the field. It is not uncommon to see mass spectrometry being used in routine clinical practices for those applications.
Collapse
Affiliation(s)
- Uttam Garg
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, 2401 Gillham Road, Kansas City, MO, USA.
| | - Yan Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
34
|
Strand JM, Skinnes R, Scheffler K, Rootvelt T, Woldseth B, Bjørås M, Eide L. Genome instability in Maple Syrup Urine Disease correlates with impaired mitochondrial biogenesis. Metabolism 2014; 63:1063-70. [PMID: 24928662 DOI: 10.1016/j.metabol.2014.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/09/2014] [Accepted: 05/04/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The mitochondrial branched-chain ketoacid dehydrogenase (BCKD) catalyzes the degradation of branched-chain amino acids (BCAA), which have been shown to induce oxidative stress. Maple Syrup Urine Disease (MSUD) is caused by impaired activity of BCKD, suggesting that oxidative stress and resulting DNA damage could contribute to pathology. We evaluated the potential effect of BCKD deficiency on genome integrity and mitochondrial function as a downstream target. METHODS Primary fibroblasts from MSUD patients and controls were either cultivated under normal conditions or exposed to metabolic or oxidative stress. DNA was analyzed for damage and mitochondrial function was evaluated by gene expression analyses, functional assays and immunofluorescent methods. RESULTS Patient fibroblasts accumulated damage in mitochondrial DNA (mtDNA) and nuclear DNA, with a corresponding reduction in mitochondrial transcription, mtDNA copy number and pyruvate dehydrogenase. We found no evidence of increased level of reactive oxygen species (ROS) in patient fibroblasts under normal conditions, suggesting that the genotoxic effect is ascribed to accumulating metabolites. CONCLUSIONS Impaired BCKD activity as in MSUD, results in accumulation of DNA damage and corresponding mitochondrial dysfunction.
Collapse
Affiliation(s)
- Janne M Strand
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Microbiology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Ragnhild Skinnes
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Microbiology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Terje Rootvelt
- Women and Children's Division, Oslo University Hospital, Oslo, Norway
| | - Berit Woldseth
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Microbiology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
35
|
Mak CM, Lee HCH, Chan AYW, Lam CW. Inborn errors of metabolism and expanded newborn screening: review and update. Crit Rev Clin Lab Sci 2014; 50:142-62. [PMID: 24295058 DOI: 10.3109/10408363.2013.847896] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inborn errors of metabolism (IEM) are a phenotypically and genetically heterogeneous group of disorders caused by a defect in a metabolic pathway, leading to malfunctioning metabolism and/or the accumulation of toxic intermediate metabolites. To date, more than 1000 different IEM have been identified. While individually rare, the cumulative incidence has been shown to be upwards of 1 in 800. Clinical presentations are protean, complicating diagnostic pathways. IEM are present in all ethnic groups and across every age. Some IEM are amenable to treatment, with promising outcomes. However, high clinical suspicion alone is not sufficient to reduce morbidities and mortalities. In the last decade, due to the advent of tandem mass spectrometry, expanded newborn screening (NBS) has become a mandatory public health strategy in most developed and developing countries. The technology allows inexpensive simultaneous detection of more than 30 different metabolic disorders in one single blood spot specimen at a cost of about USD 10 per baby, with commendable analytical accuracy and precision. The sensitivity and specificity of this method can be up to 99% and 99.995%, respectively, for most amino acid disorders, organic acidemias, and fatty acid oxidation defects. Cost-effectiveness studies have confirmed that the savings achieved through the use of expanded NBS programs are significantly greater than the costs of implementation. The adverse effects of false positive results are negligible in view of the economic health benefits generated by expanded NBS and these could be minimized through increased education, better communication, and improved technologies. Local screening agencies should be given the autonomy to develop their screening programs in order to keep pace with international advancements. The development of biochemical genetics is closely linked with expanded NBS. With ongoing advancements in nanotechnology and molecular genomics, the field of biochemical genetics is still expanding rapidly. The potential of tandem mass spectrometry is extending to cover more disorders. Indeed, the use of genetic markers in T-cell receptor excision circles for severe combined immunodeficiency is one promising example. NBS represents the highest volume of genetic testing. It is more than a test and it warrants systematic healthcare service delivery across the pre-analytical, analytical, and post-analytical phases. There should be a comprehensive reporting system entailing genetic counselling as well as short-term and long-term follow-up. It is essential to integrate existing clinical IEM services with the expanded NBS program to enable close communication between the laboratory, clinicians, and allied health parties. In this review, we will discuss the history of IEM, its clinical presentations in children and adult patients, and its incidence among different ethnicities; the history and recent expansion of NBS, its cost-effectiveness, associated pros and cons, and the ethical issues that can arise; the analytical aspects of tandem mass spectrometry and post-analytical perspectives regarding result interpretation.
Collapse
Affiliation(s)
- Chloe Miu Mak
- Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital , Hong Kong, SAR , China and
| | | | | | | |
Collapse
|
36
|
Shen Q, Lu Y, Dai Z, Cheung HY. Precursor ion scan driven fast untargeted screening and semi-determination of caffeoylquinic acid derivatives in Cynara scolymus L. Food Chem 2014; 166:442-447. [PMID: 25053078 DOI: 10.1016/j.foodchem.2014.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
A precursor ion scan (PIS) technique based strategy was developed for rapid screening and semi-determination of caffeoylquinic acid derivatives (CADs) in artichoke (Cynara scolymus L.) using ultra-performance liquid chromatography (UPLC) coupled with tandem mass spectrometry. 1,5-Dicaffeoylquinic acid and 5-caffeoylquinic acid were used for studying the fragmentation behaviour of two classes of CADs, setting m/z 191 as a diagnostic moiety. When it was applied to artichoke sample, ten CADs were detected and elucidated in a single PIS run. Furthermore, method validation was implemented including: specificity (no interference), linearity (≥0.9993), limit of detection (LOD<0.12 ng mL(-1)) and limit of quantification (LOQ<0.25 ng mL(-1)), precision (RSD≤3.6), recovery (91.4-95.9%) and stability (at least 12 h). This approach was proven to be a powerful, selective and sensitive tool for rapid screening and semi-determination of untargeted components in natural products.
Collapse
Affiliation(s)
- Qing Shen
- College of Food Science and Technology, Zhejiang Gongshang University, Hangzhou, China; Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Yanbin Lu
- College of Food Science and Technology, Zhejiang Gongshang University, Hangzhou, China
| | - Zhiyuan Dai
- College of Food Science and Technology, Zhejiang Gongshang University, Hangzhou, China.
| | - Hon-Yeung Cheung
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
37
|
Han L, Han F, Ye J, Qiu W, Zhang H, Gao X, Wang Y, Ji W, Gu X. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry. J Clin Lab Anal 2014; 29:162-8. [PMID: 24797655 DOI: 10.1002/jcla.21745] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/10/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Information concerning inherited metabolic diseases in China is scarce. We investigated the prevalence and age distributions of amino acid, organic acid, and fatty acid oxidation disorders in Chinese patients. METHODS Blood levels of amino acids and acylcarnitines (tandem mass spectrometry) were measured in 18,303 patients with suspected inherited metabolic diseases. Diagnosis was based on clinical features, blood levels of amino acids or acylcarnitines, urinary organic acid levels (gas chromatography-mass spectrometry), and (in some) gene mutation tests. RESULTS Inherited metabolic diseases were confirmed in 1,135 patients (739 males, 396 females). Median age was 12 months (1 day to 59 years). There were 28 diseases: 12 amino acid disorders (580 patients, 51.1%), with hyperphenylalaninemia (HPA) being the most common; nine organic acidemias (408 patients, 35.9%), with methylmalonic acidemia (MMA) as the most common; and seven fatty acid oxidation defects (147 patients, 13.0%), with multiple acyl-coenzyme A dehydrogenase deficiency (MADD) being the most common. Onset was mainly at 1-6 months for citrin deficiency, 0-6 months for MMA, and in newborns for ornithine transcarbamylase deficiency (OTCD). HPA was common in patients aged 1-3 years, and MADD was common in patients >18 years. CONCLUSIONS In China, HPA, citrin deficiency, MMA, and MADD are the most common inherited disorders, particularly in newborns/infants.
Collapse
Affiliation(s)
- Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim MI, Park TJ, Heo NS, Woo MA, Cho D, Lee SY, Park HG. Cell-based method utilizing fluorescent Escherichia coli auxotrophs for quantification of multiple amino acids. Anal Chem 2014; 86:2489-96. [PMID: 24475885 DOI: 10.1021/ac403429s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cell-based assay system for simultaneous quantification of the three amino acids, phenylalanine (Phe), methionine (Met), and leucine (Leu) in a single biological sample, was developed and applied in the multiplex diagnosis of three key metabolic diseases of newborn babies. The assay utilizes three Escherichia coli auxotrophs, which grow only in the presence of the corresponding target amino acids and which contain three different fluorescent reporter plasmids that produce distinguishable fluorescence signals (red, green, and cyan) in concert with cell growth. To mixtures of the three auxotrophs, immobilized on agarose gels arrayed on a well plate, is added a test sample. Following incubation, the concentrations of the three amino acids in the sample are simultaneously determined by measuring the intensities of three fluorescence signals that correspond to the reporter plasmids. The clinical utility of this assay system was demonstrated by employing it to identify metabolic diseases of newborn babies through the quantification of Phe, Met, and Leu in clinically derived dried blood spot specimens. The general strategy developed in this effort should be applicable to the design of new assay systems for the quantification of multiple amino acids derived from complex biological samples and, as such, to expand the utilization of cell-based analytical systems that replace conventional, yet laborious methods currently in use.
Collapse
Affiliation(s)
- Moon Il Kim
- Department of Chemical & Biomolecular Engineering (BK21+ Program), KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Wood SL, Brown JE. The Application of ‘Omics’ Techniques for Cancers That Metastasise to Bone: From Biological Mechanism to Biomarkers. CANCER METASTASIS - BIOLOGY AND TREATMENT 2014:125-153. [DOI: 10.1007/978-94-007-7569-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Chambers AG, Percy AJ, Yang J, Camenzind AG, Borchers CH. Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring-mass spectrometry. Mol Cell Proteomics 2013; 12:781-91. [PMID: 23221968 PMCID: PMC3591668 DOI: 10.1074/mcp.m112.022442] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/26/2012] [Indexed: 11/06/2022] Open
Abstract
Dried blood spot (DBS) sampling, coupled with multiple reaction monitoring mass spectrometry (MRM-MS), is a well-established approach for quantifying a wide range of small molecule biomarkers and drugs. This sampling procedure is simpler and less-invasive than those required for traditional plasma or serum samples enabling collection by minimally trained personnel. Many analytes are stable in the DBS format without refrigeration, which reduces the cost and logistical challenges of sample collection in remote locations. These advantages make DBS sample collection desirable for advancing personalized medicine through population-wide biomarker screening. Here we expand this technology by demonstrating the first multiplexed method for the quantitation of endogenous proteins in DBS samples. A panel of 60 abundant proteins in human blood was targeted by monitoring proteotypic tryptic peptides and their stable isotope-labeled analogs by MRM. Linear calibration curves were obtained for 40 of the 65 peptide targets demonstrating multiple proteins can be quantitatively extracted from DBS collection cards. The method was also highly reproducible with a coefficient of variation of <15% for all 40 peptides. Overall, this assay quantified 37 proteins spanning a range of more than four orders of magnitude in concentration within a single 25 min LC/MRM-MS analysis. The protein abundances of the 33 proteins quantified in matching DBS and whole blood samples showed an excellent correlation, with a slope of 0.96 and an R(2) value of 0.97. Furthermore, the measured concentrations for 80% of the proteins were stable for at least 10 days when stored at -20 °C, 4 °C and 37 °C. This work represents an important first step in evaluating the integration of DBS sampling with highly-multiplexed MRM for quantitation of endogenous proteins.
Collapse
Affiliation(s)
- Andrew G. Chambers
- From the ‡University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101, 4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Andrew J. Percy
- From the ‡University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101, 4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Juncong Yang
- From the ‡University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101, 4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Alexander G. Camenzind
- From the ‡University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101, 4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Christoph H. Borchers
- From the ‡University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101, 4464 Markham St., Victoria, BC V8Z 7X8, Canada
- §Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| |
Collapse
|
41
|
Ozben T. Expanded newborn screening and confirmatory follow-up testing for inborn errors of metabolism detected by tandem mass spectrometry. Clin Chem Lab Med 2013; 51:157-176. [DOI: 10.1515/cclm-2012-0472] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Newborn screening (NBS) of inborn errors of metabolism (IEM) is a coordinated comprehensive system consisting of education, screening, follow-up of abnormal test results, confirmatory testing, diagnosis, treatment, and evaluation of periodic outcome and efficiency. The ultimate goal of NBS and follow-up programs is to reduce morbidity and mortality from the disorders. Over the past decade, tandem mass spectrometry (MS/MS) has become a key technology in the field of NBS. It has replaced classic screening techniques of one-analysis, one-metabolite, one-disease with one analysis, many-metabolites, and many-diseases. The development of electrospray ionization (ESI), automation of sample handling and data manipulation have allowed the introduction of expanded NBS for the identification of numerous conditions on a single sample and new conditions to be added to the list of disorders being screened for using MS/MS. In the case of a screened positive result, a follow-up analytical test should be performed for confirmation of the primary result. The most common confirmatory follow-up tests are amino acids and acylcarnitine analysis in plasma and organic acid analysis in urine. NBS should be integrated with follow-up and clinical management. Recent improvements in therapy have caused some disorders to be considered as potential candidates for NBS. This review covers some of the basic theory of expanded MS/MS and follow-up confirmatory tests applied for NBS of IEM.
Collapse
Affiliation(s)
- Tomris Ozben
- Faculty of Medicine, Department of Clinical Biochemistry, Akdeniz University, 07070 , Antalya , Turkey
| |
Collapse
|
42
|
Forman J, Coyle F, Levy-Fisch J, Roberts P, Terry S, Legge M. Screening criteria: the need to deal with new developments and ethical issues in newborn metabolic screening. J Community Genet 2012; 4:59-67. [PMID: 23055099 PMCID: PMC3537969 DOI: 10.1007/s12687-012-0118-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/12/2012] [Indexed: 11/30/2022] Open
Abstract
Newborn metabolic screening is the most widespread application of screening technology and provides the most comprehensive application of genetics in health services, where the Guthrie blood spot cards allow screening for metabolic diseases in close to 100 % of all newborn babies. Despite over 40 years of use and significant benefits to well in excess of 100,000 children worldwide, there is remarkably little consensus in what conditions should be screened for and response to new advances in medicine relating to programme expansion. In this article, the international criteria for newborn metabolic screening are considered, and we propose that these criteria are poorly developed in relation to the baby, its family and society as a whole. Additionally, the ethical issues that should inform the application of screening criteria are often not developed to a level where a consensus might easily be achieved. We also consider that when family interests are factored in to the decision-making process, they have a significant influence in determining the list of diseases in the panel, with countries or states incorporating family and societal values being the most responsive. Based on our analysis, we propose that decision criteria for metabolic screening in the newborn period should be adapted to specifically include parent and family interests, community values, patients’ rights, duties of government and healthcare providers, and ethical arguments for action in the face of uncertainty.
Collapse
Affiliation(s)
- John Forman
- New Zealand Organisation for Rare Disorders (NZORD), PO Box 38-538, Wellington Mail Centre, 5045, Wellington, New Zealand,
| | | | | | | | | | | |
Collapse
|
43
|
Carroll PD, Widness JA. Nonpharmacological, blood conservation techniques for preventing neonatal anemia--effective and promising strategies for reducing transfusion. Semin Perinatol 2012; 36:232-43. [PMID: 22818543 PMCID: PMC3703659 DOI: 10.1053/j.semperi.2012.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of anemia after birth in very premature, critically ill newborn infants is a universal well-described phenomenon. Although preventing anemia in this population, along with efforts to establish optimal red blood cell (RBC) transfusion and pharmacologic therapy continue to be actively investigated, the present review focuses exclusively on nonpharmacological approaches to the prevention and treatment of neonatal anemia. We begin with an overview of topics relevant to nonpharmacological techniques. These topics include neonatal and fetoplacental hemoglobin levels and blood volumes, clinical and laboratory practices applied in critically ill neonates, and current RBC transfusion practice guidelines. This is followed by a discussion of the most effective and promising nonpharmacological blood conservation strategies and techniques. Fortunately, many of these techniques are feasible in most neonatal intensive care units. When applied together, these techniques are more effective than existing pharmacotherapies in significantly decreasing neonatal RBC transfusions. They include increasing hemoglobin endowment and circulating blood volume at birth; removing less blood for laboratory testing; and optimizing nutrition.
Collapse
Affiliation(s)
- Patrick D. Carroll
- Women and Newborns Program, Intermountain Healthcare, Division of Neonatology, Dixie Regional Medical Center, St George, UT
| | - John A. Widness
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA
| |
Collapse
|
44
|
Liquid chromatography-mass spectrometric determination of losartan and its active metabolite on dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 902:47-54. [PMID: 22770781 DOI: 10.1016/j.jchromb.2012.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 11/21/2022]
Abstract
A simple and rapid quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneous determination of losartan and its active metabolite, losartan carboxylic acid on rat dried blood spots was developed and validated as per regulatory guidelines. Losartan and its metabolite were extracted from dried blood spots using 50% aqueous methanol and separated on Waters XTerra(®) RP18 (250 mm × 4.6 mm, 5 μm) column using mobile phase composed of 40% acetonitrile and 60% aqueous ammonium acetate (10mM). The eluents were monitored using ESI tandem mass spectrometric detection with negative polarity in MRM mode using ion transitions m/z 421.2→179.0, m/z 435.3→157.0 and m/z 427.3→193.0 for losartan, losartan carboxylic acid and Irbesartan (internal standard), respectively. The method was validated over the linear range of 1-200 ng/mL and 5-1000 ng/mL with lower limits of quantification of 1.0 ng/mL and 5.0 ng/mL for losartan and losartan carboxylic acid, respectively. Inter and intra-day precision and accuracy (Bias) were below 5.96% and between -2.8 and 1.5%, respectively. The mean recoveries of the analytes from dried blood spots were between 89% and 97%. No significant carry over and matrix effects were observed. The stability of stock solution, whole blood, dried blood spot and processed samples were tested under different conditions and the results were found to be well within the acceptable limits. Additional validation parameters such as influence of hematocrit and spot volume were also evaluated and found to be well within the acceptable limits.
Collapse
|
45
|
Stove CP, Ingels ASM, De Kesel PM, Lambert WE. Dried blood spots in toxicology: from the cradle to the grave? Crit Rev Toxicol 2012; 42:230-43. [DOI: 10.3109/10408444.2011.650790] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Spáčil Z, Elliott S, Reeber SL, Gelb MH, Scott CR, Tureček F. Comparative triplex tandem mass spectrometry assays of lysosomal enzyme activities in dried blood spots using fast liquid chromatography: application to newborn screening of Pompe, Fabry, and Hurler diseases. Anal Chem 2011; 83:4822-8. [PMID: 21548611 DOI: 10.1021/ac200417u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a comparative study of triplex tandem mass spectrometry (MS/MS) based assays of lysosomal enzymes in dried blood spots for the early detection of Pompe, Fabry, and Hurler diseases in newborns. Four methods have been evaluated that differed in sample handling and the equipment used. A newly developed method uses assay quenching with acetonitrile to precipitate blood proteins followed by analysis on an LC-electrospray/MS/MS system capable of multiple consecutive sample injections on two parallel chromatographic columns. This method requires 1.5 min per a triplex analysis of enzyme products and internal standards, which matches the throughput of the previously reported flow injection method. LC separation reduces matrix effects and allows for more facile sample workup. The new LC-based method showed figures of merit that were superior to those of the currently used method based on liquid-liquid extraction into ethyl acetate and flow injection into the mass spectrometer. The other methods we investigated for comprehensive comparison involved liquid-liquid extraction into ethyl acetate followed by LC-ESI-MS/MS and acetonitrile quenching followed by direct flow injection. Both methods using acetonitrile quenching were found to be robust and provide good quality data while requiring fewer liquid transfer steps and less disposable material and labor than did the extraction methods. The individual merits of the new methods are discussed to present an evaluated alternative approach to high-throughput analysis in newborn screening laboratories.
Collapse
Affiliation(s)
- Zdeněk Spáčil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
47
|
Wolfe BJ, Blanchard S, Sadilek M, Scott CR, Turecek F, Gelb MH. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis II (Hunter Syndrome). Anal Chem 2010; 83:1152-6. [PMID: 21192662 DOI: 10.1021/ac102777s] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a tandem mass spectrometry based assay of iduronate-2-sulfatase (IdS) activity for the neonatal detection of mucopolysaccharidosis II (MPS-II, Hunter Syndrome). The assay uses a newly designed synthetic substrate (IdS-S) consisting of α-L-iduronate-2-sulfate, which is glycosidically conjugated to a coumarin and a linker containing a tert-butyloxycarbamido group. A short synthesis of the substrate has been developed that has the potential of being scaled to multigram quantities. Sulfate hydrolysis of IdS-S by IdS found within a 3 mm dried blood spot specifically produces a nonsulfated product (IdS-P) which is detected by electrospray tandem mass spectrometry and quantified using a deuterium-labeled internal standard, both carried out in positive ion mode. Analysis of DBS from 75 random human newborns showed IdS activities in the range of 4.8-16.2 (mean 9.1) μmol/(h L of blood), which were clearly distinguished from the activities measured for 14 MPS-II patients at 0.17-0.52 (mean 0.29) μmol/(h L of blood). The assay shows low blank activity, 0.15 ± 0.03 μmol/(h L of blood). The within-assay coefficient of variation (CV) was 3.1% while the interassay CV was 15%.
Collapse
Affiliation(s)
- Brian J Wolfe
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
48
|
Davis VW, Bathe OF, Schiller DE, Slupsky CM, Sawyer MB. Metabolomics and surgical oncology: Potential role for small molecule biomarkers. J Surg Oncol 2010; 103:451-9. [PMID: 21400531 DOI: 10.1002/jso.21831] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/17/2010] [Indexed: 12/15/2022]
Abstract
Metabolomics, the newest of the "omics" sciences, has brought much excitement to the field of oncology as a potential new translational tool capable of bringing the molecular world of cancer care to the bedside. While still early in its development, metabolomics could alter the scope and role of surgery in the multidisciplinary treatment of cancer. This review examines potential roles of metabolomics in areas of early cancer detection, personalized therapeutics and tumorigenesis.
Collapse
Affiliation(s)
- Vanessa W Davis
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
49
|
Laryea MD, Herebian D, Meissner T, Mayatepek E. Simultaneous LC-MS/MS determination of phenylbutyrate, phenylacetate benzoate and their corresponding metabolites phenylacetylglutamine and hippurate in blood and urine. J Inherit Metab Dis 2010; 33 Suppl 3:S321-8. [PMID: 20694517 DOI: 10.1007/s10545-010-9172-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 06/15/2010] [Accepted: 07/07/2010] [Indexed: 12/31/2022]
Abstract
Inborn errors of urea metabolism result in hyperammonemia. Treatment of urea cycle disorders can effectively lower plasma ammonium levels and results in survival in the majority of patients. Available medications for treating urea cycle disorders include sodium benzoate (BA), sodium phenylacetate (PAA), and sodium phenylbutyrate (PBA) and are given to provide alternate routes for disposition of waste nitrogen excretion. In this study, we develop and validate a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of benzoic acid, phenylacetic acid, phenylbutyric acid, phenylacetylglutamine, and hippuric acid in plasma and urine from children with inborn errors of urea synthesis. Plasma extracts and diluted urine samples were injected on a reverse-phase column and identified and quantified by selected reaction monitoring (SRM) in negative ion mode. Deuterated analogues served as internal standards. Analysis time was 7 min. Assay precision, accuracy, and linearity and sample stability were determined using enriched samples. Quantification limits of the method were 100 ng/ml (0.3-0.8 μmol/L) for all analytes, and recoveries were >90%. Inter- and intraday relative standard deviations were <10%. Our newly developed LC-MS/MS represents a robust, sensitive, and rapid method that allows simultaneous determination of the five compounds in plasma and urine.
Collapse
Affiliation(s)
- Maurice D Laryea
- Department of General Pediatrics, University Children's Hospital, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
50
|
Savage WJ, Everett AD. Biomarkers in pediatrics: Children as biomarker orphans. Proteomics Clin Appl 2010; 4:915-21. [DOI: 10.1002/prca.201000062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|