1
|
West-Livingston L, Lim JW, Lee SJ. Translational tissue-engineered vascular grafts: From bench to bedside. Biomaterials 2023; 302:122322. [PMID: 37713761 DOI: 10.1016/j.biomaterials.2023.122322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Cardiovascular disease is a primary cause of mortality worldwide, and patients often require bypass surgery that utilizes autologous vessels as conduits. However, the limited availability of suitable vessels and the risk of failure and complications have driven the need for alternative solutions. Tissue-engineered vascular grafts (TEVGs) offer a promising solution to these challenges. TEVGs are artificial vascular grafts made of biomaterials and/or vascular cells that can mimic the structure and function of natural blood vessels. The ideal TEVG should possess biocompatibility, biomechanical mechanical properties, and durability for long-term success in vivo. Achieving these characteristics requires a multi-disciplinary approach involving material science, engineering, biology, and clinical translation. Recent advancements in scaffold fabrication have led to the development of TEVGs with improved functional and biomechanical properties. Innovative techniques such as electrospinning, 3D bioprinting, and multi-part microfluidic channel systems have allowed the creation of intricate and customized tubular scaffolds. Nevertheless, multiple obstacles must be overcome to apply these innovations effectively in clinical practice, including the need for standardized preclinical models and cost-effective and scalable manufacturing methods. This review highlights the fundamental approaches required to successfully fabricate functional vascular grafts and the necessary translational methodologies to advance their use in clinical practice.
Collapse
Affiliation(s)
- Lauren West-Livingston
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Department of Vascular and Endovascular Surgery, Duke University, Durham, NC, 27712, USA
| | - Jae Woong Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Department of Thoracic and Cardiovascular Surgery, Soonchunhyang University Hospital, Bucheon-Si, Gyeonggi-do, 420-767, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
2
|
Bioaffinity-based surface immobilization of antibodies to capture endothelial colony-forming cells. PLoS One 2022; 17:e0269316. [PMID: 36040884 PMCID: PMC9426933 DOI: 10.1371/journal.pone.0269316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
Maximizing the re-endothelialization of vascular implants such as prostheses or stents has the potential to significantly improve their long-term performance. Endothelial progenitor cell capture stents with surface-immobilized antibodies show significantly improved endothelialization in the clinic. However, most current antibody-based stent surface modification strategies rely on antibody adsorption or direct conjugation via amino or carboxyl groups which leads to poor control over antibody surface concentration and/or molecular orientation, and ultimately bioavailability for cell capture. Here, we assess the utility of a bioaffinity-based surface modification strategy to immobilize antibodies targeting endothelial cell surface antigens. A cysteine-tagged truncated protein G polypeptide containing three Fc-binding domains was conjugated onto aminated polystyrene substrates via a bi-functional linking arm, followed by antibody immobilization. Different IgG antibodies were successfully immobilized on the protein G-modified surfaces. Covalent grafting of the protein G polypeptide was more effective than surface adsorption in immobilizing antibodies at high density based on fluorophore-labeled secondary antibody detection, as well as endothelial colony-forming cell capture through anti-CD144 antibodies. This work presents a potential avenue for enhancing the performance of cell capture strategies by using covalent grafting of protein G polypeptides to immobilize IgG antibodies.
Collapse
|
3
|
Li Y, Cui W, Song B, Ye X, Li Z, Lu C. Autophagy-Sirtuin1(SIRT1) Alleviated the Coronary Atherosclerosis (AS)in Mice through Regulating the Proliferation and Migration of Endothelial Progenitor Cells (EPCs) via wnt/β-catenin/GSK3β Signaling Pathway. J Nutr Health Aging 2022; 26:297-306. [PMID: 35297474 DOI: 10.1007/s12603-022-1750-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE SIRT1 was associated with AS risk and EPCs were reported to participate in the endothelial repair in Coronary Atherosclerosis (CAS). In this study, we explored the role of SIRT1 in AS mice and also its modulation in EPCs. METHODS AND MATERIALS ApoE-/-mice were fed on high-fat and high-glucose diet to establish the AS animal model with the normally-raised C57BL/6 mice as a control group. SIRT1 activator, SRT 2104 was injected intravenously into 5 ApoE-/-mice and its inhibitor Nicotinamide was injected in tail in another 5 ApoE-/-mice. Weight changes were recorded. Blood samples were taken from posterior orbital venous plexus and were detected by automatic biochemical analyzer. HE staining displayed the pathological conditions while Immunohistochemistry (IHC) evaluated the CD34+/VEGFR2+ relative density in the aorta tissues. EPCs were isolated from bone marrow and verified using immunofluorescence staining (IFS). The modulatory mechanism of SIRT1 in EPCs were studied by using RT-PCR, MTT, Western Blot and colony formation, scratch methods. RESULTS SIRT1 activator negatively regulated the weight and TC, TG and LDL levels, alleviated the lesion conditions and decreased the CD34+/VEGFR2+ density compared to the AS control. In vitro, SIRT1 activator promoted the proliferation and migration of EPCs and activated wnt/β-catenin/GSK3β signaling pathway. SIRT1 activator also inhibited the autophagy biomarkers ATG1 and LC3II. Furthermore, inhibitor of autophagy promoted SIRT1 expression and induced EPC proliferation, migration and activated wnt/β-catenin/GSK3β pathway. The suppression of the wnt/β-catenin/GSK3β pathway inhibited SIRT1 expression in EPCs, attenuated the proliferation and migration and promoted autophagy of EPCs. CONCLUSION SIRT1 activation might be protective in AS mice through autophagy inhibition in EPCs via wnt/β-catenin/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Y Li
- Chengzhi Lu, Department of Cardiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300110, China, ,
| | | | | | | | | | | |
Collapse
|
4
|
Zeng Y, Xiong Y, Yang T, Wang Y, Zeng J, Zhou S, Luo Y, Li L. Icariin and its metabolites as potential protective phytochemicals against cardiovascular disease: From effects to molecular mechanisms. Biomed Pharmacother 2022; 147:112642. [DOI: 10.1016/j.biopha.2022.112642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
|
5
|
Tsukada J, Mela P, Jinzaki M, Tsukada H, Schmitz-Rode T, Vogt F. Development of In Vitro Endothelialised Stents - Review. Stem Cell Rev Rep 2021; 18:179-197. [PMID: 34403073 DOI: 10.1007/s12015-021-10238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Endovascular treatment is prevalent as a primary treatment for coronary and peripheral arterial diseases. Although the introduction of drug-eluting stents (DES) dramatically reduced the risk of in-stent restenosis, stent thrombosis persists as an issue. Notwithstanding improvements in newer generation DES, they are yet to address the urgent clinical need to abolish the late stent complications that result from in-stent restenosis and are associated with late thrombus formation. These often lead to acute coronary syndromes with high mortality in coronary artery disease and acute limb ischemia with a high risk of limb amputation in peripheral arterial disease. Recently, a significant amount of research has focused on alternative solutions to improve stent biocompatibility by using tissue engineering. There are two types of tissue engineering endothelialisation methods: in vitro and in vivo. To date, commercially available in vivo endothelialised stents have failed to demonstrate antithrombotic or anti-stenosis efficacy in clinical trials. In contrast, the in vitro endothelialisation methods exhibit the advantage of monitoring cell type and growth prior to implantation, enabling better quality control. The present review discusses tissue-engineered candidate stents constructed by distinct in vitro endothelialisation approaches, with a particular focus on fabrication processes, including cell source selection, stent material composition, stent surface modifications, efficacy and safety evidence from in vitro and in vivo studies, and future directions.
Collapse
Affiliation(s)
- Jitsuro Tsukada
- Department of Diagnostic Radiology, Nihon University School of Medicine, 30-1, Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan. .,Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - P Mela
- Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstr. 15, Garching, Munich, 85748, Germany
| | - M Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - H Tsukada
- Department of Surgery II, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - T Schmitz-Rode
- AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - F Vogt
- Department of Cardiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany
| |
Collapse
|
6
|
Endothelial progenitor cells as the target for cardiovascular disease prediction, personalized prevention, and treatments: progressing beyond the state-of-the-art. EPMA J 2020; 11:629-643. [PMID: 33240451 DOI: 10.1007/s13167-020-00223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Stimulated by the leading mortalities of cardiovascular diseases (CVDs), various types of cardiovascular biomaterials have been widely investigated in the past few decades. Although great therapeutic effects can be achieved by bare metal stents (BMS) and drug-eluting stents (DES) within months or years, the long-term complications such as late thrombosis and restenosis have limited their further applications. It is well accepted that rapid endothelialization is a promising approach to eliminate these complications. Convincing evidence has shown that endothelial progenitor cells (EPCs) could be mobilized into the damaged vascular sites systemically and achieve endothelial repair in situ, which significantly contributes to the re-endothelialization process. Therefore, how to effectively capture EPCs via specific molecules immobilized on biomaterials is an important point to achieve rapid endothelialization. Further, in the context of predictive, preventive, personalized medicine (PPPM), the abnormal number alteration of EPCs in circulating blood and certain inflammation responses can also serve as important indicators for predicting and preventing early cardiovascular disease. In this contribution, we mainly focused on the following sections: the definition and classification of EPCs, the mechanisms of EPCs in treating CVDs, the potential diagnostic role of EPCs in predicting CVDs, as well as the main strategies for cardiovascular biomaterials to capture EPCs.
Collapse
|
7
|
West-Livingston L, Ju YM, Lee H, Geary RL, Atala A, Lee SJ. Antibody-Conjugated Electrospun Vascular Scaffolds to Enhance In Situ Endothelialization. ACS APPLIED BIO MATERIALS 2020; 3:4486-4494. [PMID: 35025447 DOI: 10.1021/acsabm.0c00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-engineered vascular grafts (TEVGs) are promising alternatives to small-diameter prosthetic grafts. Previous methods of seeding tubular scaffolds with autologous vascular cells have been successful; however, these methods require significant preparation time. Endothelial cell (EC) growth on the luminal surface of vascular scaffolds may be critical for the integration of a TEVG to the host environment. An alternative approach for TEVGs includes the in situ endothelialization of acellular scaffolds by capturing circulating endothelial progenitor cells (EPCs) and ECs from the bloodstream through the biofunctionalization of the vascular scaffolds. In this study, fibrous scaffolds were electrospun with a 1:1 poly(ε-caprolactone) (PCL)/collagen blend solution. The electrospun fibrous scaffolds were surface-modified by immobilizing EC-specific antibodies: CD31, vascular endothelial cadherin (VE-CAD), vascular endothelial growth factor receptor 2 (VEGFR2), and von Willebrand factor (vWF). Antibodies most efficacious at capturing ECs were then paired to examine their potential synergistic cell-capturing capabilities. The study demonstrated that vascular scaffolds bioconjugated with dual antibodies demonstrated synergistic capture efficacy compared to bioconjugation with a single antibody. The capture of circulating EPCs and ECs can be optimized with bioconjugation of one or more antibodies on the luminal surface of TEVGs.
Collapse
Affiliation(s)
- Lauren West-Livingston
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Hyeongjin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Randolph L Geary
- Department of Vascular and Endovascular Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
8
|
Badv M, Alonso-Cantu C, Shakeri A, Hosseinidoust Z, Weitz JI, Didar TF. Biofunctional Lubricant-Infused Vascular Grafts Functionalized with Silanized Bio-Inks Suppress Thrombin Generation and Promote Endothelialization. ACS Biomater Sci Eng 2019; 5:6485-6496. [DOI: 10.1021/acsbiomaterials.9b01062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Jeffrey I. Weitz
- Thrombosis & Atherosclerosis Research Institute (TaARI), 237 Barton Street East, Hamilton, Ontario L8L 2X2, Canada
| | | |
Collapse
|
9
|
Badv M, Imani SM, Weitz JI, Didar TF. Lubricant-Infused Surfaces with Built-In Functional Biomolecules Exhibit Simultaneous Repellency and Tunable Cell Adhesion. ACS NANO 2018; 12:10890-10902. [PMID: 30352507 DOI: 10.1021/acsnano.8b03938] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lubricant-infused omniphobic surfaces have exhibited outstanding effectiveness in inhibiting nonspecific adhesion and attenuating superimposed clot formation compared with other coated surfaces. However, such surfaces blindly thwart adhesion, which is troublesome for applications that rely on targeted adhesion. Here we introduce a new class of lubricant-infused surfaces that offer tunable bioactivity together with omniphobic properties by integrating biofunctional domains into the lubricant-infused layer. These novel surfaces promote targeted binding of desired species while simultaneously preventing nonspecific adhesion. To develop these surfaces, mixed self-assembled monolayers (SAMs) of aminosilanes and fluorosilanes were generated. Aminosilanes were utilized as coupling molecules for immobilizing capture ligands, and nonspecific adhesion of cells and proteins was prevented by infiltrating the fluorosilane molecules with a thin layer of a biocompatible fluorocarbon-based lubricant, thus generating biofunctional lubricant-infused surfaces. This method yields surfaces that (a) exhibit highly tunable binding of anti-CD34 and anti-CD144 antibodies and adhesion of endothelial cells, while repelling nonspecific adhesion of undesirable proteins and cells not only in buffer but also in human plasma or human whole blood, and (b) attenuate blood clot formation. Therefore, this straightforward and simple method creates biofunctional, nonsticky surfaces that can be used to optimize the performance of devices such as biomedical implants, extracorporeal circuits, and biosensors.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| | - Sara M Imani
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Thrombosis & Atherosclerosis Research Institute (TaARI) , Hamilton , Ontario L8S 4L7 , Canada
| | - Tohid F Didar
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Department of Mechanical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Institute for Infectious Disease Research (IIDR) , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| |
Collapse
|
10
|
Bekmurzayeva A, Duncanson WJ, Azevedo HS, Kanayeva D. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1073-1089. [PMID: 30274039 DOI: 10.1016/j.msec.2018.08.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Stainless steel (SS) has been widely used as a material for fabricating cardiovascular stents/valves, orthopedic prosthesis, and other devices and implants used in biomedicine due to its malleability and resistance to corrosion and fatigue. Despite its good mechanical properties, SS (as other metals) lacks biofunctionality. To be successfully used as a biomaterial, SS must be made resistant to the biological environment by increasing its anti-fouling properties, preventing biofilm formation (passive surface modification), and imparting functionality for eluting a specific drug or capturing selected cells (active surface modification); these features depend on the final application. Various physico-chemical techniques, including plasma vapor deposition, electrochemical treatment, and attachment of different linkers that add functional groups, are used to obtain SS with increased corrosion resistance, improved osseointegration capabilities, added hemocompatibility, and enhanced antibacterial properties. Existing literature on this topic is extensive and has not been covered in an integrated way in previous reviews. This review aims to fill this gap, by surveying the literature on SS surface modification methods, as well as modification routes tailored for specific biomedical applications. STATEMENT OF SIGNIFICANCE Stainless steel (SS) is widely used in many biomedical applications including bone implants and cardiovascular stents due to its good mechanical properties, biocompatibility and low price. Surface modification allows improving its characteristics without compromising its important bulk properties. SS with improved blood compatibility (blood contacting implants), enhanced ability to resist bacterial infection (long-term devices), better integration with a tissue (bone implants) are examples of successful SS surface modifications. Existing literature on this topic is extensive and has not been covered in an integrated way in previous reviews. This review paper aims to fill this gap, by surveying the literature on SS surface modification methods, as well as to provide guidance for selecting appropriate modification routes tailored for specific biomedical applications.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- Engineering and Technology Program, Nazarbayev University, Astana 010000, Kazakhstan; National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Wynter J Duncanson
- School of Engineering, Nazarbayev University, Astana 010000, Kazakhstan; College of Engineering, Boston University, Boston, MA 02215, USA
| | - Helena S Azevedo
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Damira Kanayeva
- School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
11
|
Deng J, Yuan S, Li X, Wang K, Xie L, Li N, Wang J, Huang N. Heparin/DNA aptamer co-assembled multifunctional catecholamine coating for EPC capture and improved hemocompatibility of vascular devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 79:305-314. [PMID: 28629023 DOI: 10.1016/j.msec.2017.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Good hemocompatibility and rapid endothelialization are two key factors in the success of stent interventional therapy. In this study, aptamers with the ability to capture endothelial progenitors and anticoagulant molecular heparin were successfully immobilized on the surface of dopamine/polyethylenimine (PDA/PEI) copolymer coating via electrostatic interaction. The results of X-ray spectroscopy (XPS), water contact angle (WCA), and immunofluorescence staining tests confirmed the successful introduction of heparin and aptamers. Platelet adhesion and whole blood experiments demonstrated that the hemocompatibility of the co-modified surface was improved. Dynamic endothelial progenitor cell (EPC) capture experiments showed that the modified surfaces could effectively capture the endothelial progenitor in dynamic conditions. More importantly, ex vivo experiments revealed that the modified surfaces could regulate the distribution of CD34/vWF-positive cells on stent surfaces, and this was beneficial for the endothelialization of vascular stents. These results suggested that heparin and aptamer co-modified stents could capture EPCs and promote endothelialization. This surface co-modification strategy has great potential for enhancing stent development.
Collapse
Affiliation(s)
- Jinchuan Deng
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuheng Yuan
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Li
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Kebing Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lingxia Xie
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Li
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jin Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
12
|
Tefft BJ, Uthamaraj S, Harburn JJ, Hlinomaz O, Lerman A, Dragomir-Daescu D, Sandhu GS. Magnetizable stent-grafts enable endothelial cell capture. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2017; 427:100-104. [PMID: 28286359 PMCID: PMC5341609 DOI: 10.1016/j.jmmm.2016.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.
Collapse
Affiliation(s)
- Brandon J. Tefft
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN., USA
| | | | - J. Jonathan Harburn
- School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees, UK
| | - Ota Hlinomaz
- Department of Cardioangiology, St. Anne’s University Hospital, Brno, Czech Republic
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN., USA
| | - Dan Dragomir-Daescu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN., USA
| | - Gurpreet S. Sandhu
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN., USA
- Corresponding Author: phone: (507) 255-2440 fax: (507)
255-2550
| |
Collapse
|