1
|
Lee H, Park JH, Shin JH, Roh J, Park HS. Muscle-to-action mapping for intuitive training of muscle synergies in post-stroke upper-limb rehabilitation. J Neuroeng Rehabil 2025; 22:99. [PMID: 40296104 PMCID: PMC12039200 DOI: 10.1186/s12984-025-01630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Effective motor task execution relies on precise muscle coordination, which is often disrupted after a stroke, leading to impaired motor functions. Post-stroke, alterations in intermuscular coordination, including abnormal coupling of shoulder abductor muscles, are commonly observed and contribute to these impairments. Traditional rehabilitation often overlooks this complex intermuscular coordination, and there is a need for intuitive strategies to modify abnormal muscle synergies. OBJECTIVE This study introduced a novel "muscle-to-action mapping" approach to alter activation profiles of stroke affected muscle synergies. Muscle-to-action mapping trains complex muscle synergies by mapping them to intuitive motions or force directions. By mimicking target actions, patients can achieve desired muscle activation patterns. The feasibility of this approach for correcting abnormal intermuscular coordination and improving force control during reaching was tested in stroke survivors. METHODS A force tracking training system using muscle-to-action mapping was developed to modify abnormal synergy activation profiles during isokinetic reaching tasks. The system guided muscle activation by predicting the direction of endpoint force needed to activate specific muscle synergies, deviating from habitual patterns. The system's effectiveness was evaluated in eleven chronic stroke survivors, measuring changes in muscle synergies, endpoint force control, and clinical assessment scores. RESULTS The intervention significantly enhanced targeted muscle synergy activations and endpoint force control, demonstrating the training's ability to induce desired muscle synergy activation profiles through muscle-to-action mapping. The overall structure of muscle synergies remained mostly unchanged post-training, highlighting the potential to modify activation profiles without altering synergy vectors. Functional improvements were reflected in the Fugl-Meyer Assessment for the Upper Extremity and Wolf Motor Function Test scores, which increased by 3.36 and 6.45 points, respectively. CONCLUSION This study validates muscle-to-action mapping for training muscle synergy activation profiles in stroke survivors. Using a biomechanical model to generate endpoint forces, this method effectively altered synergy activation profiles and improved force control during reaching tasks, leading to clinical improvements. These findings indicate that muscle-to-action mapping could be a valuable addition to stroke rehabilitation, offering an intuitive method for enhancing intermuscular coordination and motor recovery. TRIAL REGISTRATION Registered in Clinical Research Information System of Korea National Institute of Health (KCT0005803).
Collapse
Affiliation(s)
- Hangil Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jeong-Ho Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Joon-Ho Shin
- Department of Neurorehabilitation, National Rehabilitation Center, Seoul, 01022, South Korea
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77004, USA
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
2
|
Lee J, Seamon BA, Lee RK, Kautz SA, Neptune RR, Sulzer JS. Post-stroke Stiff-Knee gait: are there different types or different severity levels? J Neuroeng Rehabil 2025; 22:36. [PMID: 40001225 PMCID: PMC11863409 DOI: 10.1186/s12984-025-01582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Stiff-Knee gait (SKG) commonly occurs in individuals after stroke, loosely defined as reduced peak knee flexion angle during swing. The causes of SKG are multifaceted and debated. Further, clinical interventions have not been consistently effective, possibly resulting from multiple undiagnosed subtypes of SKG. Thus, our primary goal of this study is to explore the existence of potential subtypes associated with different levels of motor control complexity. We used retrospective kinematics, kinetics and muscle activity from 50 stroke survivors and 15 healthy, age-matched controls during treadmill walking. We used a time-series kernel k-means cluster analysis based on compensatory frontal plane kinematics associated with SKG to separate participants into three groups, Cluster A (hip hiking, lowest knee flexion, highest propulsion asymmetry, lowest gait speed), Cluster B (hip hiking and hip abduction, moderate knee flexion, middle gait speed) and Cluster C (highest knee flexion, highest gait speed). The highest proportion of individuals with SKG as diagnosed by a clinician were in Cluster A, but with a substantial proportion in Cluster B, indicating that these two clusters can be considered subtypes of SKG. Despite differences in kinematics and kinetics, we did not observe fundamental differences in underlying motor control between clusters as determined by non-negative matrix factorization of measured muscle activations. We conclude that the differences between clusters were most likely attributed to the severity of gait impairment, as reflected by slower gait speed and propulsion asymmetry, rather than being a different type of SKG.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Walker Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton St, Austin, TX, 78712, USA
| | - Bryant A Seamon
- Department of Rehabilitation Sciences, College of Health Professions, The Medical University of South Carolina, 151 Rutledge Ave Building B, Charleston, SC, 29425, USA
| | - Robert K Lee
- St. David's Medical Center, 3000 N Interstate Hwy 35 #660, Austin, TX, 78705, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, College of Health Professions, The Medical University of South Carolina, 77 President Street, Charleston, SC, 29425, USA
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton St, Austin, TX, 78712, USA
| | - James S Sulzer
- Department of Physical Medicine and Rehabilitation, The MetroHealth System, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA.
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Cleland BT, Giffhorn M, Jayaraman A, Madhavan S. Understanding corticomotor mechanisms for activation of non-target muscles during unilateral isometric contractions of leg muscles after stroke. Int J Neurosci 2024; 134:1332-1341. [PMID: 37750212 PMCID: PMC10963339 DOI: 10.1080/00207454.2023.2263817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Muscle activation often occurs in muscles ipsilateral to a voluntarily activated muscle and to a greater extent after stroke. In this study, we measured muscle activation in non-target, ipsilateral leg muscles and used transcranial magnetic stimulation (TMS) to provide insight into whether corticomotor pathways contribute to involuntary activation. MATERIALS AND METHODS Individuals with stroke performed unilateral isometric ankle dorsiflexion, ankle plantarflexion, knee extension, and knee flexion. To quantify involuntary muscle activation in non-target muscles, muscle activation was measured during contractions from the ipsilateral tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), and biceps femoris (BF) and normalized to resting muscle activity. To provide insight into mechanisms of involuntary non-target muscle activation, TMS was applied to the contralateral hemisphere, and motor evoked potentials (MEPs) were recorded. RESULTS We found significant muscle activation in nearly every non-target muscle during isometric unilateral contractions. MEPs were frequently observed in non-target muscles, but greater non-target MEP amplitude was not associated with greater non-target muscle activation. CONCLUSIONS Our results suggest that non-target muscle activation occurs frequently in individuals with chronic stroke. The lack of association between non-target TMS responses and non-target muscle activation suggests that non-target muscle activation may have a subcortical or spinal origin. Non-target muscle activation has important clinical implications because it may impair torque production, out-of-synergy movement, and muscle activation timing.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois Chicago, Chicago, IL, USA
| | - Matt Giffhorn
- Max Nader Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Arun Jayaraman
- Max Nader Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Ting LH, Gick B, Kesar TM, Xu J. Ethnokinesiology: towards a neuromechanical understanding of cultural differences in movement. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230485. [PMID: 39155720 PMCID: PMC11529631 DOI: 10.1098/rstb.2023.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 08/20/2024] Open
Abstract
Each individual's movements are sculpted by constant interactions between sensorimotor and sociocultural factors. A theoretical framework grounded in motor control mechanisms articulating how sociocultural and biological signals converge to shape movement is currently missing. Here, we propose a framework for the emerging field of ethnokinesiology aiming to provide a conceptual space and vocabulary to help bring together researchers at this intersection. We offer a first-level schema for generating and testing hypotheses about cultural differences in movement to bridge gaps between the rich observations of cross-cultural movement variations and neurophysiological and biomechanical accounts of movement. We explicitly dissociate two interacting feedback loops that determine culturally relevant movement: one governing sensorimotor tasks regulated by neural signals internal to the body, the other governing ecological tasks generated through actions in the environment producing ecological consequences. A key idea is the emergence of individual-specific and culturally influenced motor concepts in the nervous system, low-dimensional functional mappings between sensorimotor and ecological task spaces. Motor accents arise from perceived differences in motor concept topologies across cultural contexts. We apply the framework to three examples: speech, gait and grasp. Finally, we discuss how ethnokinesiological studies may inform personalized motor skill training and rehabilitation, and challenges moving forward.This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
- Lena H. Ting
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Georgia Institute of Technology, Atlanta, GA30332, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA30322, USA
| | - Bryan Gick
- Department of Linguistics, The University British Columbia, Vancouver, BCV6T 1Z4, Canada
- Haskins Laboratories, Yale University, New Haven, CT06520, USA
| | - Trisha M. Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA30322, USA
| | - Jing Xu
- Department of Kinesiology, The University of Georgia, Athens, GA30602, USA
| |
Collapse
|
5
|
Kurauchi K, Kurumadani H, Date S, Sunagawa T. Hand muscle synergy in chopstick use: effect of object size and weight. HAND SURGERY & REHABILITATION 2024; 43:101754. [PMID: 39069004 DOI: 10.1016/j.hansur.2024.101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
This study explains the role of muscle coordination in chopstick manipulation and investigates the effects of object width and weight on intrinsic and extrinsic hand muscle activity when picking up objects with chopsticks. Surface electromyography was used to measure the activity of the intrinsic and extrinsic hand muscles when picking up objects of varying widths and weights using chopsticks. The results revealed coordinated muscle activity patterns in the intrinsic and extrinsic hand muscles and coordination between them during chopstick manipulation. Object widths varying between 1 and 3 cm did not significantly affect muscle activity; however, object weight influenced muscle activity during both chopstick closing and object grasping, with greater muscle activity in the 40 g condition than in the 10 g condition. Intrinsic hand muscles were found to be involved in object grasping, regardless of object weight. These findings suggest that object weight should be considered when practicing picking up objects with chopsticks in scenarios resembling daily dining, to prevent excessive muscle activity during rehabilitation.
Collapse
Affiliation(s)
- Kazuya Kurauchi
- Laboratory at Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Hiroshi Kurumadani
- Laboratory at Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shota Date
- Laboratory at Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toru Sunagawa
- Laboratory at Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Fujita K, Tsushima Y, Hayashi K, Kawabata K, Ogawa T, Hori H, Kobayashi Y. Altered muscle synergy structure in patients with poststroke stiff knee gait. Sci Rep 2024; 14:20295. [PMID: 39217201 PMCID: PMC11365932 DOI: 10.1038/s41598-024-71083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Stiff knee gait (SKG) occurrence after a stroke is associated with various abnormal muscle activities; however, the interactions among these muscles are unclear. This study aimed to elucidate the muscle synergy characteristics during walking in patients with SKG after a stroke. This cross-sectional study included 20 patients with poststroke SKG (SKG group), 16 patients without poststroke SKG (non-SKG group), and 15 healthy adults (control group). Participants walked a 10-m distance at a comfortable speed, and electromyographic data were recorded from six lower-limb muscles. Non-negative matrix factorization was employed to derive time-varying activity (C), muscle weights (W), and the percentage of total variance accounted for (tVAF) for muscle synergies. The SKG group showed a higher tVAF than the control group. The initial stance module (including knee extensors) showed increased activity during the swing phase. The initial swing module (including hip flexors and ankle dorsiflexors) exhibited a higher activity during the single-support phase but a lower activity during the swing phase. The synergy structure in patients with SKG after stroke was simplified, with specific abnormalities in synergy activities. SKG may arise from several synergy alterations involving multiple muscles, indicating that approaches focused on controlling individual muscle activities are unsuitable.
Collapse
Affiliation(s)
- Kazuki Fujita
- Graduate School of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui, 910-3190, Japan.
| | - Yuichi Tsushima
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui, Japan
| | - Koji Hayashi
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Kaori Kawabata
- Graduate School of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui, 910-3190, Japan
| | - Tomoki Ogawa
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui, Japan
| | - Hideaki Hori
- Graduate School of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui, 910-3190, Japan
| | - Yasutaka Kobayashi
- Graduate School of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui, 910-3190, Japan
| |
Collapse
|
7
|
Chujo Y, Mori K, Wakida M, Mano N, Kuwabara T, Tanaka H, Kubo T, Hase K. Diverse Plantarflexor Module Characteristics Influence Immediate Effects of Plastic Ankle-Foot Orthosis on Gait Performance in Patients With Stroke: A Cross-sectional Study. Arch Phys Med Rehabil 2024; 105:1322-1329. [PMID: 38458374 DOI: 10.1016/j.apmr.2024.02.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/21/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE To investigate the immediate effects of plastic ankle-foot orthosis (AFO) on locomotor performance in patients with stroke and determine how such effects might undergo alteration when distinct plantarflexor (PF) module subtypes are considered. DESIGN Cross-sectional study. SETTING Two university hospitals. PARTICIPANTS Fifty-two patients with stroke and 21 of those without stroke (N=73). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Motor modules were identified through non-negative matrix factorization, and participants were classified into 3 groups: independent-normal-timing, independent-altered-timing, and merged PF modules. To assess the effects of the AFO, gait measurements reflecting locomotor performance were obtained with and without the presence of the plastic AFO for each group. RESULTS The independent-altered-timing group had increased paretic propulsion, greater non-paretic step length, and faster walking speed after the administration of the plastic AFO; however, these significant changes were not observed in the independent-normal-timing and merged PF module groups. Notably, patients in the independent-normal-timing and merged PF module groups exhibited longer paretic stance times. CONCLUSION This study suggests that the immediate effects of plastic AFO depend on the PF module subtype. These findings can potentially guide clinical decision-making regarding AFO selection for stroke rehabilitation in patients with diverse gait control characteristics.
Collapse
Affiliation(s)
- Yuta Chujo
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan; Faculty of Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan.
| | - Kimihiko Mori
- Faculty of Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masanori Wakida
- Faculty of Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan
| | - Naoto Mano
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan; Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, Hirakata, Osaka, Japan
| | - Takayuki Kuwabara
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan; Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, Hirakata, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan; Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, Hirakata, Osaka, Japan
| | - Takanari Kubo
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan; Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Kimitaka Hase
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
8
|
Rabbi MF, Davico G, Lloyd DG, Carty CP, Diamond LE, Pizzolato C. Muscle synergy-informed neuromusculoskeletal modelling to estimate knee contact forces in children with cerebral palsy. Biomech Model Mechanobiol 2024; 23:1077-1090. [PMID: 38459157 PMCID: PMC11101562 DOI: 10.1007/s10237-024-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Cerebral palsy (CP) includes a group of neurological conditions caused by damage to the developing brain, resulting in maladaptive alterations of muscle coordination and movement. Estimates of joint moments and contact forces during locomotion are important to establish the trajectory of disease progression and plan appropriate surgical interventions in children with CP. Joint moments and contact forces can be estimated using electromyogram (EMG)-informed neuromusculoskeletal models, but a reduced number of EMG sensors would facilitate translation of these computational methods to clinics. This study developed and evaluated a muscle synergy-informed neuromusculoskeletal modelling approach using EMG recordings from three to four muscles to estimate joint moments and knee contact forces of children with CP and typically developing (TD) children during walking. Using only three to four experimental EMG sensors attached to a single leg and leveraging an EMG database of walking data of TD children, the synergy-informed approach estimated total knee contact forces comparable to those estimated by EMG-assisted approaches that used 13 EMG sensors (children with CP, n = 3, R2 = 0.95 ± 0.01, RMSE = 0.40 ± 0.14 BW; TD controls, n = 3, R2 = 0.93 ± 0.07, RMSE = 0.19 ± 0.05 BW). The proposed synergy-informed neuromusculoskeletal modelling approach could enable rapid evaluation of joint biomechanics in children with unimpaired and impaired motor control within a clinical environment.
Collapse
Affiliation(s)
- Mohammad Fazle Rabbi
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Giorgio Davico
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, 40136, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Christopher P Carty
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
- Department of Orthopaedic Surgery, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, 4101, Australia
| | - Laura E Diamond
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia.
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
9
|
Aoyama T, Ae K, Taguchi T, Kawamori Y, Sasaki D, Kawamura T, Kohno Y. Spatiotemporal patterns of throwing muscle synergies in yips-affected baseball players. Sci Rep 2024; 14:2649. [PMID: 38302478 PMCID: PMC10834996 DOI: 10.1038/s41598-024-52332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
"Yips" are involuntary movements that interfere with the automatic execution of sports movements. However, how the coordination among the various muscles necessary for sports movements is impaired in athletes with yips remains to be fully understood. This study aimed to assess whether muscle synergy analysis through non-negative matrix factorization (NMF) could identify impaired spatiotemporal muscle coordination in baseball players with throwing yips. Twenty-two college baseball players, including 12 with and 10 without yips symptoms participated in the study. Electromyographic activity was recorded from 13 ipsilateral upper extremity muscles during full-effort throwing. Muscle synergies were extracted through NMF. Cluster analysis was conducted to identify any common spatiotemporal patterns of muscle synergies in players with yips. Whether individual players with yips showed deviations in spatiotemporal patterns of muscle synergies compared with control players was also investigated. Four muscle synergies were extracted for each player, but none were specific to the yips group. However, a more detailed analysis of individual players revealed that two of the three players who presented dystonic symptoms during the experiment exhibited specific patterns that differed from those in control players. By contrast, each player whose symptoms were not reproduced during the experiment presented spatiotemporal patterns of muscle synergies similar to those of the control group. The results of this study indicate no common spatiotemporal pattern of muscle synergies specific to the yips group. Furthermore, these results suggest that the spatiotemporal pattern of muscle synergies in baseball throwing motion is not impaired in situations where symptoms are not reproduced even if the players have yips symptoms. However, muscle synergy analysis can identify the characteristics of muscle coordination of players who exhibit dystonic movements. These findings can be useful in developing personalized therapeutic strategies based on individual characteristics of yips symptoms.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan.
| | - Kazumichi Ae
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Takahiro Taguchi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuna Kawamori
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan
| | - Daisuke Sasaki
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan
| | - Takashi Kawamura
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| |
Collapse
|
10
|
Khorasani A, Hulsizer J, Paul V, Gorski C, Dhaher YY, Slutzky MW. Myoelectric interface for neurorehabilitation conditioning to reduce abnormal leg co-activation after stroke: a pilot study. J Neuroeng Rehabil 2024; 21:11. [PMID: 38245730 PMCID: PMC10800046 DOI: 10.1186/s12984-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The ability to walk is an important factor in quality of life after stroke. Co-activation of hip adductors and knee extensors has been shown to correlate with gait impairment. We have shown previously that training with a myoelectric interface for neurorehabilitation (MINT) can reduce abnormal muscle co-activation in the arms of stroke survivors. METHODS Here, we extend MINT conditioning to stroke survivors with leg impairment. The aim of this pilot study was to assess the safety and feasibility of using MINT to reduce abnormal co-activation between hip adductors and knee extensors and assess any effects on gait. Nine stroke survivors with moderate to severe gait impairment received 6 h of MINT conditioning over six sessions, either in the laboratory or at home. RESULTS MINT participants completed a mean of 159 repetitions per session without any adverse events. Further, participants learned to isolate their muscles effectively, resulting in a mean reduction of co-activation of 70% compared to baseline. Moreover, gait speed increased by a mean of 0.15 m/s, more than the minimum clinically important difference. Knee flexion angle increased substantially, and hip circumduction decreased. CONCLUSION MINT conditioning is safe, feasible at home, and enables reduction of co-activation in the leg. Further investigation of MINT's potential to improve leg movement and function after stroke is warranted. Abnormal co-activation of hip adductors and knee extensors may contribute to impaired gait after stroke. Trial registration This study was registered at ClinicalTrials.gov (NCT03401762, Registered 15 January 2018, https://clinicaltrials.gov/study/NCT03401762?tab=history&a=4 ).
Collapse
Affiliation(s)
- Abed Khorasani
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA
| | - Joel Hulsizer
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA
| | - Vivek Paul
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA
| | - Cynthia Gorski
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA
| | - Yasin Y Dhaher
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA.
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA.
- Department of Neuroscience, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
11
|
Rosenberg MC, Proctor JL, Steele KM. Quantifying changes in individual-specific template-based representations of center-of-mass dynamics during walking with ankle exoskeletons using Hybrid-SINDy. Sci Rep 2024; 14:1031. [PMID: 38200078 PMCID: PMC10781730 DOI: 10.1038/s41598-023-50999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Ankle exoskeletons alter whole-body walking mechanics, energetics, and stability by altering center-of-mass (CoM) motion. Controlling the dynamics governing CoM motion is, therefore, critical for maintaining efficient and stable gait. However, how CoM dynamics change with ankle exoskeletons is unknown, and how to optimally model individual-specific CoM dynamics, especially in individuals with neurological injuries, remains a challenge. Here, we evaluated individual-specific changes in CoM dynamics in unimpaired adults and one individual with post-stroke hemiparesis while walking in shoes-only and with zero-stiffness and high-stiffness passive ankle exoskeletons. To identify optimal sets of physically interpretable mechanisms describing CoM dynamics, termed template signatures, we leveraged hybrid sparse identification of nonlinear dynamics (Hybrid-SINDy), an equation-free data-driven method for inferring sparse hybrid dynamics from a library of candidate functional forms. In unimpaired adults, Hybrid-SINDy automatically identified spring-loaded inverted pendulum-like template signatures, which did not change with exoskeletons (p > 0.16), except for small changes in leg resting length (p < 0.001). Conversely, post-stroke paretic-leg rotary stiffness mechanisms increased by 37-50% with zero-stiffness exoskeletons. While unimpaired CoM dynamics appear robust to passive ankle exoskeletons, how neurological injuries alter exoskeleton impacts on CoM dynamics merits further investigation. Our findings support Hybrid-SINDy's potential to discover mechanisms describing individual-specific CoM dynamics with assistive devices.
Collapse
Affiliation(s)
- Michael C Rosenberg
- Department of Mechanical Engineering, University of Washington, Seattle, USA.
| | - Joshua L Proctor
- Department of Mechanical Engineering, University of Washington, Seattle, USA
- Department of Applied Mathematics, University of Washington, Seattle, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, USA
| |
Collapse
|
12
|
Ebihara A, Hirota M, Kumakura Y, Nagaoka M. Analysis of muscle synergy and gait kinematics during regain of gait function through rehabilitation in a monoplegic patient. Front Hum Neurosci 2024; 17:1287675. [PMID: 38264349 PMCID: PMC10803437 DOI: 10.3389/fnhum.2023.1287675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose We conducted muscle synergy and gait analyses in a monoplegic patient whose gait function improved through training, to explore the possibility of using these parameters as indicators of training. Case presentation A 49-year-old male had monoplegia of the right lower limb caused by infarction of the left paracentral lobule. After 2 months of training, he was able to walk and returned to work. Methods Consecutive analyses were done after admission. Muscle synergy analysis: during walking, surface electromyograms of gluteus maximus, quadriceps femoris, adductor femoris, hamstrings, tibialis anterior, medial/lateral gastrocnemius, and soleus on both sides were recorded and processed for non-negative matrix factorization (NNMF) analysis. Gait analysis: markers were placed at foot, and walking movements were video recorded as changes in position of the markers. Results Compared with three muscle synergies detected on the non-paretic side, two muscle synergies were extracted on the paretic side at admission, and the number increased to three and then four with progress in rehabilitation training. Changes in weighting and activity of the muscle synergies were greater on the non-paretic side than on the paretic side. With training, the knee joint flexor and the ankle dorsiflexor activities on the paretic side and the gluteus maximus activity on the non-paretic side increased during swing phase as shown by weight changes of muscle synergies, and gait analysis showed increased knee joint flexion and ankle joint dorsiflexion during swing phase in the paretic limb. On the non-paretic side, however, variability of muscle activity was observed, and three or four muscle synergies were extracted depending on the number of strides analyzed. Conclusion The number of muscle synergies is considered to contribute to motor control. Rehabilitation training improves gait by increasing the number of muscle synergies on the paretic side and changing the weights of the muscles constituting the muscle synergies. From the changes on the non-paretic side, we propose the existence of compensatory mechanisms also on the non-paretic side. In muscle synergy analysis, in addition to the filters, the number of strides used in each analysis set has to be examined. This report highlights the issues of NNMF as analytical methods in gait training for stroke patients.
Collapse
Affiliation(s)
- Akira Ebihara
- Department of Rehabilitation, Tsubasa-no-ie Hospital, Oyama, Tochigi, Japan
| | - Mitsuki Hirota
- Department of Rehabilitation, Tsubasa-no-ie Hospital, Oyama, Tochigi, Japan
- Department of Rehabilitation Medicine, Dokkyo Medical University, Shimotsugagun, Tochigi, Japan
| | - Yasuhiro Kumakura
- Division of Rehabilitation Services, Tsubasa-no-ie Hospital, Oyama, Tochigi, Japan
| | - Masanori Nagaoka
- Department of Rehabilitation, Tsubasa-no-ie Hospital, Oyama, Tochigi, Japan
- Department of Neurology and Rehabilitation, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
13
|
Khorasani A, Hulsizer J, Paul V, Gorski C, Dhaher YY, Slutzky MW. Myoelectric interface for neurorehabilitation conditioning to reduce abnormal leg co-activation after stroke: a pilot study. RESEARCH SQUARE 2023:rs.3.rs-3398815. [PMID: 37886579 PMCID: PMC10602191 DOI: 10.21203/rs.3.rs-3398815/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background The ability to walk is an important factor in quality of life after stroke. Co-activation of hip adductors and knee extensors has been shown to correlate with gait impairment. We have shown previously that training with a myoelectric interface for neurorehabilitation (MINT) can reduce abnormal muscle co-activation in the arms of stroke survivors. Methods Here, we extend MINT conditioning to stroke survivors with leg impairment. The aim of this pilot study was to assess the safety and feasibility of using MINT to reduce abnormal co-activation between hip adductors and knee extensors and assess any effects on gait. Nine stroke survivors with moderate to severe gait impairment received six hours of MINT conditioning over six sessions, either in the laboratory or at home. Results MINT participants completed a mean of 159 repetitions per session without any adverse events. Further, participants learned to isolate their muscles effectively, resulting in a mean reduction of co-activation of 70% compared to baseline. Moreover, gait speed increased by a mean of 0.15 m/s, more than the minimum clinically important difference. Knee flexion angle increased substantially, and hip circumduction decreased. Conclusion MINT conditioning is safe, feasible at home, and enables reduction of co-activation in the leg. Further investigation of MINT's potential to improve leg movement and function after stroke is warranted. Abnormal co-activation of hip adductors and knee extensors may contribute to impaired gait after stroke. Trial registration This study was registered at ClinicalTrials.gov (NCT03401762, Registered 15 January 2018, https://clinicaltrials.gov/study/NCT03401762?tab=history&a=4).
Collapse
|
14
|
Núñez-Cortés R, Horment-Lara G, Tapia-Malebran C, Castro M, Barros S, Vera N, Pérez-Alenda S, Pablo Santelices J, Rivera-Lillo G, Cruz-Montecinos C. Role of kinesiophobia in the selective motor control during gait in patients with low back-related leg pain. J Electromyogr Kinesiol 2023; 71:102793. [PMID: 37285714 DOI: 10.1016/j.jelekin.2023.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Fear of movement has been related to changes in motor function in patients with low back pain, but little is known about how kinesiophobia affects selective motor control during gait (ability of muscles performing distinct mechanical functions) in patients with low back-related leg pain (LBLP). The aim of the study was to determine the association between kinesiophobia and selective motor control in patients with LBLP. An observational cross-sectional study was performed on 18 patients. Outcome included: kinesiophobia using the Tampa Scale of Kinesiophobia; pain mechanism using Leeds Assessment of Neuropathic Signs and Symptoms; disability using Roland-Morris Disability Questionnaire; mechanosensitivity using Straight Leg Raise. Surface electromyography was used to assess selective motor control during gait by examining the correlation and coactivation in muscle pairs involved in the stance phase. Pairs included vastus medialis (VM) and medial gastrocnemius (MG), causing opposite moments around the knee joint, and gluteus medius (GM) and MG, as muscles with distinct mechanical functions (weight acceptance vs. propulsion). A strong association was observed between kinesiophobia and correlation (r = 0.63; p = 0.005) and coactivation (r = 0.69; p = 0.001) between VM versus MG. A moderate association was observed between kinesiophobia and correlation (r = 0.58; p = 0.011) and coactivation (r = 0.55; p = 0.019) between GM versus MG. No significant associations were obtained for other outcomes. A high kinesiophobia is associated with low selective motor control of the muscles involved in the weight acceptance and propulsion phases during gait in patients with LBLP. Fear of movement was better associated with decreased neuromuscular control than other clinical variables such as pain mechanism, disability, and mechanosensitivity.
Collapse
Affiliation(s)
- Rodrigo Núñez-Cortés
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Physiotherapy, Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), University of Valencia, Valencia, Spain
| | - Giselle Horment-Lara
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Tapia-Malebran
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Physical Therapy, Catholic University of Maule, Talca, Chile
| | - Martín Castro
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sebastián Barros
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nicolás Vera
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofía Pérez-Alenda
- Department of Physiotherapy, Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), University of Valencia, Valencia, Spain
| | - Juan Pablo Santelices
- Traumatology Unit, San José Hospital, Santiago, Chile; Traumatology Unit, Clínica Santa María, Santiago, Chile
| | - Gonzalo Rivera-Lillo
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile; Research and Development Unit, Clínica Los Coihues, Santiago, Chile
| | - Carlos Cruz-Montecinos
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile; Section of Research, Innovation and Development in Kinesiology, Kinesiology Unit, San José Hospital, Santiago, Chile.
| |
Collapse
|
15
|
Ghislieri M, Lanotte M, Knaflitz M, Rizzi L, Agostini V. Muscle synergies in Parkinson's disease before and after the deep brain stimulation of the bilateral subthalamic nucleus. Sci Rep 2023; 13:6997. [PMID: 37117317 PMCID: PMC10147693 DOI: 10.1038/s41598-023-34151-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
The aim of this study is to quantitatively assess motor control changes in Parkinson's disease (PD) patients after bilateral deep brain stimulation of the subthalamic nucleus (STN-DBS), based on a novel muscle synergy evaluation approach. A group of 20 PD patients evaluated at baseline (before surgery, T0), at 3 months (T1), and at 12 months (T2) after STN-DBS surgery, as well as a group of 20 age-matched healthy control subjects, underwent an instrumented gait analysis, including surface electromyography recordings from 12 muscles. A smaller number of muscle synergies was found in PD patients (4 muscle synergies, at each time point) compared to control subjects (5 muscle synergies). The neuromuscular robustness of PD patients-that at T0 was smaller with respect to controls (PD T0: 69.3 ± 2.2% vs. Controls: 77.6 ± 1.8%, p = 0.004)-increased at T1 (75.8 ± 1.8%), becoming not different from that of controls at T2 (77.5 ± 1.9%). The muscle synergies analysis may offer clinicians new knowledge on the neuromuscular structure underlying PD motor types of behavior and how they can improve after electroceutical STN-DBS therapy.
Collapse
Affiliation(s)
- Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy.
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy.
| | - Michele Lanotte
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126, Turin, Italy
- AOU Città della Salute e della Scienza di Torino, 10126, Turin, Italy
| | - Marco Knaflitz
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
| | - Laura Rizzi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126, Turin, Italy
- AOU Città della Salute e della Scienza di Torino, 10126, Turin, Italy
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
| |
Collapse
|
16
|
Srivastava S, Seamon BA, Patten C, Kautz SA. Variation of body weight supported treadmill training parameters during a single session can modulate muscle activity patterns in post-stroke gait. Exp Brain Res 2023; 241:615-627. [PMID: 36639543 PMCID: PMC9895011 DOI: 10.1007/s00221-023-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Evidence supporting the benefits of locomotor training (LT) to improve walking ability following stroke are inconclusive and could likely be improved with a better understanding of the effects of individual parameters i.e., body weight support (BWS), speed, and therapist assistance and their interactions with walking ability and specific impairments. We evaluated changes in muscle activity of thirty-seven individuals with chronic stroke (> 6 months), in response to a single session of LT at their self-selected or fastest-comfortable speed (FS) with three levels of BWS (0%, 15%, and 30%), and at FS with 30% BWS and seven different combinations of therapist assistance at the paretic foot, non-paretic foot, and trunk. Altered Muscle Activation Pattern (AMAP), a previously developed tool in our lab was used to evaluate the effects of LT parameter variation on eight lower-extremity muscle patterns in individuals with stroke. Repeated-measures mixed-model ANOVA was used to determine the effects of speed, BWS, and their interaction on AMAP scores. The Wilcoxon-signed rank test was used to determine the effects of therapist-assisted conditions on AMAP scores. Increased BWS mostly improved lower-extremity muscle activity patterns, but increased speed resulted in worse plantar flexor activity. Abnormal early plantar flexor activity during stance decreased with assistance at trunk and both feet, exaggerated plantar flexor activity during late swing decreased with assistance to the non-paretic foot or trunk, and diminished gluteus medius activity during stance increased with assistance to paretic foot and/or trunk. Therefore, different sets of training parameters have different immediate effects on activation patterns of each muscle and gait subphases.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, Charleston, SC 29425 USA
- Ralph H. Johnson VA Health Care System Medical Center, Charleston, SC 29401 USA
| | - Bryant A. Seamon
- Ralph H. Johnson VA Health Care System Medical Center, Charleston, SC 29401 USA
- Division of Physical Therapy, Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience (BRaIN) Lab, Department of Physical Medicine and Rehabilitation, University of California Davis School of Medicine, Sacramento, CA 95817 USA
- VA Northern California Health Care System, Martinez, CA 94553 USA
| | - Steven A. Kautz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, Charleston, SC 29425 USA
- Ralph H. Johnson VA Health Care System Medical Center, Charleston, SC 29401 USA
| |
Collapse
|
17
|
Srivastava S, Seamon BA, Marebwa BK, Wilmskoetter J, Bowden MG, Gregory CM, Seo NJ, Hanlon CA, Bonilha L, Brown TR, Neptune RR, Kautz SA. The relationship between motor pathway damage and flexion-extension patterns of muscle co-excitation during walking. Front Neurol 2022; 13:968385. [PMID: 36388195 PMCID: PMC9650203 DOI: 10.3389/fneur.2022.968385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 01/16/2023] Open
Abstract
Background Mass flexion-extension co-excitation patterns during walking are often seen as a consequence of stroke, but there is limited understanding of the specific contributions of different descending motor pathways toward their control. The corticospinal tract is a major descending motor pathway influencing the production of normal sequential muscle coactivation patterns for skilled movements. However, control of walking is also influenced by non-corticospinal pathways such as the corticoreticulospinal pathway that possibly contribute toward mass flexion-extension co-excitation patterns during walking. The current study sought to investigate the associations between damage to corticospinal (CST) and corticoreticular (CRP) motor pathways following stroke and the presence of mass flexion-extension patterns during walking as evaluated using module analysis. Methods Seventeen healthy controls and 44 stroke survivors were included in the study. We used non-negative matrix factorization for module analysis of paretic leg electromyographic activity. We typically have observed four modules during walking in healthy individuals. Stroke survivors often have less independently timed modules, for example two-modules presented as mass flexion-extension pattern. We used diffusion tensor imaging-based analysis where streamlines connecting regions of interest between the cortex and brainstem were computed to evaluate CST and CRP integrity. We also used a coarse classification tree analysis to evaluate the relative CST and CRP contribution toward module control. Results Interhemispheric CST asymmetry was associated with worse lower extremity Fugl-Meyer score (p = 0.023), propulsion symmetry (p = 0.016), and fewer modules (p = 0.028). Interhemispheric CRP asymmetry was associated with worse lower extremity Fugl-Meyer score (p = 0.009), Dynamic gait index (p = 0.035), Six-minute walk test (p = 0.020), Berg balance scale (p = 0.048), self-selected walking speed (p = 0.041), and propulsion symmetry (p = 0.001). The classification tree model reveled that substantial ipsilesional CRP or CST damage leads to a two-module pattern and poor walking ability with a trend toward increased compensatory contralesional CRP based control. Conclusion Both CST and CRP are involved with control of modules during walking and damage to both may lead to greater reliance on the contralesional CRP, which may contribute to a two-module pattern and be associated with worse walking performance.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Shraddha Srivastava
| | - Bryant A. Seamon
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Barbara K. Marebwa
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Janina Wilmskoetter
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Mark G. Bowden
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Chris M. Gregory
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Na Jin Seo
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Occupational Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Colleen A. Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Truman R. Brown
- Department of Radiology and Radiological Science, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Steven A. Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
18
|
A hierarchical classification of gestures under two force levels based on muscle synergy. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Zhao M, Bonassi G, Samogin J, Taberna GA, Porcaro C, Pelosin E, Avanzino L, Mantini D. Assessing Neurokinematic and Neuromuscular Connectivity During Walking Using Mobile Brain-Body Imaging. Front Neurosci 2022; 16:912075. [PMID: 35720696 PMCID: PMC9204106 DOI: 10.3389/fnins.2022.912075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gait is a common but rather complex activity that supports mobility in daily life. It requires indeed sophisticated coordination of lower and upper limbs, controlled by the nervous system. The relationship between limb kinematics and muscular activity with neural activity, referred to as neurokinematic and neuromuscular connectivity (NKC/NMC) respectively, still needs to be elucidated. Recently developed analysis techniques for mobile high-density electroencephalography (hdEEG) recordings have enabled investigations of gait-related neural modulations at the brain level. To shed light on gait-related neurokinematic and neuromuscular connectivity patterns in the brain, we performed a mobile brain/body imaging (MoBI) study in young healthy participants. In each participant, we collected hdEEG signals and limb velocity/electromyography signals during treadmill walking. We reconstructed neural signals in the alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) frequency bands, and assessed the co-modulations of their power envelopes with myogenic/velocity envelopes. Our results showed that the myogenic signals have larger discriminative power in evaluating gait-related brain-body connectivity with respect to kinematic signals. A detailed analysis of neuromuscular connectivity patterns in the brain revealed robust responses in the alpha and beta bands over the lower limb representation in the primary sensorimotor cortex. There responses were largely contralateral with respect to the body sensor used for the analysis. By using a voxel-wise analysis of variance on the NMC images, we revealed clear modulations across body sensors; the variability across frequency bands was relatively lower, and below significance. Overall, our study demonstrates that a MoBI platform based on hdEEG can be used for the investigation of gait-related brain-body connectivity. Future studies might involve more complex walking conditions to gain a better understanding of fundamental neural processes associated with gait control, or might be conducted in individuals with neuromotor disorders to identify neural markers of abnormal gait.
Collapse
Affiliation(s)
- Mingqi Zhao
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Azienda Sanitaria Locale Chiavarese, Genoa, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | | | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center, University of Padua, Padua, Italy
- Institute of Cognitive Sciences and Technologies—National Research Council, Rome, Italy
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- *Correspondence: Dante Mantini,
| |
Collapse
|
20
|
Mizuta N, Hasui N, Nishi Y, Higa Y, Matsunaga A, Deguchi J, Yamamoto Y, Nakatani T, Taguchi J, Morioka S. Merged swing-muscle synergies and their relation to walking characteristics in subacute post-stroke patients: An observational study. PLoS One 2022; 17:e0263613. [PMID: 35120178 PMCID: PMC8815905 DOI: 10.1371/journal.pone.0263613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
In post-stroke patients, muscle synergy (the coordination of motor modules during walking) is impaired. In some patients, the muscle synergy termed module 1 (hip/knee extensors) is merged with module 2 (ankle plantar flexors), and in other cases, module 1 is merged with module 4 (knee flexors). However, post-stroke individuals with a merging pattern of module 3 (hip flexor and ankle dorsiflexor) and module 4, which is the swing-muscle synergy, have not been reported. This study aimed to determine the muscle-synergy merging subtypes of post-stroke during comfortable walking speed (cws). We also examined the effect of experimental lower-limb angle modulation on the muscle synergy patterns of walking in each subtype. Forty-one participants were assessed under three conditions: cws, long stepping on the paretic side (p-long), and long stepping on the non-paretic side (np-long). Lower-limb flexion and extension angles and the electromyogram were measured during walking. Subtype classification was based on the merging pattern of the muscle synergies, and we examined the effect of different lower-limb angles on the muscle synergies. We identified three merging subtypes: module 1 with module 2 (subtype 1), module 1 with module 4 (subtype 2), and module 3 with module 4 (subtype 3). In the cws condition, the lower-limb flexion angle was reduced in subtype 3, and the lower-limb extension angle was decreased in subtype 1. A more complex muscle synergy was observed only in subtype 3 in the p-long condition versus cws (p = 0.036). This subtype classification of walking impairments based on the merging pattern of the muscle synergies could be useful for the selection of a rehabilitation strategy according to the individual's particular neurological condition. Rehabilitation with increased lower-limb flexion may be effective for the training of patients with merging of modules 3 and 4 in comfortable walking.
Collapse
Affiliation(s)
- Naomichi Mizuta
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Koryo, Japan
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Naruhito Hasui
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Yuki Nishi
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Koryo, Japan
| | - Yasutaka Higa
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Ayaka Matsunaga
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Junji Deguchi
- Department of Rehabilitation, Nakazuyagi Hospital (HIMAWARIKAI Medical Corporation), Tokushima, Japan
| | - Yasutada Yamamoto
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Tomoki Nakatani
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Junji Taguchi
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Koryo, Japan
- Neurorehabilitation Research Center, Kio University, Koryo, Japan
| |
Collapse
|
21
|
Mizuta N, Hasui N, Nishi Y, Higa Y, Matsunaga A, Deguchi J, Yamamoto Y, Nakatani T, Taguchi J, Morioka S. Association between temporal asymmetry and muscle synergy during walking with rhythmic auditory cueing in stroke survivors living with impairments. Arch Rehabil Res Clin Transl 2022; 4:100187. [PMID: 35756980 PMCID: PMC9214337 DOI: 10.1016/j.arrct.2022.100187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examined the effect of temporal gait asymmetry on muscle synergy post stroke. In our design, the temporal asymmetry during gait was experimentally modulated. The temporal asymmetry was modulated using rhythmic auditory cueing. Rhythmic auditory cueing with gait immediately improved temporal asymmetry and muscle synergy deficits. The temporal asymmetry affected muscle synergy more than kinematics.
Objective To examine the relationship between temporal asymmetry and complexity of muscle synergy during walking using rhythmic auditory cueing (RAC) and the factors related to changes in muscle synergy during walking with RAC in survivors of stroke. Design Cross-sectional study. Setting Wards at 2 medical corporation hospitals. Participants Forty survivors of stroke (N=40; mean age, 70.4±10.3 years; time since stroke, 72.2±32.3 days) who could walk without physical assistance. Interventions Not applicable. Main Outcome Measures The participants were assessed in a random block design under 2 conditions: comfortable walking speed (CWS) and walking with RAC. Single-leg support time, kinematics, and electromyograms were measured. Factors related to the complexity of muscle synergy (variance accounted for by 1 synergy [VAF1]) between the walking conditions were examined using hierarchical multiple regression analysis. Results In the RAC condition, lower limb flexion and knee flexion angles, single-leg support time on the paretic side, and the symmetry index of single-leg support time were increased compared with those in the CWS condition. VAF1 was decreased in the RAC condition (73.9±0.15) compared with that in the CWS condition (76.9±0.13, P=.002). Hierarchical multiple regression analysis revealed that the change in VAF1 was explained by change in single-leg support time (R2=0.43, P=.002). Conclusions The RAC condition demonstrated a more complex representation of muscle synergy than the CWS condition; the change in single-leg support time on the paretic side related to the changes in muscle synergy more than changes in lower limb angle. These findings can help in the walking-training concept to improve muscle synergy deficits in survivors of stroke.
Collapse
Affiliation(s)
- Naomichi Mizuta
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
- Corresponding author Naomichi Mizuta, PT, PhD, Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan.
| | - Naruhito Hasui
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Yuki Nishi
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
| | - Yasutaka Higa
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Ayaka Matsunaga
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Junji Deguchi
- Department of Rehabilitation, Nakazuyagi Hospital (HIMAWARIKAI Medical Corporation), Tokushima, Japan
| | - Yasutada Yamamoto
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Tomoki Nakatani
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Junji Taguchi
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| |
Collapse
|
22
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Bourbonnais D, Pelletier R, Azar J, Sille C, Goyette M. Training muscle activation patterns of the lower paretic extremity using directional exertion improves mobility in persons with hemiparesis: a pilot study. BMC Biomed Eng 2021; 3:12. [PMID: 34715935 PMCID: PMC8555217 DOI: 10.1186/s42490-021-00057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background Controlled static exertion performed in the sagittal plane on a transducer attached to the foot requires coordinated moments of force of the lower extremity. Some exertions and plantarflexion recruit muscular activation patterns similar to synergies previously identified during gait. It is currently unknown if persons with hemiparesis following stroke demonstrate similar muscular patterns, and if force feedback training utilizing static exertion results in improved mobility in this population. Methods Electromyographic (EMG) activity of eight muscles of the lower limb were recorded using surface electrodes in healthy participants (n = 10) and in persons with hemiparesis (n = 8) during an exertion exercise (task) performed in eight directions in the sagittal plane of the foot and a plantarflexion exercise performed at 20 and 40% maximum voluntary effort (MVE). Muscle activation patterns identified during these exertion exercises were compared between groups and to synergies reported in the literature during healthy gait using cosine similarities (CS). Functional mobility was assessed in four participants with hemiparesis using GAITRite® and the Timed Up and Go (TUG) test at each session before, during and after static force feedback training. Tau statistics were used to evaluate the effect on mobility before and after training. Measures of MVE and the accuracy of directional exertion were compared before and after training using ANOVAs. Spearman Rho correlations were also calculated between changes in these parameters and changes in mobility before and after the training. Results Muscle activation patterns during directional exertion and plantarflexion were similar for both groups of participants (CS varying from 0.845 to 0.977). Muscular patterns for some of the directional and plantarflexion were also similar to synergies recruited during gait (CS varying from 0.847 to 0.951). Directional exertion training in hemiparetic subjects resulted in improvement in MVE (p < 0.040) and task performance accuracy (p < 0.001). Hemiparetic subjects also demonstrated significant improvements in gait velocity (p < 0.032) and in the TUG test (p < 0.022) following training. Improvements in certain directional efforts were correlated with changes in gait velocity (p = 0.001). Conclusion Static force feedback training following stroke improves strength and coordination of the lower extremity while recruiting synergies reported during gait and is associated with improved mobility.
Collapse
Affiliation(s)
- Daniel Bourbonnais
- School of Rehabilitation, Université de Montréal, P.O. Box 6128, Pavillon du Parc, Bureau 403-8, Station Centre-Ville, Montreal, QC, H3C 3J7, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), 300 Darlington Avenue, Montreal, QC, H3S 2J4, Canada.
| | - René Pelletier
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), 300 Darlington Avenue, Montreal, QC, H3S 2J4, Canada
| | - Joëlle Azar
- School of Rehabilitation, Université de Montréal, P.O. Box 6128, Pavillon du Parc, Bureau 403-8, Station Centre-Ville, Montreal, QC, H3C 3J7, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), 300 Darlington Avenue, Montreal, QC, H3S 2J4, Canada
| | - Camille Sille
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), 300 Darlington Avenue, Montreal, QC, H3S 2J4, Canada
| | - Michel Goyette
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), 300 Darlington Avenue, Montreal, QC, H3S 2J4, Canada
| |
Collapse
|
24
|
Ishibashi K, Yoshikawa K, Koseki K, Aoyama T, Ishii D, Yamamoto S, Matsuda T, Tomita K, Mutsuzaki H, Kohno Y. Gait Training after Stroke with a Wearable Robotic Device: A Case Report of Further Improvements in Walking Ability after a Recovery Plateau. Prog Rehabil Med 2021; 6:20210037. [PMID: 34595360 PMCID: PMC8441009 DOI: 10.2490/prm.20210037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022] Open
Abstract
Background: Conventional rehabilitation is known to improve walking ability after stoke, but its effectiveness is often limited. Recent studies have shown that gait training combining conventional rehabilitation and robotic devices in stroke patients provides better results than conventional rehabilitation alone, suggesting that gait training with a robotic device may lead to further improvements in the walking ability recovered by conventional rehabilitation. Therefore, the aim of this report was to highlight the changes in kinematic and electromyographic data recorded during walking before and after gait training with the Honda Walking Assist Device® (HWAT) in a male patient whose walking speed had reached a recovery plateau under conventional rehabilitation. Case: The patient was a 42-year-old man with severe hemiplegia caused by right putaminal hemorrhage. He underwent conventional rehabilitation for 20 weeks following the onset of stroke, after which his walking speed reached a recovery plateau. Subsequently, we added robotic rehabilitation using HWAT to his regular rehabilitation regimen, which resulted in improved step length symmetry and gait endurance. We also noted changes in muscle activity patterns during walking. Discussion: HWAT further improved the walking ability of a patient who had recovered with conventional rehabilitation; this improvement was accompanied by changes in muscle activity patterns during walking. The improvement in gait endurance exceeded the smallest meaningful change in stroke patients, suggesting that this improvement represented a noticeable enhancement in the quality of life in relation to mobility in the community. Further clinical trials are needed to confirm the results of the present case study.
Collapse
Affiliation(s)
- Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Kenichi Yoshikawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Kazunori Koseki
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Toshiyuki Aoyama
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Tomoyuki Matsuda
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Kazuhide Tomita
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Hirotaka Mutsuzaki
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| |
Collapse
|
25
|
Muscle synergy differences between voluntary and reactive backward stepping. Sci Rep 2021; 11:15462. [PMID: 34326376 PMCID: PMC8322057 DOI: 10.1038/s41598-021-94699-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022] Open
Abstract
Reactive stepping responses are essential to prevent falls after a loss of balance. It has previously been well described that both voluntary and reactive step training could improve the efficacy of reactive stepping in different populations. However, the effect of aging on neuromuscular control during voluntary and reactive stepping remains unclear. Electromyography (EMG) signals during both backward voluntary stepping in response to an auditory cue and backward reactive stepping elicited by a forward slip-like treadmill perturbation during stance were recorded in ten healthy young adults and ten healthy older adults. Using muscle synergy analysis, we extracted the muscle synergies for both voluntary and reactive stepping. Our results showed that fewer muscle synergies were used during reactive stepping than during voluntary stepping in both young and older adults. Minor differences in the synergy structure were observed for both voluntary and reactive stepping between age groups. Our results indicate that there is a low similarity of muscle synergies between voluntary stepping and reactive stepping and that aging had a limited effect on the structure of muscle synergies. This study enhances our understanding of the neuromuscular basis of both voluntary and reactive stepping as well as the potential effect of aging on neuromuscular control during balance tasks.
Collapse
|
26
|
Cruz-Montecinos C, Pérez-Alenda S, Cerda M, Maas H. Modular reorganization of gait in chronic but not in artificial knee joint constraint. J Neurophysiol 2021; 126:516-531. [PMID: 34133242 DOI: 10.1152/jn.00418.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is currently unknown if modular reorganization does occur if not the central nervous system, but the musculoskeletal system is affected. The aims of this study were to investigate 1) the effects of an artificial knee joint constraint on the modular organization of gait in healthy subjects; and 2) the differences in modular organization between healthy subjects with an artificial knee joint constraint and people with a similar but chronic knee joint constraint. Eleven healthy subjects and eight people with a chronic knee joint constraint walked overground at 1 m/s. The healthy subjects also walked with a constraint limiting knee joint movement to 20°. The total variance accounted (tVAF) for one to four synergies and modular organization were assessed using surface electromyography from 11 leg muscles. The distribution of number of synergies were not significantly different between groups. The tVAF and the motor modules were not significantly affected by the artificial knee constraint. A higher tVAF for one and two synergies, as well as merging of motor modules were observed in the chronic knee constraint group. We conclude that in the short-term a knee constraint does not affect the modular organization of gait, but in the long-term a knee constraint results in modular reorganization. These results indicate that merging of motor modules may also occur when changes in the mechanics of the musculoskeletal system is the primary cause of the motor impairment.NEW & NOTEWORTHY It is currently unknown if modular reorganization does occur if not the central nervous system, but the musculoskeletal system is affected. This study showed that in the short-term a knee constraint does not affect the modular organization of gait, but in the long-term a knee constraint results in modular reorganization. These results indicate that modular reorganization may also occur when changes in the mechanics of the musculoskeletal system is the primary cause of the motor impairment.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain.,Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Laboratory of Clinical Biomechanics, Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofía Pérez-Alenda
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Zhu F, Kern M, Fowkes E, Afzal T, Contreras-Vidal JL, Francisco GE, Chang SH. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. J Neural Eng 2021; 18. [PMID: 33752175 DOI: 10.1088/1741-2552/abf0d5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Abstract
Objective.Powered exoskeletons have been used to help persons with gait impairment regain some walking ability. However, little is known about its impact on neuromuscular coordination in persons with stroke. The objective of this study is to investigate how a powered exoskeleton could affect the neuromuscular coordination of persons with post-stroke hemiparesis.Approach.Eleven able-bodied subjects and ten stroke subjects participated in a single-visit treadmill walking assessment, in which their motion and lower-limb muscle activities were captured. By comparing spatiotemporal parameters, kinematics, and muscle synergy pattern between two groups, we characterized the normal gait pattern and the post-stroke motor deficits. Five eligible stroke subjects received exoskeleton-assisted gait trainings and walking assessments were conducted pre-intervention (Pre) and post-intervention (Post), without (WO) and with (WT) the exoskeleton. We compared their gait performance between (a) Pre and Post to investigate the effect of exoskeleton-assisted gait training and, (b) WO and WT the exoskeleton to investigate the effect of exoskeleton wearing on stroke subjects.Main results.While four distinct motor modules were needed to describe lower-extremity activities during stead-speed walking among able-bodied subjects, three modules were sufficient for the paretic leg from the stroke subjects. Muscle coordination complexity, module composition and activation timing were preserved after the training, indicating the intervention did not significantly change the neuromuscular coordination. In contrast, walking WT the exoskeleton altered the stroke subjects' synergy pattern, especially on the paretic side. The changes were dominated by the activation profile modulation towards the normal pattern observed from the able-bodied group.Significance.This study gave us some critical insight into how a powered exoskeleton affects the stroke subjects' neuromuscular coordination during gait and demonstrated the potential to use muscle synergy as a method to evaluate the effect of the exoskeleton training.This study was registered at ClinicalTrials.gov (identifier: NCT03057652).
Collapse
Affiliation(s)
- Fangshi Zhu
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.,Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Marcie Kern
- Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Erin Fowkes
- Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Taimoor Afzal
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.,Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Jose-Luis Contreras-Vidal
- Department of Electrical and Computer Engineering, The University of Houston, Houston, TX, United States of America
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.,Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Shuo-Hsiu Chang
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.,Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| |
Collapse
|
28
|
Maddalena M, Saadat M. Simulated muscle activity in locomotion: implications of co-occurrence between effort minimisation and gait modularity for robot-assisted rehabilitation therapy. Comput Methods Biomech Biomed Engin 2021; 24:1380-1392. [PMID: 33646850 DOI: 10.1080/10255842.2021.1890046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Evolution of gait rehabilitation robotic devices for stroke survivors has aimed at providing transparency to user's efforts and implementing 'assist-as-needed' paradigm. Alteration of muscle activity and synergies recruitment has been noticed in trials involving healthy subjects but no analytic tool has been proposed to understand root causes. In this paper, a simplified neuro-mechanical model is introduced for simulating lower limbs' muscle activity during unrestrained and device-constrained gait, taking into consideration exoskeleton-plus-treadmill and end-effector categories. Muscle control is based on the key hypothesis that optimality criterion pursues co-occurrence between effort minimisation and modularity during regular gait. Results highlight that modelised motion constraints on lower body raise additional redundancies which alter muscle activity and increase intervention external to unrestrained gait synergies. Accordingly, the developed simulations help to identify the inherent limitations of current technology: further degree of freedom addition to exoskeleton-plus-treadmill device could be useful but impractical, while end-effector devices would benefit significantly from an improved interaction management.
Collapse
Affiliation(s)
- Marco Maddalena
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK
| | - Mozafar Saadat
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
A Conceptual Blueprint for Making Neuromusculoskeletal Models Clinically Useful. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052037] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of most neuromusculoskeletal modeling research is to improve the treatment of movement impairments. However, even though neuromusculoskeletal models have become more realistic anatomically, physiologically, and neurologically over the past 25 years, they have yet to make a positive impact on the design of clinical treatments for movement impairments. Such impairments are caused by common conditions such as stroke, osteoarthritis, Parkinson’s disease, spinal cord injury, cerebral palsy, limb amputation, and even cancer. The lack of clinical impact is somewhat surprising given that comparable computational technology has transformed the design of airplanes, automobiles, and other commercial products over the same time period. This paper provides the author’s personal perspective for how neuromusculoskeletal models can become clinically useful. First, the paper motivates the potential value of neuromusculoskeletal models for clinical treatment design. Next, it highlights five challenges to achieving clinical utility and provides suggestions for how to overcome them. After that, it describes clinical, technical, collaboration, and practical needs that must be addressed for neuromusculoskeletal models to fulfill their clinical potential, along with recommendations for meeting them. Finally, it discusses how more complex modeling and experimental methods could enhance neuromusculoskeletal model fidelity, personalization, and utilization. The author hopes that these ideas will provide a conceptual blueprint that will help the neuromusculoskeletal modeling research community work toward clinical utility.
Collapse
|
30
|
Ao D, Shourijeh MS, Patten C, Fregly BJ. Evaluation of Synergy Extrapolation for Predicting Unmeasured Muscle Excitations from Measured Muscle Synergies. Front Comput Neurosci 2020; 14:588943. [PMID: 33343322 PMCID: PMC7746870 DOI: 10.3389/fncom.2020.588943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Electromyography (EMG)-driven musculoskeletal modeling relies on high-quality measurements of muscle electrical activity to estimate muscle forces. However, a critical challenge for practical deployment of this approach is missing EMG data from muscles that contribute substantially to joint moments. This situation may arise due to either the inability to measure deep muscles with surface electrodes or the lack of a sufficient number of EMG channels. Muscle synergy analysis (MSA) is a dimensionality reduction approach that decomposes a large number of muscle excitations into a small number of time-varying synergy excitations along with time-invariant synergy weights that define the contribution of each synergy excitation to all muscle excitations. This study evaluates how well missing muscle excitations can be predicted using synergy excitations extracted from muscles with available EMG data (henceforth called "synergy extrapolation" or SynX). The method was evaluated using a gait data set collected from a stroke survivor walking on an instrumented treadmill at self-selected and fastest-comfortable speeds. The evaluation process started with full calibration of a lower-body EMG-driven model using 16 measured EMG channels (collected using surface and fine wire electrodes) per leg. One fine wire EMG channel (either iliopsoas or adductor longus) was then treated as unmeasured. The synergy weights associated with the unmeasured muscle excitation were predicted by solving a nonlinear optimization problem where the errors between inverse dynamics and EMG-driven joint moments were minimized. The prediction process was performed for different synergy analysis algorithms (principal component analysis and non-negative matrix factorization), EMG normalization methods, and numbers of synergies. SynX performance was most influenced by the choice of synergy analysis algorithm and number of synergies. Principal component analysis with five or six synergies consistently predicted unmeasured muscle excitations the most accurately and with the greatest robustness to EMG normalization method. Furthermore, the associated joint moment matching accuracy was comparable to that produced by initial EMG-driven model calibration using all 16 EMG channels per leg. SynX may facilitate the assessment of human neuromuscular control and biomechanics when important EMG signals are missing.
Collapse
Affiliation(s)
- Di Ao
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Mohammad S. Shourijeh
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience (BRaIN) Lab, VA Northern California Health Care System, Martinez, CA, United States
- Department of Physical Medicine and Rehabilitation, Davis School of Medicine, University of California, Sacramento, CA, United States
| | - Benjamin J. Fregly
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
31
|
Lewallen LK, Srivastava S, Kautz SA, Neptune RR. Assessment of turning performance and muscle coordination in individuals post-stroke. J Biomech 2020; 114:110113. [PMID: 33338757 DOI: 10.1016/j.jbiomech.2020.110113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022]
Abstract
Turning is an important activity of daily living and often compromised post-stroke. The fall rate for individuals post-stroke while turning is nearly four times as high compared to healthy adults, with most falls resulting in injury. Thus, there is a need for evidence-based rehabilitation targets to improve turning performance for individuals post-stroke. To produce well-coordinated movements, muscles can be organized into muscle modules (i.e., groups of co-excited muscles). Post-stroke these modules can be merged, leading to impaired muscle coordination and walking performance. However, the relationship between impaired coordination and turning performance is not well understood. Thus, the purpose of this study was to analyze the influence of impaired muscle coordination (i.e., merged modules) on turning performance (i.e., time and number of steps required to complete a turn, and smoothness and balance control during the turn). Individuals post-stroke and healthy controls performed three tasks including overground straight-line walking, a 90-degree turn, and a 180-degree turn. The number of muscle modules during straight-line walking were determined using non-negative matrix factorization. During 180-degree turning, those with two modules took longer to turn, used more steps and had less smooth movement. Those with reduced module complexity exhibited diminished balance control during both 90-degree and 180-degree turning. These results suggest obtaining independent modules should be an important aim in locomotor therapies aimed at improving turning performance. In addition, the time it takes to complete a 180-degree turn may provide useful clinical insight into impaired muscle coordination post-stroke.
Collapse
Affiliation(s)
- Lindsey K Lewallen
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shraddha Srivastava
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Steven A Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
32
|
Rinaldi L, Yeung LF, Lam PCH, Pang MYC, Tong RKY, Cheung VCK. Adapting to the Mechanical Properties and Active Force of an Exoskeleton by Altering Muscle Synergies in Chronic Stroke Survivors. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2203-2213. [DOI: 10.1109/tnsre.2020.3017128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
da Silva Costa AA, Moraes R, Hortobágyi T, Sawers A. Older adults reduce the complexity and efficiency of neuromuscular control to preserve walking balance. Exp Gerontol 2020; 140:111050. [PMID: 32750424 DOI: 10.1016/j.exger.2020.111050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Healthy aging modifies neuromuscular control of dynamic balance. Challenging tasks could amplify such modifications, providing clinical insights. We examined the effects of age and walking condition difficulty on neuromuscular control of walking balance. We analyzed whole-body kinematics and activity of 13 right leg and trunk muscles in 17 young (11 males and 6 females; age 24 ± 3 years) and 14 older adults (3 males and 11 females; age 69 ± 4 years) while walking on a taped line on the floor and a 6-cm wide beam. Spatiotemporal parameters of gait, margin of stability, motor performance, and muscle synergies were estimated. Regardless of age, maintaining walking balance was more difficult on the beam compared to the taped line as evidenced by a shorter distance walked (17.3%), a reduction in step length (5.8%) and speed (10.3%), as well as a 40.0% smaller margin of stability during beam vs. tape walking. The number of muscle synergies was also higher during beam vs. tape walking. Compared to younger adults, older adults had larger margin of stability during beam walking. Older adults also had higher muscle co-activity within each muscle synergy and greater variance accounted for by the first muscle synergy regardless of condition. Such age-effects may be interpreted as a safer, less efficient, and less complex neuromuscular modular control strategy. In conclusion, beam walking increased the difficulty of maintaining walking balance and induced adaptations in modular control. It seems that healthy older adults reduce the complexity and efficiency of neuromuscular control of walking to preserve walking balance.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Andrew Sawers
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
34
|
Awad LN, Esquenazi A, Francisco GE, Nolan KJ, Jayaraman A. The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. J Neuroeng Rehabil 2020; 17:80. [PMID: 32552775 PMCID: PMC7301475 DOI: 10.1186/s12984-020-00702-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Atypical walking in the months and years after stroke constrain community reintegration and reduce mobility, health, and quality of life. The ReWalk ReStore™ is a soft robotic exosuit designed to assist the propulsion and ground clearance subtasks of post-stroke walking by actively assisting paretic ankle plantarflexion and dorsiflexion. Previous proof-of-concept evaluations of the technology demonstrated improved gait mechanics and energetics and faster and farther walking in users with post-stroke hemiparesis. We sought to determine the safety, reliability, and feasibility of using the ReStore™ during post-stroke rehabilitation. METHODS A multi-site clinical trial (NCT03499210) was conducted in preparation for an application to the United States Food and Drug Administration (FDA). The study included 44 users with post-stroke hemiparesis who completed up to 5 days of training with the ReStore™ on the treadmill and over ground. In addition to primary and secondary endpoints of safety and device reliability across all training activities, an exploratory evaluation of the effect of multiple exposures to using the device on users' maximum walking speeds with and without the device was conducted prior to and following the five training visits. RESULTS All 44 study participants completed safety and reliability evaluations. Thirty-six study participants completed all five training days. No device-related falls or serious adverse events were reported. A low rate of device malfunctions was reported by clinician-operators. Regardless of their reliance on ancillary assistive devices, after only 5 days of walking practice with the device, study participants increased both their device-assisted (Δ: 0.10 ± 0.03 m/s) and unassisted (Δ: 0.07 ± 0.03 m/s) maximum walking speeds (P's < 0.05). CONCLUSIONS When used under the direction of a licensed physical therapist, the ReStore™ soft exosuit is safe and reliable for use during post-stroke gait rehabilitation to provide targeted assistance of both paretic ankle plantarflexion and dorsiflexion during treadmill and overground walking. TRIAL REGISTRATION NCT03499210. Prospectively registered on March 28, 2018.
Collapse
Affiliation(s)
- Louis N Awad
- Department of Physical Therapy & Athletic Training, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of PM&R, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA.
| | - Alberto Esquenazi
- Department of PM&R, MossRehab and Einstein Healthcare Network, Elkins Park, PA, USA
| | - Gerard E Francisco
- Department of PM&R, University of Texas McGovern Medical School, TIRR Memorial Hermann, Houston, TX, USA
| | - Karen J Nolan
- Center for Mobility and Rehabilitation Engineering, Kessler Foundation, West Orange, NJ, USA
- Department of PM&R, Rutgers New Jersey Medical School, Kessler Rehabilitation, Newark, NJ, USA
| | - Arun Jayaraman
- Department of PM&R, Northwestern University, Chicago, IL, USA.
- Shirley Ryan AbilityLab, Chicago, IL, USA.
| |
Collapse
|
35
|
Janshen L, Santuz A, Ekizos A, Arampatzis A. Fuzziness of muscle synergies in patients with multiple sclerosis indicates increased robustness of motor control during walking. Sci Rep 2020; 10:7249. [PMID: 32350313 PMCID: PMC7190675 DOI: 10.1038/s41598-020-63788-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Deficits during gait poses a significant threat to the quality of life in patients with Multiple Sclerosis (MS). Using the muscle synergy concept, we investigated the modular organization of the neuromuscular control during walking in MS patients compared to healthy participants (HP). We hypothesized a widening and increased fuzziness of motor primitives (e.g. increased overlap intervals) in MS patients compared to HP allowing the motor system to increase robustness during walking. We analysed temporal gait parameters, local dynamic stability and muscle synergies from myoelectric signals of 13 ipsilateral leg muscles using non-negative matrix factorization. Compared to HP, MS patients showed a significant decrease in the local dynamic stability of walking during both, preferred and fixed (0.7 m/s) speed. MS patients demonstrated changes in time-dependent activation patterns (motor primitives) and alterations of the relative muscle contribution to the specific synergies (motor modules). We specifically found a widening in three out of four motor primitives during preferred speed and in two out of four during fixed speed in MS patients compared to HP. The widening increased the fuzziness of motor control in MS patients, which allows the motor system to increase its robustness when coping with pathology-related motor deficits during walking.
Collapse
Affiliation(s)
- Lars Janshen
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany.
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Antonis Ekizos
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| |
Collapse
|
36
|
Shourijeh MS, Fregly BJ. Muscle Synergies Modify Optimization Estimates of Joint Stiffness During Walking. J Biomech Eng 2020; 142:011011. [PMID: 31343670 DOI: 10.1115/1.4044310] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/08/2022]
Abstract
Because of its simplicity, static optimization (SO) is frequently used to resolve the muscle redundancy problem (i.e., more muscles than degrees-of-freedom (DOF) in the human musculoskeletal system). However, SO minimizes antagonistic co-activation and likely joint stiffness as well, which may not be physiologically realistic since the body modulates joint stiffness during movements such as walking. Knowledge of joint stiffness is limited due to the difficulty of measuring it experimentally, leading researchers to estimate it using computational models. This study explores how imposing a synergy structure on the muscle activations estimated by optimization (termed "synergy optimization," or SynO) affects calculated lower body joint stiffnesses during walking. By limiting the achievable muscle activations and coupling all time frames together, a synergy structure provides a potential mechanism for reducing indeterminacy and improving physiological co-activation but at the cost of a larger optimization problem. To compare joint stiffnesses produced by SynO (2-6 synergies) and SO, we used both approaches to estimate lower body muscle activations and forces for sample experimental overground walking data obtained from the first knee grand challenge competition. Both optimizations used a custom Hill-type muscle model that permitted analytic calculation of individual muscle contributions to the stiffness of spanned joints. Both approaches reproduced inverse dynamic joint moments well over the entire gait cycle, though SynO with only two synergies exhibited the largest errors. Maximum and mean joint stiffnesses for hip and knee flexion in particular decreased as the number of synergies increased from 2 to 6, with SO producing the lowest joint stiffness values. Our results suggest that SynO increases joint stiffness by increasing muscle co-activation, and furthermore, that walking with a reduced number of synergies may result in increased joint stiffness and perhaps stability.
Collapse
Affiliation(s)
- Mohammad S Shourijeh
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, TX 77005
| | - Benjamin J Fregly
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, TX 77005
| |
Collapse
|
37
|
Shuman BR, Goudriaan M, Desloovere K, Schwartz MH, Steele KM. Muscle Synergy Constraints Do Not Improve Estimates of Muscle Activity From Static Optimization During Gait for Unimpaired Children or Children With Cerebral Palsy. Front Neurorobot 2019; 13:102. [PMID: 31920612 PMCID: PMC6927914 DOI: 10.3389/fnbot.2019.00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
Neuromusculoskeletal simulation provides a promising platform to inform the design of assistive devices or inform rehabilitation. For these applications, a simulation must be able to accurately represent the person of interest, such as an individual with a neurologic injury. If a simulation fails to predict how an individual recruits and coordinates their muscles during movement, it will have limited utility for informing design or rehabilitation. While inverse dynamic simulations have previously been used to evaluate anticipated responses from interventions, like orthopedic surgery or orthoses, they frequently struggle to accurately estimate muscle activations, even for tasks like walking. The simulated muscle activity often fails to represent experimentally measured muscle activity from electromyographic (EMG) recordings. Research has theorized that the nervous system may simplify the range of possible activations used during dynamic tasks, by constraining activations to weighted groups of muscles, referred to as muscle synergies. Synergies are altered after neurological injury, such as stroke or cerebral palsy (CP), and may provide a method for improving subject-specific models of neuromuscular control. The aim of this study was to test whether constraining simulation to synergies could improve estimated muscle activations compared to EMG data. We evaluated modeled muscle activations during gait for six typically developing (TD) children and six children with CP. Muscle activations were estimated with: (1) static optimization (SO), minimizing muscle activations squared, and (2) synergy SO (SynSO), minimizing synergy activations squared using the weights identified from EMG data for two to five synergies. While SynSO caused changes in estimated activations compared to SO, the correlation to EMG data was not higher in SynSO than SO for either TD or CP groups. The correlations to EMG were higher in CP than TD for both SO (CP: 0.48, TD: 0.36) and SynSO (CP: 0.46, TD: 0.26 for five synergies). Constraining activations to SynSO caused the simulated muscle stress to increase compared to SO for all individuals, causing a 157% increase with two synergies. These results suggest that constraining simulated activations in inverse dynamic simulations to subject-specific synergies alone may not improve estimation of muscle activations during gait for generic musculoskeletal models.
Collapse
Affiliation(s)
- Benjamin R. Shuman
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Marije Goudriaan
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven (Pellenberg), Lubbeek, Belgium
| | - Michael H. Schwartz
- James R. Gage Center for Gait and Motion Analysis, Gillette Children’s Specialty Healthcare, Saint Paul, MN, United States
- Orthopaedic Surgery, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
38
|
Ichimura D, Yamazaki T. A Pathological Condition Affects Motor Modules in a Bipedal Locomotion Model. Front Neurorobot 2019; 13:79. [PMID: 31616276 PMCID: PMC6763684 DOI: 10.3389/fnbot.2019.00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Bipedal locomotion is a basic motor activity that requires simultaneous control of multiple muscles. Physiological experiments suggest that the nervous system controls bipedal locomotion efficiently by using motor modules of synergistic muscle activations. If these modules were merged, abnormal locomotion patterns would be realized as observed in patients with neural impairments such as chronic stroke. However, sub-acute patients have been reported not to show such merged motor modules. Therefore, in this study, we examined what conditions in the nervous system merges motor modules. we built a two-dimensional bipedal locomotion model that included a musculoskeletal model with 7 segments and 18 muscles, a neural system with a hierarchical central pattern generator (CPG), and various feedback inputs from reflex organs. The CPG generated synergistic muscle activations comprising 5 motor modules to produce locomotion phases. Our model succeeded to acquire stable locomotion by using the motor modules and reflexes. Next, we examined how a pathological condition altered motor modules. Specifically, we weakened neural inputs to muscles on one leg to simulate a stroke condition. Immediately after the simulated stroke, the model did not walk. Then, internal parameters were modified to recover stable locomotion. We refitted either (a) reflex parameters or (b) CPG parameters to compensate the locomotion by adapting (a) reflexes or (b) the controller. Stable locomotion was recovered in both conditions. However the motor modules were merged only in (b). These results suggest that light or sub-acute stroke patients, who can compensate stable locomotion by just adapting reflexes, would not show merge of motor modules, whereas severe or chronic patients, who needed to adapt the controller for compensation, would show the merge, as consistent with experimental findings.
Collapse
Affiliation(s)
- Daisuke Ichimura
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.,Heisei Ougi Hospital, Tokyo, Japan
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
39
|
Akbas T, Neptune RR, Sulzer J. Neuromusculoskeletal Simulation Reveals Abnormal Rectus Femoris-Gluteus Medius Coupling in Post-stroke Gait. Front Neurol 2019; 10:301. [PMID: 31001189 PMCID: PMC6454148 DOI: 10.3389/fneur.2019.00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Post-stroke gait is often accompanied by muscle impairments that result in adaptations such as hip circumduction to compensate for lack of knee flexion. Our previous work robotically enhanced knee flexion in individuals post-stroke with Stiff-Knee Gait (SKG), however, this resulted in greater circumduction, suggesting the existence of abnormal coordination in SKG. The purpose of this work is to investigate two possible mechanisms of the abnormal coordination: (1) a reflex coupling between stretched quadriceps and abductors, and (2) a coupling between volitionally activated knee flexors and abductors. We used previously collected kinematic, kinetic and EMG measures from nine participants with chronic stroke and five healthy controls during walking with and without the applied knee flexion torque perturbations in the pre-swing phase of gait in the neuromusculoskeletal simulation. The measured muscle activity was supplemented by simulated muscle activations to estimate the muscle states of the quadriceps, hamstrings and hip abductors. We used linear mixed models to investigate two hypotheses: (H1) association between quadriceps and abductor activation during an involuntary period (reflex latency) following the perturbation and (H2) association between hamstrings and abductor activation after the perturbation was removed. We observed significantly higher rectus femoris (RF) activation in stroke participants compared to healthy controls within the involuntary response period following the perturbation based on both measured (H1, p < 0.001) and simulated (H1, p = 0.022) activity. Simulated RF and gluteus medius (GMed) activations were correlated only in those with SKG, which was significantly higher compared to healthy controls (H1, p = 0.030). There was no evidence of synergistic coupling between any combination of hamstrings and hip abductors (H2, p > 0.05) when the perturbation was removed. The RF-GMed coupling suggests an underlying abnormal coordination pattern in post-stroke SKG, likely reflexive in origin. These results challenge earlier assumptions that hip circumduction in stroke is simply a kinematic adaptation due to reduced toe clearance. Instead, abnormal coordination may underlie circumduction, illustrating the deleterious role of abnormal coordination in post-stroke gait.
Collapse
Affiliation(s)
| | | | - James Sulzer
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
40
|
Shuman BR, Goudriaan M, Desloovere K, Schwartz MH, Steele KM. Muscle synergies demonstrate only minimal changes after treatment in cerebral palsy. J Neuroeng Rehabil 2019; 16:46. [PMID: 30925882 PMCID: PMC6441188 DOI: 10.1186/s12984-019-0502-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Children with cerebral palsy (CP) have altered synergies compared to typically-developing peers, reflecting different neuromuscular control strategies used to move. While these children receive a variety of treatments to improve gait, whether synergies change after treatment, or are associated with treatment outcomes, remains unknown. METHODS We evaluated synergies for 147 children with CP before and after three common treatments: botulinum toxin type-A injection (n = 52), selective dorsal rhizotomy (n = 38), and multi-level orthopaedic surgery (n = 57). Changes in synergy complexity were measured by the number of synergies required to explain > 90% of the total variance in electromyography data and total variance accounted for by one synergy. Synergy weights and activations before and after treatment were compared using the cosine similarity relative to average synergies of 31 typically-developing (TD) peers. RESULTS There were minimal changes in synergies after treatment despite changes in walking patterns. Number of synergies did not change significantly for any treatment group. Total variance accounted for by one synergy increased (i.e., moved further from TD peers) after botulinum toxin type-A injection (1.3%) and selective dorsal rhizotomy (1.9%), but the change was small. Synergy weights did not change for any treatment group (average 0.001 ± 0.10), but synergy activations after selective dorsal rhizotomy did change and were less similar to TD peers (- 0.03 ± 0.07). Only changes in synergy activations were associated with changes in gait kinematics or walking speed after treatment. Children with synergy activations more similar to TD peers after treatment had greater improvements in gait. CONCLUSIONS While many of these children received significant surgical procedures and prolonged rehabilitation, the minimal changes in synergies after treatment highlight the challenges in altering neuromuscular control in CP. Development of treatment strategies that directly target impaired control or are optimized to an individual's unique control may be required to improve walking function.
Collapse
Affiliation(s)
- Benjamin R. Shuman
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195 USA
| | - Marije Goudriaan
- Department of Human Movement Sciences, VU university, Amsterdam, the Netherlands
- Department of Rehabilitation Science, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Science, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven Campus Pellenberg, Pellenberg, Belgium
| | - Michael H. Schwartz
- James R. Gage Center for Gait & Motion Analysis, Gillette Children’s Specialty Healthcare, St. Paul, MN USA
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN USA
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195 USA
| |
Collapse
|
41
|
Van Criekinge T, Vermeulen J, Wagemans K, Schröder J, Embrechts E, Truijen S, Hallemans A, Saeys W. Lower limb muscle synergies during walking after stroke: a systematic review. Disabil Rehabil 2019; 42:2836-2845. [DOI: 10.1080/09638288.2019.1578421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tamaya Van Criekinge
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Multidisciplinary Motor Centre Antwerp (M2OCEAN), University of Antwerp, Antwerp, Belgium
| | - Jordi Vermeulen
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Keanu Wagemans
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Jonas Schröder
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Elissa Embrechts
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Multidisciplinary Motor Centre Antwerp (M2OCEAN), University of Antwerp, Antwerp, Belgium
| | - Ann Hallemans
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Multidisciplinary Motor Centre Antwerp (M2OCEAN), University of Antwerp, Antwerp, Belgium
| | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Multidisciplinary Motor Centre Antwerp (M2OCEAN), University of Antwerp, Antwerp, Belgium
- RevArte Rehabilitation Hospital, Edegem, Belgium
| |
Collapse
|
42
|
Aguirre-Güemez AV, Pérez-Sanpablo AI, Quinzaños-Fresnedo J, Pérez-Zavala R, Barrera-Ortiz A. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete Spinal Cord Injury: A Systematic Review with meta-analysis. J Spinal Cord Med 2019; 42:142-154. [PMID: 29065788 PMCID: PMC6419626 DOI: 10.1080/10790268.2017.1390644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CONTEXT While there are previous systematic reviews on the effectiveness of the use of robotic-assisted gait training (RAGT) in people with spinal cord injuries (SCI), as this is a dynamic field, new studies have been produced that are now incorporated on this systematic review (SR) with meta-analysis, updating the available evidence on this area. OBJECTIVE To synthesise the available evidence on the use of RAGT, to improve gait, strength and functioning. METHODS SR and meta-analysis following the Cochrane Handbook for Systematic Reviews of Interventions were implemented. Cochrane Injuries Group Specialized Register, PubMed, MEDLINE, EMBASE, CINAHL, ISIWeb of Science (SCIEXPANDED) databases were reviewed for the period 1990 to December 2016. Three researchers independently identified and categorized trials; 293 studies were identified, 273 eliminated; remaining 15 randomized clinical trials (RCT) and five SR. Six studies had available data for meta-analysis (222 participants). RESULTS The pooled mean demonstrated a beneficial effect of RAGT for WISCI, FIM-L and LEMS (3.01, 2.74 and 1.95 respectively), and no effect for speed. CONCLUSIONS The results show a positive effect in the use of RAGT. However, this should be taken carefully due to heterogeneity of the studies, small samples and identified limitations of some of the included trials. These results highlight the relevance of implementing a well-designed multicenter RCT powered enough to evaluate different RAGT approaches.
Collapse
Affiliation(s)
| | | | - Jimena Quinzaños-Fresnedo
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Ramiro Pérez-Zavala
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Aída Barrera-Ortiz
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| |
Collapse
|
43
|
Kim Y, Bulea TC, Damiano DL. Children With Cerebral Palsy Have Greater Stride-to-Stride Variability of Muscle Synergies During Gait Than Typically Developing Children: Implications for Motor Control Complexity. Neurorehabil Neural Repair 2019; 32:834-844. [PMID: 30223739 DOI: 10.1177/1545968318796333] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND There is mounting evidence that the central nervous system utilizes a modular approach for neuromuscular control of walking by activating groups of muscles in units termed muscle synergies. Examination of muscle synergies in clinical populations may provide insights into alteration of neuromuscular control underlying pathological gait patterns. Previous studies utilizing synergy analysis have reported reduced motor control complexity during walking in those with neurological deficits, revealing the potential clinical utility of this approach. METHODS We extracted muscle synergies on a stride-to-stride basis from 20 children with cerebral palsy (CP; Gross Motor Function Classification System levels I-II) and 8 children without CP, allowing the number of synergies to vary for each stride. Similar muscle synergies across all participants and strides were grouped using a k-means clustering and discriminant analysis. RESULTS In total, 10 clusters representing 10 distinct synergies were found across the 28 individuals. Relative to their total number of synergies deployed during walking, synergies from children with CP were present in a higher number of clusters than in children with typical development (TD), indicating significantly greater stride-to-stride variability. This increased variability was present despite reduced complexity, as measured by the mean number of synergies in each stride. Whereas children with CP demonstrate some novel synergies, they also deploy some of the same muscle synergies as those with TD, although less frequently and with more variability. CONCLUSION A stride-by-stride approach to muscle synergy analysis expands its clinical utility and may provide a method to tailor rehabilitation strategies by revealing inconsistent but functional synergies in each child with CP.
Collapse
Affiliation(s)
- Yushin Kim
- 1 National Institutes of Health, Bethesda, MD, USA.,2 Cheongju University, South Korea
| | | | | |
Collapse
|
44
|
Roelker SA, Bowden MG, Kautz SA, Neptune RR. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review. Gait Posture 2019; 68:6-14. [PMID: 30408710 PMCID: PMC6657344 DOI: 10.1016/j.gaitpost.2018.10.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although walking speed is the most common measure of gait performance post-stroke, improved walking speed following rehabilitation does not always indicate the recovery of paretic limb function. Over the last decade, the measure paretic propulsion (Pp, defined as the propulsive impulse generated by the paretic leg divided by the sum of the propulsive impulses of both legs) has been established as a measure of paretic limb output and recently targeted in post-stroke rehabilitation paradigms. However, the literature lacks a detailed synthesis of how paretic propulsion, walking speed, and other biomechanical and neuromuscular measures collectively relate to post-stroke walking performance and motor recovery. OBJECTIVE The aim of this review was to assess factors associated with the ability to generate Pp and identify rehabilitation targets aimed at improving Pp and paretic limb function. METHODS Relevant literature was collected in which paretic propulsion was used to quantify and assess propulsion symmetry and function in hemiparetic gait. RESULTS Paretic leg extension during terminal stance is strongly associated with Pp. Both paretic leg extension and propulsion are related to step length asymmetry, revealing an interaction between spatiotemporal, kinematic and kinetic metrics that underlies hemiparetic walking performance. The importance of plantarflexor function in producing propulsion is highlighted by the association of an independent plantarflexor excitation module with increased Pp. Furthermore, the literature suggests that although current rehabilitation techniques can improve Pp, these improvements depend on the patient's baseline plantarflexor function. SIGNIFICANCE Pp provides a quantitative measure of propulsion symmetry and should be a primary target of post-stroke gait rehabilitation. The current literature suggests rehabilitation techniques that target both plantarflexor function and leg extension may restore paretic limb function and improve gait asymmetries in individuals post stroke.
Collapse
Affiliation(s)
- Sarah A. Roelker
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mark G. Bowden
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Steven A. Kautz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Richard R. Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
45
|
Srivastava S, Patten C, Kautz SA. Altered muscle activation patterns (AMAP): an analytical tool to compare muscle activity patterns of hemiparetic gait with a normative profile. J Neuroeng Rehabil 2019; 16:21. [PMID: 30704483 PMCID: PMC6357420 DOI: 10.1186/s12984-019-0487-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
Background Stroke survivors often have lower extremity sensorimotor impairments, resulting in an inability to sufficiently recruit muscle activity at appropriate times in a gait cycle. Currently there is a lack of a standardized method that allows comparison of muscle activation in hemiparetic gait post-stroke to a normative profile. Methods We developed a new tool to quantify altered muscle activation patterns (AMAP). AMAP accounts for spatiotemporal asymmetries in stroke gait by evaluating the deviations of muscle activation specific to each gait sub-phase. It also recognizes the characteristic variability within the healthy population. The inter-individual variability of normal electromyography (EMG) patterns within some sub-phases of the gait cycle is larger compared to others, therefore AMAP penalizes more for deviations in a gait sub-phase with a constant profile (absolute active or inactive) vs variable profile. EMG data were collected during treadmill walking, from eight leg muscles of 34 stroke survivors at self-selected speeds and 20 healthy controls at four different speeds. Stroke survivors’ AMAP scores, for timing and amplitude variations, were computed in comparison to healthy controls walking at speeds matched to the stroke survivors’ self-selected speeds. Results Altered EMG patterns in the stroke population quantified using AMAP agree with the previously reported EMG alterations in stroke gait that were identified using qualitative methods. We defined scores ranging between ±2.57 as “normal”. Only 9% of healthy controls were outside “normal” window for timing and amplitude. Percentages of stroke subjects outside the “normal” window for each muscle were, Soleus = 79%; 73%, Medial Gastrocnemius = 62%; 79%, Tibialis Anterior = 62%; 59%, and Gluteus Medius = 48%; 51% for amplitude and timing component respectively, alterations were relatively smaller for the other four muscles. Paretic-propulsion was negatively correlated to AMAP scores for the timing component of Soleus. Stroke survivors’ self-selected walking speed was negatively correlated with AMAP scores for amplitude and timing of Soleus but only amplitude of Medial gastrocnemius (p < 0.05). Conclusions Our results validate the ability of AMAP to identify alterations in the EMG patterns within the stroke population and its potential to be used to identify the gait phases that may require more attention when developing an optimal gait training paradigm. Trial registration ClinicalTrials.govNCT00712179, Registered July 3rd 2008 Electronic supplementary material The online version of this article (10.1186/s12984-019-0487-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, Charleston, SC, 29425, USA.
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience (BRaIN) Lab, Department of Physical Medicine and Rehabilitation, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,VA Northern California Health Care System, Martinez, CA, 94553, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, Charleston, SC, 29425, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| |
Collapse
|
46
|
Aoi S, Ohashi T, Bamba R, Fujiki S, Tamura D, Funato T, Senda K, Ivanenko Y, Tsuchiya K. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis. Sci Rep 2019; 9:369. [PMID: 30674970 PMCID: PMC6344546 DOI: 10.1038/s41598-018-37460-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/07/2018] [Indexed: 01/14/2023] Open
Abstract
Humans walk and run, as well as change their gait speed, through the control of their complicated and redundant musculoskeletal system. These gaits exhibit different locomotor behaviors, such as a double-stance phase in walking and flight phase in running. The complex and redundant nature of the musculoskeletal system and the wide variation in locomotion characteristics lead us to imagine that the motor control strategies for these gaits, which remain unclear, are extremely complex and differ from one another. It has been previously proposed that muscle activations may be generated by linearly combining a small set of basic pulses produced by central pattern generators (muscle synergy hypothesis). This control scheme is simple and thought to be shared between walking and running at different speeds. Demonstrating that this control scheme can generate walking and running and change the speed is critical, as bipedal locomotion is dynamically challenging. Here, we provide such a demonstration by using a motor control model with 69 parameters developed based on the muscle synergy hypothesis. Specifically, we show that it produces both walking and running of a human musculoskeletal model by changing only seven key motor control parameters. Furthermore, we show that the model can walk and run at different speeds by changing only the same seven parameters based on the desired speed. These findings will improve our understanding of human motor control in locomotion and provide guiding principles for the control design of wearable exoskeletons and prostheses.
Collapse
Affiliation(s)
- Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Tomohiro Ohashi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Ryoko Bamba
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Soichiro Fujiki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Daiki Tamura
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Choufugaoka, Choufu-shi, Tokyo, 182-8585, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
47
|
Kibushi B, Hagio S, Moritani T, Kouzaki M. Lower Local Dynamic Stability and Invariable Orbital Stability in the Activation of Muscle Synergies in Response to Accelerated Walking Speeds. Front Hum Neurosci 2018; 12:485. [PMID: 30618674 PMCID: PMC6297374 DOI: 10.3389/fnhum.2018.00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/20/2018] [Indexed: 12/03/2022] Open
Abstract
In order to achieve flexible and smooth walking, we must accomplish subtasks (e. g., loading response, forward propulsion or swing initiation) within a gait cycle. To evaluate subtasks within a gait cycle, the analysis of muscle synergies may be effective. In the case of walking, extracted sets of muscle synergies characterize muscle patterns that relate to the subtasks within a gait cycle. Although previous studies have reported that the muscle synergies of individuals with disorders reflect impairments, a way to investigate the instability in the activations of muscle synergies themselves has not been proposed. Thus, we investigated the local dynamic stability and orbital stability of activations of muscle synergies across various walking speeds using maximum Lyapunov exponents and maximum Floquet multipliers. We revealed that the local dynamic stability in the activations decreased with accelerated walking speeds. Contrary to the local dynamic stability, the orbital stability of the activations was almost constant across walking speeds. In addition, the increasing rates of maximum Lyapunov exponents were different among the muscle synergies. Therefore, the local dynamic stability in the activations might depend on the requirement of motor output related to the subtasks within a gait cycle. We concluded that the local dynamic stability in the activation of muscle synergies decrease as walking speed accelerates. On the other hand, the orbital stability is sustained across broad walking speeds.
Collapse
Affiliation(s)
- Benio Kibushi
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shota Hagio
- Japan Society for the Promotion of Science, Tokyo, Japan.,Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Toshio Moritani
- School of Health and Sport Sciences, Chukyo University, Nagoya, Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Ogaya S, Kubota R, Chujo Y, Hirooka E, Ito K, Kwang-ho K, Hase K. Potential of muscles to accelerate the body during late-stance forward progression in individuals with knee osteoarthritis. Hum Mov Sci 2018; 61:109-116. [DOI: 10.1016/j.humov.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 11/15/2022]
|
49
|
Allen JL, Franz JR. The motor repertoire of older adult fallers may constrain their response to balance perturbations. J Neurophysiol 2018; 120:2368-2378. [PMID: 30133380 DOI: 10.1152/jn.00302.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Older adults are at a high risk of falls, and most falls occur during locomotor activities like walking. This study aimed to improve our understanding of changes in neuromuscular control associated with increased risk of falls in older adults in the presence of dynamic balance challenges during walking. Motor module (also known as muscle synergy) analyses identified changes in the neuromuscular recruitment of leg muscles during walking with and without perturbations designed to elicit the visual perception of lateral instability. During normal walking we found that a history of falls (but not age) was associated with reduced motor module complexity and that age (but not a history of falls) was associated with increased step-to-step variability of module recruitment timing. Furthermore, motor module complexity was unaltered in the presence of optical flow perturbations. The specific effects of a history of falls on leg muscle recruitment included an absence and/or inability to independently recruit motor modules normally recruited to perform biomechanical functions important for walking balance control. These results suggest that fallers do not recruit the appropriate motor modules necessary for well-coordinated walking balance control even in the presence of perturbations. The identified changes in the modular control of walking balance in older fallers may either represent a neural deficit that leads to poor balance control or a prior history of falls that results in a compensatory motor adaptation. In either case, our study provides initial evidence that a reduced motor repertoire in older adult fallers may be a constraint on their ability to appropriately respond to balance challenges during walking. NEW & NOTEWORTHY This is the first study to demonstrate a reduced motor repertoire during walking in older adults with a history of falls but without any overt neurological deficits. Furthermore, using virtual reality during walking to elicit the visual perception of lateral instability, we provide initial evidence that a reduced motor repertoire in older adult fallers may be a constraint on their ability to appropriately respond to balance challenges during walking.
Collapse
Affiliation(s)
- Jessica L Allen
- Department of Chemical and Biomedical Engineering, West Virginia University , Morgantown, West Virginia
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Chapel Hill, North Carolina
| |
Collapse
|
50
|
de Kam D, Geurts AC, Weerdesteyn V, Torres-Oviedo G. Direction-Specific Instability Poststroke Is Associated With Deficient Motor Modules for Balance Control. Neurorehabil Neural Repair 2018; 32:655-666. [PMID: 29954244 DOI: 10.1177/1545968318783884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Defective muscle coordination for balance recovery may contribute to stroke survivors' propensity for falling. Thus, we investigated deficits in muscle coordination for postural control and their association to body sway following balance perturbations in people with stroke. Specifically, we compared the automatic postural responses of 8 leg and trunk muscles recorded bilaterally in unimpaired individuals and those with mild to moderate impairments after unilateral supratentorial lesions (>6 months). These responses were elicited by unexpected floor translations in 12 directions. We extracted motor modules (ie, muscle synergies) for each leg using nonnegative matrix factorization. We also determined the magnitude of perturbation-induced body sway using a single-link inverted pendulum model. Whereas the number of motor modules for balance was not affected by stroke, those formed by muscles with long latency responses were replaced by atypically structured paretic motor modules (atypical muscle groupings), which hints at direct cerebral involvement in long-latency feedback responses. Other paretic motor modules had intact structure but were poorly recruited, which is indicative of indirect cerebral control of balance. Importantly, these paretic deficits were strongly associated with postural instability in the preferred activation direction of the impaired motor modules. Finally, these deficiencies were heterogeneously distributed across stroke survivors with lesions in distinct locations, suggesting that different cerebral substrates may contribute to balance control. In conclusion, muscle coordination deficits in the paretic limb of stroke survivors result in direction-specific postural instability, which highlights the importance of targeted interventions to address patient-specific balance impairments.
Collapse
Affiliation(s)
- Digna de Kam
- 1 Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,2 University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, PA, United States
| | - Alexander C Geurts
- 1 Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,3 Sint Maartenskliniek Research, Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- 1 Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,3 Sint Maartenskliniek Research, Nijmegen, The Netherlands
| | - Gelsy Torres-Oviedo
- 2 University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, PA, United States
| |
Collapse
|