1
|
Obana A. Measurement of skin carotenoids and their association with diseases: a narrative review. Biochim Biophys Acta Mol Cell Biol Lipids 2025:159612. [PMID: 40258439 DOI: 10.1016/j.bbalip.2025.159612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
Skin carotenoids are highly correlated with blood carotenoid concentrations and can be measured noninvasively using optical methods. Skin carotenoid levels are widely used in nutritional education as indicators of fruit and vegetable intake; however, research on their use as biomarkers for disease prevention is limited. This narrative review outlines methods for measuring skin carotenoid levels and describes the diseases in which the relationship between skin carotenoids and diseases has been examined, including atherosclerotic cardiovascular disease, metabolic syndrome, pediatric asthma, age-related macular degeneration, and cognitive impairment.
Collapse
Affiliation(s)
- Akira Obana
- Eye center, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Chuo-ku, Hamamatsu City 430-8558, Shizuoka, Japan.
| |
Collapse
|
2
|
Liu Z, Sun C, Zhang Z, Jiang Y, Zhao C. Telomeres in skin aging. Biogerontology 2025; 26:83. [PMID: 40159528 DOI: 10.1007/s10522-025-10228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Skin aging is influenced by both intrinsic and extrinsic factors. The gradual manifestation of changes in telomere length and telomerase activity, as crucial indicators of aging, elucidates the underlying mechanism of skin aging. This review aims to comprehensively analyze the association between telomeres and aging, along with their impact on skin biological function. Firstly, we summarize the structure and function of telomeres and their role in cell division. Subsequently, we discuss the mechanisms through which telomere regulation contributes to aging processes while analyzing its involvement in skin aging by elaborating on biological markers. Furthermore, this paper presents a summary of recent research progress that reveals the correlation between telomere length and skin aging as well as model building methods; it also proposes telomere length as a potential indicator for predicting skin aging. Finally, anti-aging strategies based on telomere protection are discussed including drug therapy and lifestyle adjustments. This paper provides a systematic overview of the role played by telomeres in the field of skin aging for the first time, offering new perspectives and ideas for future prevention and treatment.
Collapse
Affiliation(s)
- Zibin Liu
- Beijing Qingyan Boshi Health Management Co., Ltd, No. 36, Chuangyuan Road, Chaoyang District, Beijing, China
| | - Chang Sun
- Beijing Qingyan Boshi Health Management Co., Ltd, No. 36, Chuangyuan Road, Chaoyang District, Beijing, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Peking University Medical-Qingyan Boshi Joint Laboratory for Skin Nutrition and Anti-Aging, School of Public Health, Peking University, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, No. 36, Chuangyuan Road, Chaoyang District, Beijing, China.
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, No. 36, Chuangyuan Road, Chaoyang District, Beijing, China.
| |
Collapse
|
3
|
Camargo CA, Salvador-Reyes R, Bazzani CSR, Clerici MTPS, Marques MC, Mariutti LRB. Screening the carotenoid in vitro bioaccessibility of purple corn breakfast cereal consumed with milk and plant-based milk. Food Res Int 2024; 197:115259. [PMID: 39593341 DOI: 10.1016/j.foodres.2024.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Chronic non-communicable diseases (NCD), such as cardiovascular diseases, diabetes, and cancer, dominate global mortality, besides compromising the quality of life. Unhealthy habits like sedentary lifestyles and poor diets escalate NCD risks. Conversely, the consumption of phenolic compounds and carotenoids has shown promise in reducing NCD risks. The food industry responds by adapting products to meet demands for healthier options rich in bioactive compounds. For instance, breakfast cereals made from purple and yellow corn offer carotenoids and anthocyanins and form a nutrient-balanced meal when consumed with milk or alternatives. However, bioactive compounds in food do not guarantee absorption, necessitating bioaccessibility studies. In this study, we aimed to evaluate the bioaccessibility of the major carotenoids in two breakfast cereals, one made with 100% yellow corn and the other with 50% purple corn, co-digested with whole milk, semi-skimmed milk, skimmed milk, and almond "milk". The bioaccessibility of lutein in the breakfast cereals was evaluated using the INFOGEST 2.0 in vitro digestion method. Results showed that lutein bioaccessibility ranged from 9% to 29%. The bioaccessibility was lower than that observed in other food matrices, such as spinach and maize products. High fiber, low carotenoid contents, and anthocyanin presence negatively influenced the carotenoid bioaccessibility. Interestingly, the varying lipid content of milk showed no impact on lutein bioaccessibility under the examined conditions. In conclusion, the effects of lipids in a low range (0-7%) are not significant (p > 0.05) compared to other matrix components. When developing new products with health and nutritional benefits, it is important to consider that while fiber can reduce the bioaccessibility of carotenoids, it remains crucial for gut health.
Collapse
Affiliation(s)
- Celso Andrade Camargo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | | | - Carmen Sílvia Rincon Bazzani
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | | | - Marcella Camargo Marques
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | - Lilian Regina Barros Mariutti
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| |
Collapse
|
4
|
Miller AP, Monroy WC, Soria G, Amengual J. The low-density lipoprotein receptor contributes to carotenoid homeostasis by regulating tissue uptake and fecal elimination. Mol Metab 2024; 88:102007. [PMID: 39134303 PMCID: PMC11382122 DOI: 10.1016/j.molmet.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVE Carotenoids are lipophilic plant molecules with antioxidant properties. Some carotenoids such as β-carotene also serve as vitamin A precursors, playing a key role in human health. Carotenoids are transported in lipoproteins with other lipids such as cholesterol, however, the mechanisms responsible for carotenoid storage in tissues and their non-enzymatic elimination remain relatively unexplored. The goal of this study was to examine the contribution of the low-density lipoprotein receptor (LDLR) in the bodily distribution and disposal of carotenoids. METHODS We employed mice lacking one or both carotenoid-cleaving enzymes as suitable models for carotenoid accumulation. We examined the contribution of LDLR in carotenoid distribution by crossbreeding these mice with Ldlr-/- mice or overexpressing LDLR in the liver. RESULTS Our results show that LDLR plays a dual role in carotenoid homeostasis by simultaneously favoring carotenoid storage in the liver and adipose tissue while facilitating their fecal elimination. CONCLUSIONS Our results highlight a novel role of the LDLR in carotenoid homeostasis, and unveil a previously unrecognized disposal pathway for these important bioactive molecules.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Walter C Monroy
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Gema Soria
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2024:1-23. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
6
|
Khoramizadeh F, Garibay-Hernández A, Mock HP, Bilger W. Improvement of the Quality of Wild Rocket ( Diplotaxis tenuifolia) with Respect to Health-Related Compounds by Enhanced Growth Irradiance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9735-9745. [PMID: 38648561 PMCID: PMC11066873 DOI: 10.1021/acs.jafc.3c07698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
For healthier human nutrition, it is desirable to provide food with a high content of nutraceuticals such as polyphenolics, vitamins, and carotenoids. We investigated to what extent high growth irradiance influences the content of phenolics, α-tocopherol and carotenoids, in wild rocket (Diplotaxis tenuifolia), which is increasingly used as a salad green. Potted plants were grown in a climate chamber with a 16 h day length at photosynthetic photon flux densities varying from 20 to 1250 μmol m-2 s-1. Measurements of the maximal quantum yield of photosystem II, FV/FM, and of the epoxidation state of the violaxanthin cycle (V-cycle) showed that the plants did not suffer from excessive light for photosynthesis. Contents of carotenoids belonging to the V-cycle, α-tocopherol and several quercetin derivatives, increased nearly linearly with irradiance. Nonintrusive measurements of chlorophyll fluorescence induced by UV-A and blue light relative to that induced by red light, indicating flavonoid and carotenoid content, allowed not only a semiquantitative measurement of both compounds but also allowed to follow their dynamic changes during reciprocal transfers between low and high growth irradiance. The results show that growth irradiance has a strong influence on the content of three different types of compounds with antioxidative properties and that it is possible to determine the contents of flavonoids and specific carotenoids in intact leaves using chlorophyll fluorescence. The results may be used for breeding to enhance healthy compounds in wild rocket leaves and to monitor their content for selection of appropriate genotypes.
Collapse
Affiliation(s)
- Fahimeh Khoramizadeh
- Botanical
Institute, Christian-Albrechts University
Kiel, Olshausenstr. 40, Kiel D-24098, Germany
| | - Adriana Garibay-Hernández
- Molecular
Biotechnology and Systems Biology, Rheinland-Pfälzische
TU Kaiserslautern, Paul-Ehrlich
Straße 23, Kaiserslautern D-67663, Germany
- Leibniz
Institute for Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Seeland, OT Gatersleben D-06466, Germany
| | - Hans-Peter Mock
- Leibniz
Institute for Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Seeland, OT Gatersleben D-06466, Germany
| | - Wolfgang Bilger
- Botanical
Institute, Christian-Albrechts University
Kiel, Olshausenstr. 40, Kiel D-24098, Germany
| |
Collapse
|
7
|
Trisnawaty S, Gunadi JW, Ratnawati H, Lesmana R. Carotenoids in red fruit ( Pandanus conoideus Lam.) have a potential role as an anti‑pigmentation agent (Review). Biomed Rep 2024; 20:54. [PMID: 38357234 PMCID: PMC10865171 DOI: 10.3892/br.2024.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Melasma is a persistent condition characterized by excessive melanin production in the skin. The management of melasma necessitates a protracted treatment duration, which is associated with diminished levels of patient satisfaction. One effective strategy for mitigating occurrence of melasma is consumption of nutricosmetics with depigmentation properties. The present review aimed to investigate the potential of red fruit as a depigmentation agent. Carotenoids serve a crucial role in human nutrition as a precursor to vitamin A. Carotenoids serve as scavengers of reactive oxygen species generated by ultraviolet radiation. Carotenoids promote skin health. Red fruit, a fruit originating from Papua (Indonesia) has anti-pigmentation properties associated with its ability to block melanogenesis through various protein pathways such as PKA, ERK, and AKT signaling pathways. The consumption of food rich in carotenoids, such as red fruit, has advantageous properties to reduce hyperpigmentation and skin brightening.
Collapse
Affiliation(s)
- Sri Trisnawaty
- Master Program of Skin Ageing and Aesthetic Medicine, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
- Maranatha Biomedical Research Laboratory, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Hana Ratnawati
- Department of Histology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
8
|
Flieger J, Raszewska-Famielec M, Radzikowska-Büchner E, Flieger W. Skin Protection by Carotenoid Pigments. Int J Mol Sci 2024; 25:1431. [PMID: 38338710 PMCID: PMC10855854 DOI: 10.3390/ijms25031431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Magdalena Raszewska-Famielec
- Faculty of Physical Education and Health, University of Physicl Education, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
9
|
Martell SG, Kim J, Cannavale CN, Mehta TD, Erdman JW, Adamson B, Motl RW, Khan NA. Randomized, Placebo-Controlled, Single-Blind Study of Lutein Supplementation on Carotenoid Status and Cognition in Persons with Multiple Sclerosis. J Nutr 2023; 153:2298-2311. [PMID: 37364683 PMCID: PMC10447884 DOI: 10.1016/j.tjnut.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is traditionally managed using disease-modifying pharmaceutical therapies as a first line approach for treatment, yet there is increasing interest in lifestyle factors, particularly diet, for managing disease outcomes. Lutein has neuroprotective properties in healthy adults, but no previous research has examined the effects of lutein supplementation in persons with MS. OBJECTIVES This study aimed to investigate the efficacy of 4-mo lutein supplementation on carotenoid status and cognition in persons with relapse-remitting MS (RRMS). METHODS A randomized controlled, single-blind research design was used among adults with RRMS (N = 21). Participants were randomized into placebo (n = 9) or treatment (20-mg/d lutein, n = 12) groups with outcomes measured before and after 4 mo. Macular pigment optical density (MPOD) was assessed using heterochromatic flicker photometry. Skin carotenoids were assessed using reflection spectroscopy. Serum lutein was measured using high-performance liquid chromatography. Cognition was assessed via the Eriksen flanker with event-related potentials, spatial reconstruction, and the symbol digit modalities tests. RESULTS There was a significant group by time interaction for MPOD (F = 6.74, P = 0.02), skin carotenoids (F = 17.30, P < 0.01), and serum lutein (F = 24.10, P < 0.01), whereby the treatment group improved in all carotenoid outcomes. There were no significant group by time interactions for cognitive and neuroelectric outcomes. However, increase in MPOD was positively associated with accuracy during the flanker incongruent trials (r = 0.55, P = 0.03) and the spatial memory task (r = 0.58, P = 0.02) among treatment participants. CONCLUSIONS Lutein supplementation increases carotenoid status among persons with RRMS. There is no significant effect on cognitive function but change in macular carotenoids is selectively associated with improved attention and memory. This study provides preliminary support for a fully powered study targeting retinal and neural carotenoids for cognitive benefits in persons with MS. This trial was registered at clinicaltrials.gov as NCT04843813.
Collapse
Affiliation(s)
- Shelby G Martell
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL
| | - Jeongwoon Kim
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Corinne N Cannavale
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Twinkle D Mehta
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - John W Erdman
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL
| | - Brynn Adamson
- Department of Health Sciences, University of Colorado Colorado Springs, Colorado Springs, CO
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL
| | - Naiman A Khan
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL; Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL.
| |
Collapse
|
10
|
Harth JB, Renzi-Hammond LM, Hammond BR. A Dietary Strategy for Optimizing the Visual Range of Athletes. Exerc Sport Sci Rev 2023; 51:103-108. [PMID: 37083620 PMCID: PMC10259207 DOI: 10.1249/jes.0000000000000318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Visual range is quantified by assessing how far one can see clearly (an ability crucial to many athletes). This ability tends to vary significantly across individuals despite similar personal characteristics. We hypothesize that the primary driver of these differences is the individual response to scattered short-wave light in the environment moderated by the dietarily derived retinal pigments lutein and zeaxanthin.
Collapse
Affiliation(s)
- Jacob B. Harth
- Institute of Gerontology, College of Public Health, The University of Georgia, Athens, GA
| | - Lisa M. Renzi-Hammond
- Institute of Gerontology, College of Public Health, The University of Georgia, Athens, GA
- Vision Sciences Laboratory, Behavioral and Brain Sciences Program, Department of Psychology, The University of Georgia, Athens, GA
| | - Billy R. Hammond
- Vision Sciences Laboratory, Behavioral and Brain Sciences Program, Department of Psychology, The University of Georgia, Athens, GA
| |
Collapse
|
11
|
Agarwal A, Selvam A, Majood M, Agrawal O, Chakrabarti S, Mukherjee M. Carbon nanosheets to unravel the production of bioactive compounds from microalgae: A robust approach in drug discovery. Drug Discov Today 2023; 28:103586. [PMID: 37080385 DOI: 10.1016/j.drudis.2023.103586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
The conglomeration of active pharmaceutical ingredients (APIs) has influenced the development of life-saving drugs. These APIs are customarily synthetic products, albeit with adverse side effects. Thus, to overcome the bottlenecks associated with synthetically derived APIs, the approach of photocatalytically obtaining bioactive compounds from natural ingredients has emerged. Amid the pool of photoactive nanomaterials, this short review emphasizes the intelligent strategy of exploiting photoactive carbon nanosheets to photocatalytically derive bioactive compounds from natural algal biomass to treat many acute or chronic medical conditions. Carbon nanosheets result in phototrophic harvesting of bioactive compounds from microalgae as a result of their being an effective biocatalyst that increases the rate of photosynthesis. To understand the clinical translation of bioactive compounds, the pharmacodynamics of algal bioactive compounds are highlighted to determine the practicality and feasibility of using this green approach for pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
12
|
Antioxidant and Anti-Inflammatory Effects of Carotenoids in Mood Disorders: An Overview. Antioxidants (Basel) 2023; 12:antiox12030676. [PMID: 36978923 PMCID: PMC10045512 DOI: 10.3390/antiox12030676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Depression has a multifactorial etiology comprising family history and unemployment. This review aims to summarize the evidence available for the antioxidant and anti-inflammatory effects of carotenoids in mood disorders. This review article’s methodologies were based on a search of the PubMed database for all linked published papers. Epidemiological studies indicate that a diet rich in vegetables, fruits, nuts, fish, and olive oil may prevent the development of depression. Antioxidant supplementation has been found to combat various stress-induced psychiatric disorders, including depression and anxiety. A growing body of evidence indicates that carotenoids have both antioxidant and anti-inflammatory. Studies also suggest that poor dietary intake, particularly low intakes of fruit and vegetables and high intakes of fast food and other convenience foods, may increase the risk of developing depression. Thus, dietary interventions have the potential to help mitigate the risk of mental health decline in both the general population and those with mood disorders. Considering that carotenoids have both antioxidant and anti-inflammatory effects, it is expected that they might exert a promising antidepressant effect. Nevertheless, further studies (including interventional and mechanistic studies) assessing the effect of carotenoids on preventing and alleviating depression symptoms are needed.
Collapse
|
13
|
Wang Y, Qi H. Natural Bioactive Compounds from Foods Inhibited Pigmentation Especially Potential Application of Fucoxanthin to Chloasma: a Mini-Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2148690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yida Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
14
|
Nanoscale Delivery Systems of Lutein: An Updated Review from a Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14091852. [PMID: 36145601 PMCID: PMC9501598 DOI: 10.3390/pharmaceutics14091852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Carotenoids are natural lipid-soluble pigments that produce yellow to red colors in plants as well as providing bright coloration in vegetables and fruits. Lutein belongs to the xanthophyll subgroup of the carotenoid family, which plays an essential role in photosynthesis and photoprotection in nature. In the human body, lutein, together with its isomer zeaxanthin and its metabolite meso-zeaxanthin, accumulates in the macula of the eye retina, which is responsible for central, high-resolution, and color vision. As a bioactive phytochemical, lutein has essential physiological functions, providing photoprotection against damaging blue light, along with the neutralization of oxidants and the preservation of the structural and functional integrity of cellular membranes. As a potent antioxidant and anti-inflammatory agent, lutein unfortunately has a low bioavailability because of its lipophilicity and a low stability as a result of its conjugated double bonds. In order to enhance lutein stability and bioavailability and achieve its controlled delivery to a target, nanoscale delivery systems, which have great potential for the delivery of bioactive compounds, are starting to be employed. The current review highlights the advantages and innovations associated with incorporating lutein within promising nanoscale delivery systems, such as liposomes, nanoemulsions, polymer nanoparticles, and polymer–lipid hybrid nanoparticles, as well as their unique physiochemical properties.
Collapse
|
15
|
Prospects of cyanobacterial pigment production: biotechnological potential and optimization strategies. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Henning SM, Guzman JB, Thames G, Yang J, Tseng C, Heber D, Kim J, Li Z. Avocado Consumption Increased Skin Elasticity and Firmness in Women - A Pilot Study. J Cosmet Dermatol 2022; 21:4028-4034. [PMID: 35037373 PMCID: PMC9786235 DOI: 10.1111/jocd.14717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Avocados are a rich dietary source of monounsaturated fatty acids, carotenoids, and phenolic compounds. Clinical studies have demonstrated that oral consumption of carotenoids improved skin aging. However, no studies have investigated whether oral intake of avocado will reduce skin aging. OBJECTIVES We therefore performed this pilot study to assess whether oral consumption of one avocado daily for 8 weeks can reduce skin aging in healthy overweight women assessing skin physical characteristics and resistance to UVB radiation. METHODS Thirty-nine female participants (age 27-73 years) with Fitzpatrick skin type II-IV were randomly assigned to consume either one avocado daily or continue habitual diet for 8 weeks. Facial skin elasticity, firmness, pigmentation, sebum, and hydration were determined using a cutometer on the forehead and under eye. Minimal erythema dose (MED) was determined by standardized protocol at inner arm. RESULTS Elasticity and firmness were increased at forehead comparing 8 weeks to baseline in the avocado group. Comparing avocado to control, change in firmness marker from baseline to week 8 indicated a significant increase in forehead skin firmness in the avocado group. We did not observe any change in hydration, pigmentation, sebum, and UVB resistance between the avocado and control group, although changes in melanin and erythema were observed in both groups over time. CONCLUSIONS Our findings suggest that daily oral avocado consumption may lead to enhanced elasticity and firmness of the facial skin in healthy women. Further studies of other skin locations are required to establish the connection between avocado consumption and skin aging.
Collapse
Affiliation(s)
- Susanne M. Henning
- Department of MedicineCenter for Human NutritionDavid Geffen School of MedicineLos AngelesUSA
| | - Jeraldine B. Guzman
- Department of MedicineCenter for Human NutritionDavid Geffen School of MedicineLos AngelesUSA
| | - Gail Thames
- Department of MedicineCenter for Human NutritionDavid Geffen School of MedicineLos AngelesUSA
| | - Jieping Yang
- Department of MedicineCenter for Human NutritionDavid Geffen School of MedicineLos AngelesUSA
| | - Chi‐Hong Tseng
- Department of Statistics CoreDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
| | - David Heber
- Department of MedicineCenter for Human NutritionDavid Geffen School of MedicineLos AngelesUSA
| | - Jenny Kim
- Department of MedicineCenter for Human NutritionDavid Geffen School of MedicineLos AngelesUSA,Division of DermatologyDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
| | - Zhaoping Li
- Department of MedicineCenter for Human NutritionDavid Geffen School of MedicineLos AngelesUSA
| |
Collapse
|
17
|
Synthesis, Pharmacokinetic Characterization and Antioxidant Capacity of Carotenoid Succinates and Their Melatonin Conjugates. Molecules 2022; 27:molecules27154822. [PMID: 35956776 PMCID: PMC9369794 DOI: 10.3390/molecules27154822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Carotenoid succinates were synthesized from hydroxy carotenoids and were coupled to a commercially available derivative of melatonin via amide bond for producing more powerful anti-oxidants and yet new hybrid lipophilic bifunctional molecules with additional therapeutic effects. The coupling reactions produced conjugates in acceptable to good yields. Succinylation increased the water solubility of the carotenoids, while the conjugation with melatonin resulted in more lipophilic derivatives. The conjugates showed self-assembly in aqueous medium and yielded relatively stable colloidal solutions in phosphate-buffered saline. Antioxidant behavior was measured with ABTS and the FRAP methods for the carotenoids, the carotenoid succinates, and the conjugates with melatonin. A strong dependence on the quality of the solvent was observed. TEAC values of the new derivatives in phosphate-buffered saline were found to be comparable to or higher than those of parent carotenoids, however, synergism was observed only in FRAP assays.
Collapse
|
18
|
Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 2022; 48:611-633. [PMID: 35229925 DOI: 10.1002/biof.1831] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
Free radicals are a group of damaging molecules produced during the normal metabolism of cells in the human body. Exposure to ultraviolet radiation, cigarette smoking, and other environmental pollutants enhances free radicals in the human body. The destructive effects of free radicals may also cause harm to membranes, enzymes, and DNA, leading to several human diseases such as cancer, atherosclerosis, malaria, coronavirus disease (COVID-19), rheumatoid arthritis, and neurodegenerative illnesses. This process occurs when there is an imbalance between free radicals and antioxidant defenses. Since antioxidants scavenge free radicals and repair damaged cells, increasing the consumption of fruits and vegetables containing high antioxidant values is recommended to slow down oxidative stress in the body. Additionally, natural products demonstrated a wide range of biological impacts such as anti-inflammatory, anti-aging, anti-atherosclerosis, and anti-cancer properties. Hence, in this review article, our goal is to explore the role of natural therapeutic antioxidant effects to reduce oxidative stress in the diseases.
Collapse
Affiliation(s)
- Behnaz Akbari
- School of Medicine, Department of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Namdar Baghaei-Yazdi
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Manochehr Bahmaie
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | |
Collapse
|
19
|
Schilrreff P, Alexiev U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci 2022; 23:ijms23094928. [PMID: 35563319 PMCID: PMC9104327 DOI: 10.3390/ijms23094928] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.
Collapse
|
20
|
Chitin Nanofibril-Nanolignin Complexes as Carriers of Functional Molecules for Skin Contact Applications. NANOMATERIALS 2022; 12:nano12081295. [PMID: 35458003 PMCID: PMC9029034 DOI: 10.3390/nano12081295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Chitin nanofibrils (CN) and nanolignin (NL) were used to embed active molecules, such as vitamin E, sodium ascorbyl phosphate, lutein, nicotinamide and glycyrrhetinic acid (derived from licorice), in the design of antimicrobial, anti-inflammatory and antioxidant nanostructured chitin nanofibrils–nanolignin (CN-NL) complexes for skin contact products, thus forming CN-NL/M complexes, where M indicates the embedded functional molecule. Nano-silver was also embedded in CN-NL complexes or on chitin nanofibrils to exploit its well-known antimicrobial activity. A powdery product suitable for application was finally obtained by spray-drying the complexes co-formulated with poly(ethylene glycol). The structure and morphology of the complexes was studied using infrared spectroscopy and field emission scanning electron microscopy, while their thermal stability was investigated via thermo-gravimetry. The latter provided criteria for evaluating the suitability of the obtained complexes for subsequent demanding industrial processing, such as, for instance, incorporation into bio-based thermoplastic polymers through conventional melt extrusion. In vitro tests were carried out at different concentrations to assess skin compatibility. The obtained results provided a physical–chemical, morphological and cytocompatibility knowledge platform for the correct selection and further development of such nanomaterials, allowing them to be applied in different products. In particular, chitin nanofibrils and the CN-NL complex containing glycyrrhetinic acid can combine excellent thermal stability and skin compatibility to provide a nanostructured system potentially suitable for industrial applications.
Collapse
|
21
|
Ren Y, Deng J, Lin Y, Huang J, Chen F. Developing a Chromochloris zofingiensis Mutant for Enhanced Production of Lutein under CO2 Aeration. Mar Drugs 2022; 20:md20030194. [PMID: 35323493 PMCID: PMC8950978 DOI: 10.3390/md20030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/19/2022] Open
Abstract
Microalgae are competitive and commercial sources for health-benefit carotenoids. In this study, a Chromochloris zofingiensis mutant (Cz-pkg), which does not shut off its photosystem and stays green upon glucose treatment, was generated and characterized. Cz-pkg was developed by treating the algal cells with a chemical mutagen as N-methyl-N’-nitro-N-nitrosoguanidine and followed by a color-based colony screening approach. Cz-pkg was found to contain a dysfunctional cGMP-dependent protein kinase (PKG). By cultivated with CO2 aeration under mixotrophy, the mutant accumulated lutein up to 31.93 ± 1.91 mg L−1 with a productivity of 10.57 ± 0.73 mg L−1 day−1, which were about 2.5- and 8.5-fold of its mother strain. Besides, the lutein content of Cz-pkg could reach 7.73 ± 0.52 mg g−1 of dry weight, which is much higher than that of marigold flower, the most common commercial source of lutein. Transcriptomic analysis revealed that in the mutant Cz-pkg, most of the genes involved in the biosynthesis of lutein and chlorophylls were not down-regulated upon glucose addition, suggesting that PKG may regulate the metabolisms of photosynthetic pigments. This study demonstrated that Cz-pkg could serve as a promising strain for both lutein production and glucose sensing study.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yan Lin
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (J.H.); (F.C.)
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (J.H.); (F.C.)
| |
Collapse
|
22
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
23
|
Heo H, Madhavan J, Eun S, Jung H, Lee H. Pre-Clinical Evaluation of Proprietary Lutein, Zeaxanthin, and Rosemary Formulation for Its Dermal Protective Activity in Male Swiss Albino Mice. Prev Nutr Food Sci 2021; 26:425-433. [PMID: 35047439 PMCID: PMC8747954 DOI: 10.3746/pnf.2021.26.4.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/06/2022] Open
Abstract
This study aimed to evaluate the efficacy of the proprietary lutein, zeaxanthin, and rosemary formulation for its dermal protection against ultraviolet (UV) irradiated skin dehydration. A total of 48 male Swiss albino mice of 8∼12 weeks of age were divided into eight groups of 6 mice: mice in group 1 (G1) were considered the normal control, without treatment and without skin shaving; mice in G2 had their skins were shaved, but did not receive treatment; mice in G3 were the pathological control; mice in G4 were treated as standard (hyaluronic acid); mice in G5∼G8 were treated with low and high doses of 2 different test substances, respectively. Mice were anaesthetized and then depilatory was applied on the dorsal skin area (2 cm×2 cm) on alternate days, then UV/blue light irradiation was carried out for 15 min for 6 weeks. Collagen type 1 gene expression was determined via densitometric analysis, skin elasticity was assessed, and stratum corneum water contents were measured using a cutometer and corneometer. Skin hydration was assessed through transepidermal water loss, and several serum biochemical parameters (collagenase, hydroxyproline, hyaluronic acid, and ceramide levels) were determined to assess the skin moisturizing activity of the product. Images for assessing photoaging were considered between different groups on day 42. All these subjective parameters reached statistical significance (P<0.05) in groups treated with the proprietary lutein and rosemary formulation compared with the placebo-treated group. In conclusion, the proprietary lutein, zeaxanthin, and rosemary formulation showed better protection of skin subjected to UV irradiated skin dehydration.
Collapse
Affiliation(s)
- Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | | | - Sangwon Eun
- Daehan Chemtech Co., Ltd., Seoul 01811, Korea
| | | | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| |
Collapse
|
24
|
Sodium Caseinate and Acetylated Mung Bean Starch for the Encapsulation of Lutein: Enhanced Solubility and Stability of Lutein. Foods 2021; 11:foods11010065. [PMID: 35010190 PMCID: PMC8750002 DOI: 10.3390/foods11010065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/22/2023] Open
Abstract
Lutein is a kind of vital carotenoid with high safety and significant advantages in biological functions. However, poor water solubility and stability of lutein have limited its application. This study selected different weight ratios of sodium caseinate to acetylated mung bean starch (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, and 0:10) to prepare lutein emulsions, and the microcapsules were produced by spray drying technology. The microstructure, physicochemical properties, and storage stability of microcapsules were investigated. The results show that the emulsion systems were typical non-Newtonian fluids. Lutein microcapsules were light yellow fine powder with smooth and relatively complete particle surface. The increase of sodium caseinate content led to the enhanced emulsion effect of the emulsion and the yield and solubility of microcapsules increased, and wettability and the average particle size became smaller. The encapsulation efficiency of lutein microcapsules ranged from 69.72% to 89.44%. The thermal characteristics analysis showed that the endothermic transition of lutein microcapsules occurred at about 125 °C. The microcapsules with sodium caseinate as single wall material had the worst stability. Thus, it provides a reference for expanding the application of lutein in food, biological, pharmaceutical, and other industries and improving the stability and water dispersion of other lipid-soluble active ingredients.
Collapse
|
25
|
Ren Y, Sun H, Deng J, Huang J, Chen F. Carotenoid Production from Microalgae: Biosynthesis, Salinity Responses and Novel Biotechnologies. Mar Drugs 2021; 19:713. [PMID: 34940712 PMCID: PMC8708220 DOI: 10.3390/md19120713] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 01/23/2023] Open
Abstract
Microalgae are excellent biological factories for high-value products and contain biofunctional carotenoids. Carotenoids are a group of natural pigments with high value in social production and human health. They have been widely used in food additives, pharmaceutics and cosmetics. Astaxanthin, β-carotene and lutein are currently the three carotenoids with the largest market share. Meanwhile, other less studied pigments, such as fucoxanthin and zeaxanthin, also exist in microalgae and have great biofunctional potentials. Since carotenoid accumulation is related to environments and cultivation of microalgae in seawater is a difficult biotechnological problem, the contributions of salt stress on carotenoid accumulation in microalgae need to be revealed for large-scale production. This review comprehensively summarizes the carotenoid biosynthesis and salinity responses of microalgae. Applications of salt stress to induce carotenoid accumulation, potentials of the Internet of Things in microalgae cultivation and future aspects for seawater cultivation are also discussed. As the global market share of carotenoids is still ascending, large-scale, economical and intelligent biotechnologies for carotenoid production play vital roles in the future microalgal economy.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
26
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
27
|
Chaudhry S, Dunn H, Carnt N, White A. Nutritional supplementation in the prevention and treatment of Glaucoma. Surv Ophthalmol 2021; 67:1081-1098. [PMID: 34896192 DOI: 10.1016/j.survophthal.2021.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Glaucoma is a chronic optic neuropathy that creates a significant burden on public health. Oxidative stress is hypothesised to play a role to glaucoma progression, and its reduction is being analysed as a therapeutic target. Dietary antioxidants play a crucial role in helping provide insight into this hypothesis. We reviewed 71 trials, interventional, I -vivo and I -vitro, including 11 randomised controlled trials, to determine if adjunctive nutritional supplementation could lead to a reduction in oxidative stress and prevent glaucomatous progression. Many laboratory findings show that vitamins and natural compounds contain an abundance of intrinsic antioxidative, neuroprotective and vasoprotective properties that show promise in the treatment and prevention of glaucoma. Although there is encouraging early evidence, most clincial findings are inconclusive. The group of B vitamins appear to have the greatest amount of evidence. Other compounds such as flavonoids, carotenoids, curcumin, saffron, CoQ10, Ggngko Biloba and Resveratrol however warrant further investigation in glaucoma patients. Studies of these antioxidants and other nutrients could create adjunctive or alternative preventative and treatment modalities for glaucoma to those currently available.
Collapse
Key Words
- AA, Ascorbic acid
- ARMD, Age Related Macular Degeneration
- CoQ10, Coenzyme Q10
- GON, Glaucomatous Optic Neuropathy
- Hcy, Homocysteine
- IOP, Intraocular pressure
- NO, Nitric Oxide
- NOS, Nitric Oxide Synthase
- NTG, Normal Tension Glaucoma
- POAG, Primary open angle Glaucoma;PEXG, Exfoliation Glaucoma
- PVD Primary vascular dysregulation
- RGC, Retinal Ganglion Cells
- ROS, Reactive Oxygen Species
- SC, Schlemm's Canal
- TM Trabecular Meshwork
- Vitamins, Nutrients, Glaucoma, Supplements, Reactive Oxygen Species, Open Angle Glaucoma, Trabecular Meshwork, Retinal Ganglion Cells, Oxidative Stress. Abbreviations
Collapse
Affiliation(s)
- Sarah Chaudhry
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia.
| | - Hamish Dunn
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead and Central Clinical Schools, Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia; Save Sight Institute, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Nicole Carnt
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead Institute of Medical Research, Westmead, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew White
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead and Central Clinical Schools, Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Westmead Institute of Medical Research, Westmead, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia; Save Sight Institute, Sydney Medical School, University of Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Effect of the emulsifier type on the physicochemical stability and in vitro digestibility of a lutein/zeaxanthin-enriched emulsion. Food Sci Biotechnol 2021; 30:1509-1518. [PMID: 34868700 DOI: 10.1007/s10068-021-00987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022] Open
Abstract
Lutein (L) and zeaxanthin (Z), as macular pigments, are water-insoluble, chemically unstable, and have low bioaccessibilities; they are often emulsified to overcome these limitations. This study investigated the impact of various emulsifiers (ethyl lauroyl arginate (LAE); Tween 80; and sodium dodecyl sulfate (SDS)) on the physicochemical properties and in vitro digestibilities of L/Z-fortified oil-in-water emulsions. Droplet aggregation and creaming extents were dependent on the emulsifier type. The ζ-potentials of emulsions stabilized by LAE, Tween 80, and SDS were + 87, - 26, and - 95 mV, respectively. SDS-stabilized emulsion had the smallest particles, while the particle sizes for the LAE- and Tween 80-stabilized emulsions were larger and not significantly different. The rates of L/Z degradation were sensitive to the emulsifier type and to heat, not to light. The L/Z bioaccessibility was the highest for the Tween 80 emulsion. Surfactants should therefore be carefully selected to optimize L/Z physicochemical stability and bioaccessibility in emulsions.
Collapse
|
29
|
Composition, cultivation and potential applications of Chlorella zofingiensis – A comprehensive review. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Watson A, Rostaher A, Fischer NM, Favrot C. A novel therapeutic diet can significantly reduce the medication score and pruritus of dogs with atopic dermatitis during a nine month controlled study. Vet Dermatol 2021; 33:55-e18. [PMID: 34545649 PMCID: PMC9292154 DOI: 10.1111/vde.13020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Background Canine atopic dermatitis (cAD) is a common chronic relapsing pruritic skin disease for which management commonly relies on life‐long use of immunomodulatory drugs. A number of the medications used are associated with adverse effects and the potential for complications during long‐term use. Hypothesis The goal of the study was to determine if a complete and balanced diet formulated for therapeutic benefit could contribute towards management of cAD. We hypothesised that the diet would reduce pruritus while also reducing the requirement for medication during the study period. Animals, materials and methods Forty privately owned dogs, having undergone a comprehensive diagnosis for cAD, were randomly allocated to two groups, each group being fed one of two diets (test or control) for up to nine months. We assessed pruritus, Canine Atopic Dermatitis Extent and Severity Index‐(4th iteration) and medication score, the latter reflecting the medication required to maintain a satisfactory quality of life for the animal. Results Both diets were well‐accepted and ‐tolerated. There was a significant improvement in the pruritus score after three months of feeding the therapeutic diet (P = 0.0001). No such improvement was observed at any time point in the group of dogs given the control diet. There was a reduced drug requirement for dogs receiving the therapeutic diet after three months (P = 0.058), and that decrease was significant at six months (P = 0.021) and nine months (P = 0.018). No improvement was seen at any time point in the control group. Conclusion The results suggest that a novel therapeutic diet can assist in the management of cAD by helping to control pruritus and reducing reliance on medication.
Collapse
Affiliation(s)
| | - Ana Rostaher
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Nina M Fischer
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Claude Favrot
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| |
Collapse
|
31
|
Wang X, Ding Z, Zhao Y, Prakash S, Liu W, Han J, Wang Z. Effects of lutein particle size in embedding emulsions on encapsulation efficiency, storage stability, and dissolution rate of microencapsules through spray drying. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
de Souza Guedes L, Martinez RM, Bou-Chacra NA, Velasco MVR, Rosado C, Baby AR. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants (Basel) 2021; 10:1034. [PMID: 34206935 PMCID: PMC8300771 DOI: 10.3390/antiox10071034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids and coenzyme Q10 are naturally occurring antioxidant compounds that are also found in human skin. These bioactive compounds have been the focus of considerable research due to their antioxidant, anti-inflammatory, and photoprotective properties. In this review, the current state of the art in the encapsulation of carotenoids and coenzyme Q10 in lipid nanoparticles to improve their bioavailability, chemical stability, and skin absorption is discussed. Additionally, the main findings are highlighted on the cytotoxic and photoprotective effects of these systems in the skin.
Collapse
Affiliation(s)
- Luciana de Souza Guedes
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Nádia A. Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Catarina Rosado
- CBIOS, Universidade Lusófona’s Research Center for Biosciences & Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| |
Collapse
|
33
|
Lim C, Kang JK, Jung CE, Sim T, Her J, Kang K, Lee ES, Youn YS, Choi HG, Oh KT. Preparation and Characterization of a Lutein Solid Dispersion to Improve Its Solubility and Stability. AAPS PharmSciTech 2021; 22:169. [PMID: 34080086 DOI: 10.1208/s12249-021-02036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Lutein has been used as a dietary supplement for the treatment of eye diseases, especially age-related macular degeneration. For oral formulations, we investigated lutein stability in artificial set-ups mimicking different physiological conditions and found that lutein was degraded over time under acidic conditions. To enhance the stability of lutein upon oral intake, we developed enteric-coated lutein solid dispersions (SD) by applying a polymer, hydroxypropyl methylcellulose acetate succinate (HPMCAS-LF), through a solvent-controlled precipitation method. The SD were characterized in crystallinity, morphology, and drug entrapment. In the dissolution profile of lutein SD, a F80 formulation showed resistance toward the acidic environment under simulated gastric conditions while exhibiting a bursting drug release under simulated intestinal conditions. Our results highlight the potential use of HPMCAS-LF as an effective matrix to enhance lutein bioavailability during oral delivery and to provide novel insights into the eye-care supplement industry, with direct benefits for the health of patients.
Collapse
|
34
|
Başyiğit B, Sağlam H, Hayoğlu İ, Karaaslan M. Spectroscopic (LC‐ESI‐MS/MS, FT‐IR, NMR) and functional characterization of fruit seed oils extracted with green technology: A comparative study with
Prunus cerasus
and
Punica granatum oils. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bülent Başyiğit
- Food Engineering Department, Engineering Faculty Harran University Şanlıurfa Turkey
| | - Hidayet Sağlam
- Molecular Biology and Genetics Department Faculty of Arts and Sciences Kilis 7 Aralık University Kilis Turkey
| | - İbrahim Hayoğlu
- Food Engineering Department, Engineering Faculty Harran University Şanlıurfa Turkey
| | - Mehmet Karaaslan
- Food Engineering Department, Engineering Faculty Harran University Şanlıurfa Turkey
| |
Collapse
|
35
|
Preparation, optimization, and transcorneal permeability study of lutein-loaded solid lipid nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Functional Characterization of Marigold Powder as a Food Ingredient for Lutein-Fortified Fresh Noodles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marigold powder was utilized as a food ingredient to produce lutein-fortified fresh noodles for eye health, and its functionalities were characterized in terms of thermo-rheological, structural, and antioxidant properties. The pasting parameters and starch-gelatinization enthalpy values of wheat flour had a tendency to decrease with increasing levels of marigold powder. The use of marigold powder led to decreases in the storage and loss moduli of wheat flour pastes by weakening their cellular microstructure, which was confirmed by the scanning electron microscopic images. When marigold powder was incorporated into the formulation of fresh noodles, the cooking loss and water absorption of the noodles were not negatively affected at a level of 2% (w/w). Also, the noodles with 2% marigold powder were not significantly different from the control for the maximum resistance to extension. The levels of lutein in the noodles prepared with marigold powder (61.2 to 204.9 mg/100 g) were reduced by almost 50% after cooking. However, they seemed to satisfy the recommended daily dose of lutein for visual functions. Moreover, the use of marigold powder provided antioxidant properties for noodles by enhancing the 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities.
Collapse
|
37
|
Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro. Molecules 2021; 26:molecules26020333. [PMID: 33440679 PMCID: PMC7827977 DOI: 10.3390/molecules26020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.
Collapse
|
38
|
Auh JH, Madhavan J. Protective effect of a mixture of marigold and rosemary extracts on UV-induced photoaging in mice. Biomed Pharmacother 2020; 135:111178. [PMID: 33388598 DOI: 10.1016/j.biopha.2020.111178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
UV irradiation exposure may induce photoaging of the skin tissue. Various plant extracts have been recognized as effective protectants against UV-induced damage. Here, a mixture of marigold and rosemary extracts was evaluated for its anti-photoaging effects as a potential nutraceutical product for skin health. Hexane extract of marigold and ethanolic extract of rosemary were prepared, and the formulated mixture was investigated. A UV-induced photoaged mouse model was prepared, and the protective effects of the extract mixture were compared with those of hyaluronic acid (positive control). Expression of various photoaging-related biomarkers such as matrix metalloproteinases (MMPs), interleukins, tumor necrosis factor-alpha, procollagen type I, 8-hydroxy-deoxyguanosine, superoxide dismutase, glutathione peroxidase, and catalase were determined. UV irradiation significantly enhanced the expression of these biomarkers through an inflammatory response, however, the mixture of marigold and rosemary extracts exerted inhibitory effects and protected from UV-induced damage. Suppression of inflammatory response were the mechanisms underlying this protective function of the mixture of marigold and rosemary extracts. Histological evaluation also supported these protective effects against photoaging.
Collapse
Affiliation(s)
- Joong-Hyuck Auh
- Department of Food Science and Technology, Chung-Ang University, Ansung, 17546, South Korea.
| | | |
Collapse
|
39
|
Dietary lutein supplementation protects against ultraviolet-radiation-induced erythema: Results of a randomized double-blind placebo-controlled study. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
40
|
Vats S, Bansal R, Rana N, Kumawat S, Bhatt V, Jadhav P, Kale V, Sathe A, Sonah H, Jugdaohsingh R, Sharma TR, Deshmukh R. Unexplored nutritive potential of tomato to combat global malnutrition. Crit Rev Food Sci Nutr 2020; 62:1003-1034. [PMID: 33086895 DOI: 10.1080/10408398.2020.1832954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, MS, India
| | - Pravin Jadhav
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Vijay Kale
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Atul Sathe
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
41
|
Rearte T, Figueroa F, Gómez-Serrano C, Vélez C, Marsili S, Iorio ADF, González-López C, Cerón-García M, Abdala-Díaz R, Acién-Fernández F. Optimization of the production of lipids and carotenoids in the microalga Golenkinia aff. brevispicula. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
43
|
Abstract
Lutein is particularly known to help maintain normal visual function by absorbing and attenuating the blue light that strikes the retina in our eyes. The effect of overexposure to blue light on our eyes due to the excessive use of electronic devices is becoming an issue of modern society due to insufficient dietary lutein consumption through our normal diet. There has, therefore, been an increasing demand for lutein-containing dietary supplements and also in the food industry for lutein supplementation in bakery products, infant formulas, dairy products, carbonated drinks, energy drinks, and juice concentrates. Although synthetic carotenoid dominates the market, there is a need for environmentally sustainable carotenoids including lutein production pathways to match increasing consumer demand for natural alternatives. Currently, marigold flowers are the predominant natural source of lutein. Microalgae can be a competitive sustainable alternative, which have higher growth rates and do not require arable land and/or a growth season. Currently, there is no commercial production of lutein from microalgae, even though astaxanthin and β-carotene are commercially produced from specific microalgal strains. This review discusses the potential microalgae strains for commercial lutein production, appropriate cultivation strategies, and the challenges associated with realising a commercial market share.
Collapse
|
44
|
Demmig-Adams B, López-Pozo M, Stewart JJ, Adams WW. Zeaxanthin and Lutein: Photoprotectors, Anti-Inflammatories, and Brain Food. Molecules 2020; 25:molecules25163607. [PMID: 32784397 PMCID: PMC7464891 DOI: 10.3390/molecules25163607] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
This review compares and contrasts the role of carotenoids across the taxa of life—with a focus on the xanthophyll zeaxanthin (and its structural isomer lutein) in plants and humans. Xanthophylls’ multiple protective roles are summarized, with attention to the similarities and differences in the roles of zeaxanthin and lutein in plants versus animals, as well as the role of meso-zeaxanthin in humans. Detail is provided on the unique control of zeaxanthin function in photosynthesis, that results in its limited availability in leafy vegetables and the human diet. The question of an optimal dietary antioxidant supply is evaluated in the context of the dual roles of both oxidants and antioxidants, in all vital functions of living organisms, and the profound impact of individual and environmental context.
Collapse
|
45
|
|
46
|
Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics 2020; 12:pharmaceutics12030288. [PMID: 32210127 PMCID: PMC7151211 DOI: 10.3390/pharmaceutics12030288] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/07/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.
Collapse
|
47
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
48
|
Vitamin C and lutein content of northern highbush blueberry (Vaccinium corymbosum L.) juice processed using freezing and thawing. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Aziz E, Batool R, Akhtar W, Rehman S, Shahzad T, Malik A, Shariati MA, Laishevtcev A, Plygun S, Heydari M, Rauf A, Ahmed Arif S. Xanthophyll: Health benefits and therapeutic insights. Life Sci 2019; 240:117104. [PMID: 31783054 DOI: 10.1016/j.lfs.2019.117104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 01/29/2023]
Abstract
Xanthophylls constitute a major part of carotenoids in nature. They are an oxidized version of carotenoid. Xanthophyll has widely drawn scientists' attentions in terms of its functionality, bioavailability and diversity. An assortment of xanthophyll varieties includes lutein, zeaxanthin, β-cryptoxanthin, capsanthin, astaxanthin, and fucoxanthin. Chemically, lutein and zeaxanthin are dipolar carotenoids with hydroxyl groups at both ends of their molecules that bestow hydrophilic properties to them. Hydrophilic affinity in lutein and zeaxanthin makes better bioavailability in reaction with singlet oxygen in water phase, whereas non-polar carotenoids have shown to have less efficiency in scavenging free radicals. Xanthophylls have been studied for their effects in a wide variety of diseases including neurologic, ophthalmologic, oral, allergic and immune diseases. This review highlights pharmaco-pharmaceutical applications of xanthophylls as well asits drug interactions with beta-carotene. Different types of xanthophylls have been shown to have neuroprotective effects. Fucoxanthin demonstrated potent antiplasmodial activity. Lutein and zeaxanthin prevent the progression of age related macular degeneration. They have also demonstrated promising effects on uveitis, retinitis pigmentosa, scleritis, cataracts, glaucoma, retinal ischemia and choroideremia. Astaxanthin showed to have skin protecting effects against ultraviolet light injury. Astaxanthin have anti-allergic activity against the contact dermatitis especially to treat the patients having adverse reactions induced by steroids. Astaxanthin has been reported to exert beneficial effects in preventing oral lichen planus and early stage cancers. β-cryptoxanthin has been considered a good candidate for prevention of bone loss via osteoblastic bone formation and inhibiting osteoclastic bone resorption. There is also some concern that higher dose of xanthophylls may be linked to increased risk of skin cancer and gastric adenocarcinoma. However this increased risk was not statistically significant when adjusted for confounding factors. Further researches including clinical studies are needed to better evaluate the efficacy and safety of xanthophylls in prevention and treatment of different diseases.
Collapse
Affiliation(s)
- Ejaz Aziz
- Department of Botany, GDC Khanpur, Haripur, Pakistan.
| | - Riffat Batool
- University Institute of Biochemistry and Biotechnology, PMAS-UAAR, Rawalpindi, Pakistan.
| | - Wasim Akhtar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shazia Rehman
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Tasmeena Shahzad
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Ayesha Malik
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia
| | - Alexey Laishevtcev
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia; Federal Research Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow 109428, Russia
| | - Sergey Plygun
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia; European Society of Clinical Microbiology and Infectious Diseases, Basel 4051, Switzerland; All Russian Research Institute of Phytopathology, Moscow Region 143050, Russia
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, KPK, Pakistan.
| | - Shaheer Ahmed Arif
- Bioproducts Sciences and Engineering Laboratory, Washington State University Tricities, 2710, Crimson way, Richland, WA 99354, USA
| |
Collapse
|
50
|
Yu Y, Chen X, Zheng Q. Metabolomic Profiling of Carotenoid Constituents in Physalis peruviana During Different Growth Stages by LC-MS/MS Technology. J Food Sci 2019; 84:3608-3613. [PMID: 31724748 DOI: 10.1111/1750-3841.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 11/28/2022]
Abstract
With the current ongoing changes in global food demands, natural carotenoids are preferred by consumers and are gaining attention among food scientists and producers alike. Metabolomic profiling of carotenoid constituents in Physalis peruviana during distinct on-tree growth stages was performed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology. The results show that the β rings of β-carotene are hydroxylated with great efficiency, and there is a continual synthesis of zeaxanthin at half-ripe and full-ripe stages, which is confirmed by relating the zeaxanthin content to that of its precursor (β-carotene). Lutein was, in terms of mass intensity, the most abundant carotenoid constituent (64.61 µg/g at the half-ripe stage) observed in this study. In addition, γ-carotene, which is rare in dietary fruits and vegetables, was detected in the mature and breaker stages, albeit at a relatively low level. The results suggest that when we consider the variation in carotenoid content during different growth stages, Physalis peruviana can be considered a good source of natural carotenoids.
Collapse
Affiliation(s)
- Yougui Yu
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| | - Xuepeng Chen
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| | - Qing Zheng
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| |
Collapse
|