1
|
Hořejší K, Holčapek M. Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids. Anal Bioanal Chem 2024; 416:5403-5421. [PMID: 39138658 PMCID: PMC11427620 DOI: 10.1007/s00216-024-05475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| |
Collapse
|
2
|
Dookwah M, Wagner SK, Ishihara M, Yu SH, Ulrichs H, Kulik MJ, Zeltner N, Dalton S, Strauss KA, Aoki K, Steet R, Tiemeyer M. Neural-specific alterations in glycosphingolipid biosynthesis and cell signaling associated with two human ganglioside GM3 synthase deficiency variants. Hum Mol Genet 2023; 32:3323-3341. [PMID: 37676252 PMCID: PMC10695682 DOI: 10.1093/hmg/ddad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue. Pathogenic mechanisms underlying the neural phenotypes associated with GM3SD are unknown. To explore how loss of GM3 impacts neural-specific glycolipid glycosylation and cell signaling, GM3SD patient fibroblasts bearing one of two different ST3GAL5 variants were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to neural crest cells (NCCs). GM3 and GM3-derived gangliosides were undetectable in cells carrying either variant, while LacCer precursor levels were elevated compared to wildtype (WT). NCCs of both variants synthesized elevated levels of neutral lacto- and globo-series, as well as minor alternatively sialylated GSLs compared to WT. Ceramide profiles were also shifted in GM3SD variant cells. Altered GSL profiles in GM3SD cells were accompanied by dynamic changes in the cell surface proteome, protein O-GlcNAcylation, and receptor tyrosine kinase abundance. GM3SD cells also exhibited increased apoptosis and sensitivity to erlotinib-induced inhibition of epidermal growth factor receptor signaling. Pharmacologic inhibition of O-GlcNAcase rescued baseline and erlotinib-induced apoptosis. Collectively, these findings indicate aberrant cell signaling during differentiation of GM3SD iPSCs and also underscore the challenge of distinguishing between variant effect and genetic background effect on specific phenotypic consequences.
Collapse
Affiliation(s)
- Michelle Dookwah
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| | - Shannon K Wagner
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| | - Seok-Ho Yu
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, United States
| | - Heidi Ulrichs
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30602, United States
| | - Michael J Kulik
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30602, United States
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30602, United States
| | - Stephen Dalton
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30602, United States
| | - Kevin A Strauss
- Clinic for Special Children, 535 Bunker Hill Road, Strasburg, PA 17579, United States
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| | - Richard Steet
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, United States
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| |
Collapse
|
3
|
Rosenbalm KE, Lee-Sundlov MM, Ashline DJ, Grozovsky R, Aoki K, Hanneman AJS, Hoffmeister KM. Characterization of the human platelet N- and O-glycome upon storage using tandem mass spectrometry. Blood Adv 2023; 7:4278-4290. [PMID: 36952551 PMCID: PMC10424148 DOI: 10.1182/bloodadvances.2022007084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
Changes in surface glycan determinants, specifically sialic acid loss, determine platelet life span. The gradual loss of stored platelet quality is a complex process that fundamentally involves carbohydrate structures. Here, we applied lipophilic extraction and glycan release protocols to sequentially profile N- and O-linked glycans in freshly isolated and 7-day room temperature-stored platelet concentrates. Analytical methods including matrix assisted laser desorption/ionization time-of-flight mass spectrometry, tandem mass spectrometry, and liquid chromatography were used to obtain structural details of selected glycans and terminal epitopes. The fresh platelet repertoire of surface structures revealed diverse N-glycans, including high mannose structures, complex glycans with polylactosamine repeats, and glycans presenting blood group epitopes. The O-glycan repertoire largely comprised sialylated and fucosylated core-1 and core-2 structures. For both N- and O-linked glycans, we observed a loss in sialylated epitopes with a reciprocal increase in neutral structures as well as increased neuraminidase activity after platelet storage at room temperature. The data indicate that loss of sialylated glycans is associated with diminished platelet quality and untimely removal of platelets after storage.
Collapse
Affiliation(s)
| | | | - David J. Ashline
- The Glycomics Center, Division of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Renata Grozovsky
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL
| | - Kazuhiro Aoki
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
- Medical College of Wisconsin Cancer Center, Milwaukee, WI
| | - Andrew J. S. Hanneman
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
- New England Biolabs, Beverly, MA
| | | |
Collapse
|
4
|
Yang H, Brown RH, Wang D, Strauss KA, Gao G. Rescue of GM3 synthase deficiency by spatially controlled, rAAV-mediated ST3GAL5 delivery. JCI Insight 2023; 8:e168688. [PMID: 37014712 PMCID: PMC10243808 DOI: 10.1172/jci.insight.168688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
GM3 synthase deficiency (GM3SD) is an infantile-onset epileptic encephalopathy syndrome caused by biallelic loss-of-function mutations in ST3GAL5. Loss of ST3GAL5 activity in humans results in systemic ganglioside deficiency and severe neurological impairment. No disease-modifying treatment is currently available. Certain recombinant adeno-associated viruses (rAAVs) can cross the blood-brain barrier to induce widespread, long-term gene expression in the CNS and represent a promising therapeutic strategy. Here, we show that a first-generation rAAV-ST3GAL5 replacement vector using a ubiquitous promoter restored tissue ST3GAL5 expression and normalized cerebral gangliosides in patient-derived induced pluripotent stem cell neurons and brain tissue from St3gal5-KO mice but caused fatal hepatotoxicity when administered systemically. In contrast, a second-generation vector optimized for CNS-restricted ST3GAL5 expression, administered by either the intracerebroventricular or i.v. route at P1, allowed for safe and effective rescue of lethality and behavior impairment in symptomatic GM3SD mice up to a year. These results support further clinical development of ST3GAL5 gene therapy.
Collapse
Affiliation(s)
- Huiya Yang
- Horae Gene Therapy Center
- Department of Neurology
- Li Weibo Institute for Rare Diseases Research, and
| | - Robert H. Brown
- Department of Neurology
- Li Weibo Institute for Rare Diseases Research, and
| | - Dan Wang
- Horae Gene Therapy Center
- Li Weibo Institute for Rare Diseases Research, and
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kevin A. Strauss
- Horae Gene Therapy Center
- Clinic for Special Children, Strasburg, Pennsylvania, USA
- Department of Molecular, Cell and Cancer Biology, and
| | - Guangping Gao
- Horae Gene Therapy Center
- Li Weibo Institute for Rare Diseases Research, and
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Li Z, Wang X, Deng X, Song J, Yang T, Liao Y, Gong G, Huang L, Lu Y, Wang Z. High-sensitivity qualitative and quantitative analysis of human, bovine and goat milk glycosphingolipids using HILIC-MS/MS with internal standards. Carbohydr Polym 2023; 312:120795. [PMID: 37059535 DOI: 10.1016/j.carbpol.2023.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Glycosphingolipids (GSLs) in human milk regulate the immune system, support intestinal maturation, and prevent gut pathogens. The structural complexity and low abundance of GSLs limits their systematic analysis. Here, we coupled the use of monosialoganglioside 1-2-amino-N-(2-aminoethyl) benzamide (GM1-AEAB) derivatives as internal standards with HILIC-MS/MS to qualitatively and quantitatively compare GSLs in human, bovine, and goat milk. One neutral glycosphingolipid (GB) and 33 gangliosides were found in human milk, of which 22 were newly detected and three were fucosylated. Five GB and 26 gangliosides were identified in bovine milk, of which 21 were newly discovered. Four GB and 33 gangliosides were detected in goat milk, 23 of them newly reported. GM1 was the main GSL in human milk; whereas disialoganglioside 3 (GD3) and monosialogangloside 3 (GM3) were dominant in bovine and goat milk, respectively; N-acetylneuraminic acid (Neu5Ac) was detected in >88 % of GSLs in bovine and goat milk. N-hydroxyacetylneuraminic acid (Neu5Gc)-modified GSLs were 3.5 times more abundant in goat than in bovine milk; whereas GSLs modified with both Neu5Ac and Neu5Gc were 3 times more abundant in bovine than in goat milk. Given the health benefits of different GSLs, these results will facilitate the development of custom-designed human milk-based infant formula.
Collapse
|
6
|
Rudy N, Aoki K, Ananth A, Holloway L, Skinner C, Hurst A, Tiemeyer M, Steet R. Compound heterozygous variants within two conserved sialyltransferase motifs of ST3GAL5 cause GM3 synthase deficiency. JIMD Rep 2023; 64:138-145. [PMID: 36873089 PMCID: PMC9981410 DOI: 10.1002/jmd2.12353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
GM3 synthase deficiency (GM3SD) is caused by biallelic variants in ST3GAL5. The ganglioside GM3, enriched in neuronal tissues, is a component of lipid rafts and regulates numerous signaling pathways. Affected individuals with GM3SD exhibit global developmental delay, progressive microcephaly, and dyskinetic movements. Hearing loss and altered skin pigmentation are also common. Most of the reported variants in ST3GAL5 are found in motifs conserved across all sialyltransferases within the GT29 family of enzymes. These motifs include motif L and motif S which contain amino acids responsible for substrate binding. These loss-of-function variants cause greatly reduced biosynthesis of GM3 and gangliosides derived from GM3. Here we describe an affected female with typical GM3SD features bearing two novel variants that reside in the other two conserved sialyltransferase motifs (motif 3 and motif VS). These missense alterations occur in amino acid residues that are strictly invariant across the entire GT29 family of sialyltransferases. The functional significance of these variants was confirmed by mass spectrometric analysis of plasma glycolipids, demonstrating a striking loss of GM3 and accumulation of lactosylceramide and Gb3 in the patient. The glycolipid profile changes were accompanied by an increase in ceramide chain length on LacCer. No changes in receptor tyrosine phosphorylation were observed in patient-derived lymphoblasts, indicating that GM3 synthase loss-of-function in this cell type does not impact receptor tyrosine kinase activity. These findings demonstrate the high prevalence of loss-of-function ST3GAL5 variants within highly conserved sialyltransferase motifs in affected individuals with GM3SD.
Collapse
Affiliation(s)
- Natasha Rudy
- Department of GeneticsThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGeorgiaUSA
| | - Amitha Ananth
- Department of GeneticsThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | | | | | - Anna Hurst
- Department of GeneticsThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Michael Tiemeyer
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGeorgiaUSA
| | | |
Collapse
|
7
|
Suzuki A, Silsirivanit A, Watanabe T, Matsuda J, Inamori KI, Inokuchi JI. Mass Spectrometry of Neutral Glycosphingolipids. Methods Mol Biol 2023; 2613:127-144. [PMID: 36587076 DOI: 10.1007/978-1-0716-2910-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This chapter describes the protocols for mass spectrometry (MS) applied to the structural characterization of neutral glycosphingolipids (GSLs) and the determination of neutral GSL contents in biological materials. The structural characterization is performed by thin layer chromatography-matrix assisted laser desorption ionization/mass spectrometry (TLC-MALDI/MS) and liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS) with reversed phase separation. The content determination is carried out by LC-ESI/MS with multiple reaction monitoring (MRM). These protocols provide clues for the functions of neutral GSLs at the level of a single GSL molecular species.
Collapse
Affiliation(s)
- Akemi Suzuki
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan.
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Kei-Ichiro Inamori
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan
| | - Jin-Ichi Inokuchi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan
| |
Collapse
|
8
|
Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, Yang G, Kizuka Y, Mizumoto S, Tiemeyer M, Gao XD, Aoki-Kinoshita KF, Fujita M. Global mapping of glycosylation pathways in human-derived cells. Dev Cell 2021; 56:1195-1209.e7. [PMID: 33730547 PMCID: PMC8086148 DOI: 10.1016/j.devcel.2021.02.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023]
Abstract
Glycans are one of the fundamental classes of macromolecules and are involved in a broad range of biological phenomena. A large variety of glycan structures can be synthesized depending on tissue or cell types and environmental changes. Here, we developed a comprehensive glycosylation mapping tool, termed GlycoMaple, to visualize and estimate glycan structures based on gene expression. We informatically selected 950 genes involved in glycosylation and its regulation. Expression profiles of these genes were mapped onto global glycan metabolic pathways to predict glycan structures, which were confirmed using glycomic analyses. Based on the predictions of N-glycan processing, we constructed 40 knockout HEK293 cell lines and analyzed the effects of gene knockout on glycan structures. Finally, the glycan structures of 64 cell lines, 37 tissues, and primary colon tumor tissues were estimated and compared using publicly available databases. Our systematic approach can accelerate glycan analyses and engineering in mammalian cells.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sachiko Akase
- Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kiyoko F Aoki-Kinoshita
- Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan; Glycan & Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome - A review. Anal Chim Acta 2020; 1132:134-155. [PMID: 32980104 PMCID: PMC7525043 DOI: 10.1016/j.aca.2020.05.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
Aberrant expression of glycosphingolipids has been implicated in a myriad of diseases, but our understanding of the strucural diversity, spatial distribution, and biological function of this class of biomolecules remains limited. These challenges partly stem from a lack of sensitive tools that can detect, identify, and quantify glycosphingolipids at the molecular level. Mass spectrometry has emerged as a powerful tool poised to address most of these challenges. Here, we review the recent developments in analytical glycosphingolipidomics with an emphasis on sample preparation, mass spectrometry and tandem mass spectrometry-based structural characterization, label-free and labeling-based quantification. We also discuss the nomenclature of glycosphingolipids, and emerging technologies like ion mobility spectrometry in differentiation of glycosphingolipid isomers. The intrinsic advantages and shortcomings of each method are carefully critiqued in line with an individual's research goals. Finally, future perspectives on analytical sphingolipidomics are stated, including a need for novel and more sensive methods in isomer separation, low abundance species detection, and profiling the spatial distribution of glycosphingolipid molecular species in cells and tissues using imaging mass spectrometry.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States.
| |
Collapse
|
10
|
Bergquist J. Leveraging the power of mass spectrometry to unravel complex brain pathologies. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2019; 14 Pt B:63-65. [PMID: 34977358 PMCID: PMC8686759 DOI: 10.1016/j.clinms.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry - BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| |
Collapse
|