1
|
Dalrymple AN, Jones ST, Fallon JB, Shepherd RK, Weber DJ. Overcoming failure: improving acceptance and success of implanted neural interfaces. Bioelectron Med 2025; 11:6. [PMID: 40083033 PMCID: PMC11907899 DOI: 10.1186/s42234-025-00168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Implanted neural interfaces are electronic devices that stimulate or record from neurons with the purpose of improving the quality of life of people who suffer from neural injury or disease. Devices have been designed to interact with neurons throughout the body to treat a growing variety of conditions. The development and use of implanted neural interfaces is increasing steadily and has shown great success, with implants lasting for years to decades and improving the health and quality of life of many patient populations. Despite these successes, implanted neural interfaces face a multitude of challenges to remain effective for the lifetime of their users. The devices are comprised of several electronic and mechanical components that each may be susceptible to failure. Furthermore, implanted neural interfaces, like any foreign body, will evoke an immune response. The immune response will differ for implants in the central nervous system and peripheral nervous system, as well as over time, ultimately resulting in encapsulation of the device. This review describes the challenges faced by developers of neural interface systems, particularly devices already in use in humans. The mechanical and technological failure modes of each component of an implant system is described. The acute and chronic reactions to devices in the peripheral and central nervous system and how they affect system performance are depicted. Further, physical challenges such as micro and macro movements are reviewed. The clinical implications of device failures are summarized and a guide for determining the severity of complication was developed and provided. Common methods to diagnose and examine mechanical, technological, and biological failure modes at various stages of development and testing are outlined, with an emphasis on chronic in vivo characterization of implant systems. Finally, this review concludes with an overview of some of the innovative solutions developed to reduce or resolve the challenges faced by implanted neural interface systems.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA.
- NERVES Lab, University of Utah, Salt Lake City, UT, USA.
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Sonny T Jones
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- NERVES Lab, University of Utah, Salt Lake City, UT, USA
| | - James B Fallon
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Robert K Shepherd
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Payonk JP, Bathel H, Arbeiter N, Kober M, Fauser M, Storch A, van Rienen U, Zimmermann J. Improving computational models of deep brain stimulation through experimental calibration. J Neurosci Methods 2025; 414:110320. [PMID: 39549963 DOI: 10.1016/j.jneumeth.2024.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Deep brain stimulation has become a well-established clinical tool to treat movement disorders. Nevertheless, the knowledge of processes initiated by the stimulation remains limited. To address this knowledge gap, computational models are developed to gain deeper insight. However, their predictive power remains constrained by model uncertainties and a lack of validation and calibration. NEW METHOD Exemplified with rodent microelectrodes, we present a workflow for validating electrode model geometry using microscopy and impedance spectroscopy in vitro before implantation. We address uncertainties in the tissue distribution and dielectric properties and outline a concept for calibrating the computational model based on in vivo impedance spectroscopy measurements. RESULTS The standard deviation of the volume of tissue activated across the 18 characterized electrodes was approximately 32.93%, underscoring the importance of electrode characterization. Thus, the workflow significantly enhances the model predictions' credibility of neural activation exemplified in a rodent model. COMPARISON WITH EXISTING METHODS Computational models are frequently employed without validation or calibration, relying instead on manufacturers' specifications. Our approach provides an accessible method to obtain a validated and calibrated electrode geometry, which significantly enhances the reliability of the computational model that relies on this electrode. CONCLUSION By reducing the uncertainties of the model, the accuracy in predicting neural activation is increased. The entire workflow is realized in open-source software, making it adaptable for other use cases, such as deep brain stimulation in humans. Additionally, the framework allows for the integration of further experiments, enabling live updates and refinements to computational models.
Collapse
Affiliation(s)
- Jan Philipp Payonk
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany.
| | - Henning Bathel
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany
| | - Nils Arbeiter
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, Rostock, 18147, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany; Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, Rostock, 18051, Germany; Department of Ageing of Individuals and Society, University of Rostock, Albert-Einstein-Straße 21, Rostock, 18051, Germany.
| | - Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany
| |
Collapse
|
3
|
Sturgill D, Dolce D, Hargreaves EL, Kilgallon J, Sarwar SA, Caputo D, DiPaola RJ, Munier S, Danish S. Delayed postoperative impedance issues in patients treated with deep brain stimulation: A single-center retrospective study. Clin Neurol Neurosurg 2025; 249:108702. [PMID: 39724806 DOI: 10.1016/j.clineuro.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND In rare circumstances, an implanted deep brain stimulation device will develop impedance issues across its contacts. Even more rare is the resultant inability to program a patient effectively, or that the patients' prior programming settings become unusable. OBJECTIVE In this study we investigate this occurrence across the device manufacturers implanted, and whether this could be resolved. METHODS The authors performed a retrospective review of all patients managed with DBS at HMH-Jersey Shore University Medical Center from October 2021 to January 2024. RESULTS A total of 155 DBS patients were identified; thirty four patients with the Abbott system and 121 with the Medtronic system. Upon follow-up, 16 independent impedance issues were identified from 12 patients. Two patients (1.7 %) from the Medtronic group and 10 patients (29.4 %) from the Abbott group (p < .01). Falls were the most common significant event noted and occurred prior to 5 impedance issues (31.3 %). When falls were controlled for, 9 patients (11 impedance issues) were identified. All of these patients were from the Abbott group (p < 0.01). Revision surgery occurred in 7 (63.6 %) of these cases after an average of 1.05 years following primary implantation. Surgical replacement of the internal pulse generator (IPG) (n = 3), IPG and extension wires (n = 2), or IPG and lead revision (n = 1) resolved impedance in 6 cases. CONCLUSION Patients with the Abbott St. Jude DBS Systems have significantly higher rates of impedance issues requiring reoperation when compared to those implanted with the Medtronic Systems.
Collapse
Affiliation(s)
- Drew Sturgill
- Department of Neurosurgery, Hackensack Meridian School of Medicine, USA.
| | - Dana Dolce
- Department of Neurosurgery, HMH-Jersey Shore University Medical Center, USA
| | - Eric L Hargreaves
- Department of Neurology, HMH-Jersey Shore University Medical Center, USA
| | - John Kilgallon
- Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| | - Syed A Sarwar
- Department of Neurosurgery, HMH-Jersey Shore University Medical Center, USA
| | - Deborah Caputo
- Department of Neurology, HMH-Jersey Shore University Medical Center, USA
| | - Rocco J DiPaola
- Department of Neurology, HMH-Jersey Shore University Medical Center, USA
| | - Sean Munier
- Department of Neurosurgery, HMH-Jersey Shore University Medical Center, USA
| | - Shabbar Danish
- Department of Neurosurgery, HMH-Jersey Shore University Medical Center, USA
| |
Collapse
|
4
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
5
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Corrigendum to "Platelets and Hemostatic Proteins are Co-Localized with Chronic Neuroinflammation Surrounding Implanted Intracortical Microelectrodes" [Acta Biomaterialia. Volume 166, August 2023, Pages 278-290]. Acta Biomater 2024; 182:303-308. [PMID: 38845260 PMCID: PMC11295673 DOI: 10.1016/j.actbio.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
6
|
O’Sullivan KP, Orazem ME, Otto KJ, Butson CR, Baker JL. Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates. J Neural Eng 2024; 21:10.1088/1741-2552/ad5703. [PMID: 38862007 PMCID: PMC11302379 DOI: 10.1088/1741-2552/ad5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Electrodes chronically implanted in the brain undergo complex changes over time that can lower the signal to noise ratio (SNR) of recorded signals and reduce the amount of energy delivered to the tissue during therapeutic stimulation, both of which are relevant for the development of robust, closed-loop control systems. Several factors have been identified that link changes in the electrode-tissue interface (ETI) to increased impedance and degraded performance in micro- and macro-electrodes. Previous studies have demonstrated that brief pulses applied every few days can restore SNR to near baseline levels during microelectrode recordings in rodents, a process referred to as electrical rejuvenation. However, electrical rejuvenation has not been tested in clinically relevant macroelectrode designs in large animal models, which could serve as preliminary data for translation of this technique. Here, several variations of this approach were tested to characterize parameters for optimization.Approach. Alternating-current (AC) and direct-current (DC) electrical rejuvenation methods were explored in three electrode types, chronically implanted in two adult male nonhuman primates (NHP) (Macaca mulatta), which included epidural electrocorticography (ECoG) electrodes and penetrating deep-brain stimulation (DBS) electrodes. Electrochemical impedance spectroscopy (EIS) was performed before and after each rejuvenation paradigm as a gold standard measure of impedance, as well as at subsequent intervals to longitudinally track the evolution of the ETI. Stochastic error modeling was performed to assess the standard deviation of the impedance data, and consistency with the Kramers-Kronig relations was assessed to evaluate the stationarity of EIS measurement.Main results. AC and DC rejuvenation were found to quickly reduce impedance and minimize the tissue component of the ETI on all three electrode types, with DC and low-frequency AC producing the largest impedance drops and reduction of the tissue component in Nyquist plots. The effects of a single rejuvenation session were found to last from several days to over 1 week, and all rejuvenation pulses induced no observable changes to the animals' behavior.Significance. These results demonstrate the effectiveness of electrical rejuvenation for diminishing the impact of chronic ETI changes in NHP with clinically relevant macroelectrode designs.
Collapse
Affiliation(s)
- KP O’Sullivan
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
| | - ME Orazem
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1030 Center Drive P.O. Box 116005 Gainesville, FL 32611
| | - KJ Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - CR Butson
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road, Gainesville, FL 32608
| | - JL Baker
- Brain and Mind Research Institute, Weil Cornell Medical College, 407 E 61 St, New York, NY 10065
| |
Collapse
|
7
|
Cukiert A, Cukiert C, Guimaraes RB, Burattini JA, Vieira JV, de Oliveira JPS. Vagus Nerve Stimulation Electrode Impedance Over Time in Children With Lennox-Gastaut Syndrome. Neuromodulation 2024; 27:789-791. [PMID: 37486282 DOI: 10.1016/j.neurom.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE This manuscript describes the behavior of impedance of vagus nerve stimulation (VNS) electrode over time in a cohort of children with Lennox-Gastaut syndrome. MATERIALS AND METHODS Nineteen consecutive pediatric patients with Lennox-Gastaut syndrome submitted to VNS were studied. All patients had at least four years of follow-up. Serial impedance measurements were carried out during every out-patient visit. A baseline value was obtained one month after surgery, before generator activation and yearly values were recorded for the next four years. Outcome regarding seizures was obtained through analysis of standardized seizure diaries filled out by the patient, relatives, or caregivers. RESULTS There were 12 boys. Age ranged from four to 14 years (mean = 7.2). Mean impedance value was 2635 Ω at baseline, 2576 Ω after one year, 2418 Ω after two years, 2340 Ω after three years, and 2241 Ω after four years. There was a mean impedance decrease of 17% after four years. This decrease was statistically significant compared with baseline by the second year of follow-up: p = 0.342 after one year, p = 0.007 after two years, p = 0.001 after three years, and p = 0.001 after four years. There was no significant relationship between impedance values and seizure outcome at any time point. CONCLUSIONS VNS electrode impedance significantly decreased during long-term follow-up in children with Lennox-Gastaut syndrome. To our knowledge, this is the first report on such findings regarding VNS in the literature. These findings suggest that the electrode/nerve interface is stable during long-term follow-up of VNS therapy and that this preserved anatomical relationship might be related to our ability to safely stimulate and review/explant the system whenever needed.
Collapse
Affiliation(s)
- Arthur Cukiert
- Clinica de Epilepsia de São Paulo, Clinica Cukiert, São Paulo, São Paulo, Brazil.
| | - Cristine Cukiert
- Clinica de Epilepsia de São Paulo, Clinica Cukiert, São Paulo, São Paulo, Brazil
| | | | | | - Julia Vescovi Vieira
- Clinica de Epilepsia de São Paulo, Clinica Cukiert, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
8
|
Liu X, Chou KL, Patil PG, Malaga KA. Effect of Anisotropic Brain Conductivity on Patient-Specific Volume of Tissue Activation in Deep Brain Stimulation for Parkinson Disease. IEEE Trans Biomed Eng 2024; 71:1993-2000. [PMID: 38277250 DOI: 10.1109/tbme.2024.3359119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
OBJECTIVE Deep brain stimulation (DBS) modeling can improve surgical targeting by quantifying the spatial extent of stimulation relative to subcortical structures of interest. A certain degree of model complexity is required to obtain accurate predictions, particularly complexity regarding electrical properties of the tissue around DBS electrodes. In this study, the effect of anisotropy on the volume of tissue activation (VTA) was evaluated in an individualized manner. METHODS Tissue activation models incorporating patient-specific tissue conductivity were built for 40 Parkinson disease patients who had received bilateral subthalamic nucleus (STN) DBS. To assess the impact of local changes in tissue anisotropy, one VTA was computed at each electrode contact using identical stimulation parameters. For comparison, VTAs were also computed assuming isotropic tissue conductivity. Stimulation location was considered by classifying the anisotropic VTAs relative to the STN. VTAs were characterized based on volume, spread in three directions, sphericity, and Dice coefficient. RESULTS Incorporating anisotropy generated significantly larger and less spherical VTAs overall. However, its effect on VTA size and shape was variable and more nuanced at the individual patient and implantation levels. Dorsal VTAs had significantly higher sphericity than ventral VTAs, suggesting more isotropic behavior. Contrastingly, lateral and posterior VTAs had significantly larger and smaller lateral-medial spreads, respectively. Volume and spread correlated negatively with sphericity. CONCLUSION The influence of anisotropy on VTA predictions is important to consider, and varies across patients and stimulation location. SIGNIFICANCE This study highlights the importance of considering individualized factors in DBS modeling to accurately characterize the VTA.
Collapse
|
9
|
Patrick EE, Fleeting CR, Patel DR, Casauay JT, Patel A, Shepherd H, Wong JK. Modeling the volume of tissue activated in deep brain stimulation and its clinical influence: a review. Front Hum Neurosci 2024; 18:1333183. [PMID: 38660012 PMCID: PMC11039793 DOI: 10.3389/fnhum.2024.1333183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Deep brain stimulation (DBS) is a neuromodulatory therapy that has been FDA approved for the treatment of various disorders, including but not limited to, movement disorders (e.g., Parkinson's disease and essential tremor), epilepsy, and obsessive-compulsive disorder. Computational methods for estimating the volume of tissue activated (VTA), coupled with brain imaging techniques, form the basis of models that are being generated from retrospective clinical studies for predicting DBS patient outcomes. For instance, VTA models are used to generate target-and network-based probabilistic stimulation maps that play a crucial role in predicting DBS treatment outcomes. This review defines the methods for calculation of tissue activation (or modulation) including ones that use heuristic and clinically derived estimates and more computationally involved ones that rely on finite-element methods and biophysical axon models. We define model parameters and provide a comparison of commercial, open-source, and academic simulation platforms available for integrated neuroimaging and neural activation prediction. In addition, we review clinical studies that use these modeling methods as a function of disease. By describing the tissue-activation modeling methods and highlighting their application in clinical studies, we provide the neural engineering and clinical neuromodulation communities with perspectives that may influence the adoption of modeling methods for future DBS studies.
Collapse
Affiliation(s)
- Erin E. Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Chance R. Fleeting
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Drashti R. Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Jed T. Casauay
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Hunter Shepherd
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Jerczynski S, Quémener M, Noël VP, Rousseau A, Parham E, Bédard A, Masoumi S, Charland T, Drouin A, Roussel J, Dionne V, Shooner T, Parrot A, Takech MA, Philippe É, DePaoli D, Cantin L, Parent M, Côté DC. Human brain tissue identification using coherent anti-Stokes Raman scattering spectroscopy and diffuse reflectance spectroscopy for deep brain stimulation surgery. NEUROPHOTONICS 2024; 11:025006. [PMID: 38868631 PMCID: PMC11167480 DOI: 10.1117/1.nph.11.2.025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Significance We assess the feasibility of using diffuse reflectance spectroscopy (DRS) and coherent anti-Stokes Raman scattering spectroscopy (CARS) as optical tools for human brain tissue identification during deep brain stimulation (DBS) lead insertion, thereby providing a promising avenue for additional real-time neurosurgical guidance. Aim We developed a system that can acquire CARS and DRS spectra during the DBS surgery procedure to identify the tissue composition along the lead trajectory. Approach DRS and CARS spectra were acquired using a custom-built optical probe integrated in a commercial DBS lead. The lead was inserted to target three specific regions in each of the brain hemispheres of a human cadaver. Spectra were acquired during the lead insertion at constant position increments. Spectra were analyzed to classify each spectrum as being from white matter (WM) or gray matter (GM). The results were compared with tissue classification performed on histological brain sections. Results DRS and CARS spectra obtained using the optical probe can identify WM and GM during DBS lead insertion. The tissue composition along the trajectory toward a specific target is unique and can be differentiated by the optical probe. Moreover, the results obtained with principal component analysis suggest that DRS might be able to detect the presence of blood due to the strong optical absorption of hemoglobin. Conclusions It is possible to use optical measurements from the DBS lead during surgery to identify WM and GM and possibly the presence of blood in human brain tissue. The proposed optical tool could inform the surgeon during the lead placement if the lead has reached the target as planned. Our tool could eventually replace microelectrode recordings, which would streamline the process and reduce surgery time. Further developments are required to fully integrate these tools into standard clinical procedures.
Collapse
Affiliation(s)
- Sébastien Jerczynski
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Mireille Quémener
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Valérie Pineau Noël
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Antoine Rousseau
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Elahe Parham
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Alexandre Bédard
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Shadi Masoumi
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Thomas Charland
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Anthony Drouin
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Jonathan Roussel
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Valérie Dionne
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Thomas Shooner
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Anaïs Parrot
- Centre Hospitalier de l’Université Laval, CHU de Québec-Université Laval, Québec, Canada
| | - Mohamad A. Takech
- Laboratoire d’anatomie, Faculté de médecine de l’Université Laval, Québec, Canada
| | - Éric Philippe
- Laboratoire d’anatomie, Faculté de médecine de l’Université Laval, Québec, Canada
| | - Damon DePaoli
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| | - Léo Cantin
- Hôpital de l’Enfant-Jésus, CHU de Québec-Université Laval, Québec, Canada
| | - Martin Parent
- CERVO Brain Research Center, Québec City, Québec, Canada
| | - Daniel C. Côté
- CERVO Brain Research Center, Québec City, Québec, Canada
- Centre d’optique, photonique et laser, Québec City, Québec, Canada
| |
Collapse
|
11
|
Ng PR, Bush A, Vissani M, McIntyre CC, Richardson RM. Biophysical Principles and Computational Modeling of Deep Brain Stimulation. Neuromodulation 2024; 27:422-439. [PMID: 37204360 DOI: 10.1016/j.neurom.2023.04.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) has revolutionized the treatment of neurological disorders, yet the mechanisms of DBS are still under investigation. Computational models are important in silico tools for elucidating these underlying principles and potentially for personalizing DBS therapy to individual patients. The basic principles underlying neurostimulation computational models, however, are not well known in the clinical neuromodulation community. OBJECTIVE In this study, we present a tutorial on the derivation of computational models of DBS and outline the biophysical contributions of electrodes, stimulation parameters, and tissue substrates to the effects of DBS. RESULTS Given that many aspects of DBS are difficult to characterize experimentally, computational models have played an important role in understanding how material, size, shape, and contact segmentation influence device biocompatibility, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Neural activation is dictated by stimulation parameters including frequency, current vs voltage control, amplitude, pulse width, polarity configurations, and waveform. These parameters also affect the potential for tissue damage, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Activation of the neural substrate also is influenced by the encapsulation layer surrounding the electrode, the conductivity of the surrounding tissue, and the size and orientation of white matter fibers. These properties modulate the effects of the electric field and determine the ultimate therapeutic response. CONCLUSION This article describes biophysical principles that are useful for understanding the mechanisms of neurostimulation.
Collapse
Affiliation(s)
| | - Alan Bush
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Matteo Vissani
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Robert Mark Richardson
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Boltcreed E, Ersöz A, Han M, McConnell GC. Short-Term Effects of Gamma Stimulation on Neuroinflammation at the Tissue-Electrode Interface in Motor Cortex. Neuromodulation 2024; 27:500-508. [PMID: 38099883 PMCID: PMC10990794 DOI: 10.1016/j.neurom.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 04/05/2024]
Abstract
OBJECTIVES The reliability of long-term neural recordings as therapeutic interventions for motor and sensory disorders is hampered by the brain tissue response. Previous work showed that flickering light at gamma frequencies (ie, 20-50 Hz) causes enhanced microglial recruitment in the visual cortex. The effects of gamma stimulation on glial cells surrounding implanted neural electrodes are not well understood. We hypothesized that invasive stimulation in the gamma frequency band increases microglial recruitment in the short term and reduces astrogliosis at the tissue-electrode interface. MATERIALS AND METHODS Male Long Evans rats were implanted with dual-shank silicon microelectrode arrays into the motor cortex. After implantation, rats received one hour of 40-Hz stimulation at a constant current of 10 μA using charge-balanced, biphasic pulses on one shank, and the other shank served as the nonstimulated control. Postmortem, tissue sections were stained with ectodermal dysplasia 1 (ED1) for activated microglia, glial fibrillary acidic protein (GFAP) for astrocytes, and 4',6-diamidino-2-phenylindole (DAPI) for nonspecific nuclei. Fluorescent intensity and cell number as a function of distance from the tissue-electrode interface were used to quantify all stained sections. RESULTS Fluorescent intensity for ED1 was nearly 40% lower for control than for stimulated sites (0-500 μm away from the implant), indicating increased microglial recruitment to the stimulated site (p < 0.05). Fluorescent intensity for GFAP was >67% higher for control than for stimulated sites (0-500 μm away from the implant), indicating reduced astrogliosis at the stimulated site (p < 0.05). No differences were observed in DAPI-stained sections between conditions. CONCLUSIONS These results suggest that short-term gamma stimulation modulates glial recruitment in the immediate vicinity of the microelectrode. Future studies will investigate the long-term effects of gamma stimulation on glial recruitment at the tissue-electrode interface as a strategy to improve long-term recording reliability.
Collapse
Affiliation(s)
- Emily Boltcreed
- Stevens Institute of Technology, Hoboken, NJ; Semcer Center for Healthcare Innovation, Hoboken, NJ
| | - Alpaslan Ersöz
- Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| | - Martin Han
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| | - George C McConnell
- Stevens Institute of Technology, Hoboken, NJ; Semcer Center for Healthcare Innovation, Hoboken, NJ.
| |
Collapse
|
13
|
Singh H, Sawal N, Gupta VK, Jha R, Stamm M, Arjun S, Gupta V, Rolston JD. Increased electrode impedance as an indicator for early detection of deep brain stimulation (DBS) hardware Infection: Clinical experience and in vitro study. J Clin Neurosci 2024; 120:76-81. [PMID: 38211444 DOI: 10.1016/j.jocn.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND When deep brain stimulation (DBS) infections are identified, they are often too advanced to treat without complete hardware removal. New objective markers to promptly identify DBS infections are needed. We present a patient with GPi (globus pallidus interna) DBS for dystonia, where the electrode impedance unexpectedly increased 3-months post-operatively, followed by serologic and hematologic markers of inflammation at 6-months, prompting explantation surgery. We recreated these conditions in a laboratory environment to analyze the pattern of changing of electrical impedance across the contacts of a DBS lead following Staphylococcus biofilm formation. METHODS A stainless-steel culture chamber containing 1 % brain heart infusion agar was used. A DBS electrode was dipped in peptone water containing a strain of S. aureus and subsequently introduced into the chamber. The apparatus was incubated at 37 °C for 6 days. Impedance was measured at 24hr intervals. A control experiment without S. Aureus inoculation was used to determine changes in impedance over a period of 6-days. RESULTS The mean monopolar impedance on day-1 was 751.8 ± 23.8 Ω and on day-3 was 1004.8 ± 68.7 Ω, a 33.7 % rise (p = 0.007). A faint biofilm formation could be seen around the DBS lead by day-2 and florid growth by day-3. After addition of the linezolid solution, a 15.9 % decrease in monopolar impedance was observed from day 3-6 (p = 0.003). CONCLUSION This study gives insight into impedance trends following a hardware infection in DBS. Increased impedance outside expected norms may be valuable for early prediction of infection. Furthermore, timely management using antibiotics might reduce the frequency of infection-related explant surgeries.
Collapse
Affiliation(s)
- Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Harvard University, Boston, MA, United States.
| | - Nishit Sawal
- Department of Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Vipin K Gupta
- Department of Neurosurgery, Government Medical College and Hospital, Chandigarh, India
| | - Rohan Jha
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Harvard University, Boston, MA, United States
| | - Michaela Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Harvard University, Boston, MA, United States
| | - Shivani Arjun
- Department of Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
14
|
Shin W, Lee Y, Lim J, Lee Y, Lah JD, Lee S, Lee JU, Yu R, Lee PH, Lee JH, Kwak M, Cheon J. Nanoscale Magneto-mechanical-genetics of Deep Brain Neurons Reversing Motor Deficits in Parkinsonian Mice. NANO LETTERS 2024; 24:270-278. [PMID: 38157214 DOI: 10.1021/acs.nanolett.3c03899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Here, we introduce the magneto-mechanical-genetic (MMG)-driven wireless deep brain stimulation (DBS) using magnetic nanostructures for therapeutic benefits in the mouse model of Parkinson's disease (PD). Electrical DBS of the subthalamic nucleus (STN) is an effective therapy for mitigating Parkinson's motor symptoms. However, its broader application is hampered by the requirement for implanted electrodes and the lack of anatomical and cellular specificity. Using the nanoscale magnetic force actuators (m-Torquer), which deliver torque force under rotating magnetic fields to activate pre-encoded Piezo1 ion channels on target neurons, our system enables wireless and STN-specific DBS without implants, addressing key unmet challenges in the DBS field. In both late- and early-stage PD mice, MMG-DBS significantly improved locomotor activity and motor balance by 2-fold compared to untreated PD mice. Moreover, MMG-DBS enabled sustained therapeutic effects. This approach provides a non-invasive and implant-free DBS with cellular targeting capability for the effective treatment of Parkinsonian symptoms.
Collapse
Affiliation(s)
- Wookjin Shin
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
| | - Yeongdo Lee
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jueun Lim
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Youbin Lee
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu David Lah
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Somin Lee
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung-Uk Lee
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
| | - Ri Yu
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, South Korea
- Department of Biomedical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Minsuk Kwak
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Whitestone J, Salih A, Goswami T. Investigation of a Deep Brain Stimulator (DBS) System. Bioengineering (Basel) 2023; 10:1160. [PMID: 37892890 PMCID: PMC10604713 DOI: 10.3390/bioengineering10101160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
A deep brain stimulator (DBS) device is a surgically implanted system that delivers electrical impulses to specific targets in the brain to treat abnormal movement disorders. A DBS is like a cardiac pacemaker, but instead of sending electrical signals to the heart, it sends them to the brain instead. When DBS leads and extension wires are exposed in the biological environment, this can adversely affect impedance and battery life, resulting in poor clinical outcomes. A posthumously extracted DBS device was evaluated using visual inspection and optical microscopy as well as electrical and mechanical tests to quantify the damage leading to its impairment. The implantable pulse generator (IPG) leads, a component of the DBS, contained cracks, delamination, exfoliations, and breakage. Some aspects of in vivo damage were observed in localized areas discussed in this paper. The duration of the time in months that the DBS was in vivo was estimated based on multiple regression analyses of mechanical property testing from prior research of pacemaker extensions. The test results of three DBS extensions, when applied to the regressions, were used to estimate the in vivo duration in months. This estimation approach may provide insight into how long the leads can function effectively before experiencing mechanical failure. Measurements of the extension coils demonstrated distortion and stretching, demonstrating the changes that may occur in vivo. These changes can alter the impedance and potentially reduce the effectiveness of the clinical treatment provided by the DBS system. Ultimately, as both DBSs and pacemakers use the same insulation and lead materials, the focus of this paper is to develop a proof of concept demonstrating that the mechanical properties measured from pacemaker extensions and leads extracted posthumously of known duration, measured in months while in vivo, can be used to predict the duration of DBS leads of unknown lifespan. The goal is to explore the validity of the proposed model using multiple regression of mechanical properties.
Collapse
Affiliation(s)
- Jennifer Whitestone
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
| | - Anmar Salih
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
| | - Tarun Goswami
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
- Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Miami Valley Hospital, Dayton, OH 45409, USA
| |
Collapse
|
16
|
Zannou AL, Khadka N, Bikson M. Bioheat Model of Spinal Column Heating During High-Density Spinal Cord Stimulation. Neuromodulation 2023; 26:1362-1370. [PMID: 36030146 PMCID: PMC9950282 DOI: 10.1016/j.neurom.2022.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION High-density (HD) spinal cord stimulation (SCS) delivers higher charge per time by increasing frequency and/or pulse duration, thus increasing stimulation energy. Previously, through phantom studies and computational modeling, we demonstrated that stimulation energy drives spinal tissue heating during kHz SCS. In this study, we predicted temperature increases in the spinal cord by HD SCS, the first step in considering the potential impact of heating on clinical outcomes. MATERIALS AND METHODS We adapted a high-resolution computer-aided design-derived spinal cord model, both with and without a lead encapsulation layer, and applied bioheat transfer finite element method multiphysics to predict temperature increases during SCS. We simulated HD SCS using a commercial SCS lead (eight contacts) with clinically relevant intensities (voltage-controlled: 0.5-7 Vrms) and electrode configuration (proximal bipolar, distal bipolar, guarded tripolar [+-+], and guarded quadripolar [+--+]). Results were compared with the conventional and 10-kHz SCS (current-controlled). RESULTS HD SCS waveform energy (reflecting charge per second) governs joule heating in the spinal tissues, increasing temperature supralinearly with stimulation root mean square. Electrode configuration and tissue properties (an encapsulation layer) influence peak tissue temperature increase-but in a manner distinct for voltage-controlled (HD SCS) compared with current-controlled (conventional/10-kHz SCS) stimulation. Therefore, depending on conditions, HD SCS could produce heating greater than that of 10-kHz SCS. For example, with an encapsulation layer, using guarded tripolar configuration (500-Hz, 250-μs pulse width, 5-Vpeak HD SCS), the peak temperature increases were 0.36 °C at the spinal cord and 1.78 °C in the epidural space. CONCLUSIONS As a direct consequence of the higher charge, HD SCS increases tissue heating; voltage-controlled stimulation introduces special dependencies on electrode configuration and lead encapsulation (reflected in impedance). If validated with an in vivo measurement as a possible mechanism of action of SCS, bioheat models of HD SCS serve as tools for programming optimization.
Collapse
Affiliation(s)
- Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Niranjan Khadka
- Department of Psychiatry, Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
17
|
Hacker ML, Rajamani N, Neudorfer C, Hollunder B, Oxenford S, Li N, Sternberg AL, Davis TL, Konrad PE, Horn A, Charles D. Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease. Ann Neurol 2023; 94:271-284. [PMID: 37177857 PMCID: PMC10846105 DOI: 10.1002/ana.26674] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. METHODS To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). RESULTS Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. INTERPRETATION These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.
Collapse
Affiliation(s)
- Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara Hollunder
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt University of Berlin, Berlin, Germany
| | - Simon Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Alice L Sternberg
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas L Davis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes. Acta Biomater 2023; 166:278-290. [PMID: 37211307 PMCID: PMC10330779 DOI: 10.1016/j.actbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023]
Abstract
Intracortical microelectrodes induce vascular injury upon insertion into the cortex. As blood vessels rupture, blood proteins and blood-derived cells (including platelets) are introduced into the 'immune privileged' brain tissues at higher-than-normal levels, passing through the damaged blood-brain barrier. Blood proteins adhere to implant surfaces, increasing the likelihood of cellular recognition leading to activation of immune and inflammatory cells. Persistent neuroinflammation is a major contributing factor to declining microelectrode recording performance. We investigated the spatial and temporal relationship of blood proteins fibrinogen and von Willebrand Factor (vWF), platelets, and type IV collagen, in relation to glial scarring markers for microglia and astrocytes following implantation of non-functional multi-shank silicon microelectrode probes into rats. Together with type IV collagen, fibrinogen and vWF augment platelet recruitment, activation, and aggregation. Our main results indicate blood proteins participating in hemostasis (fibrinogen and vWF) persisted at the microelectrode interface for up to 8-weeks after implantation. Further, type IV collagen and platelets surrounded the probe interface with similar spatial and temporal trends as vWF and fibrinogen. In addition to prolonged blood-brain barrier instability, specific blood and extracellular matrix proteins may play a role in promoting the inflammatory activation of platelets and recruitment to the microelectrode interface. STATEMENT OF SIGNIFICANCE: Implanted microelectrodes have substantial potential for restoring function to people with paralysis and amputation by providing signals that feed into natural control algorithms that drive prosthetic devices. Unfortunately, these microelectrodes do not display robust performance over time. Persistent neuroinflammation is widely thought to be a primary contributor to the devices' progressive decline in performance. Our manuscript reports on the highly local and persistent accumulation of platelets and hemostatic blood proteins around the microelectrode interface of brain implants. To our knowledge neuroinflammation driven by cellular and non-cellular responses associated with hemostasis and coagulation has not been rigorously quantified elsewhere. Our findings identify potential targets for therapeutic intervention and a better understanding of the driving mechanisms to neuroinflammation in the brain.
Collapse
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
19
|
Kandadai RM, Meka SS, Kola S, Alugolu R, Borgohain R. Constant Current Versus Constant Voltage DBS Stimulators-Changing Trend. Ann Indian Acad Neurol 2023; 26:368-369. [PMID: 37970242 PMCID: PMC10645276 DOI: 10.4103/aian.aian_508_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Rukmini M. Kandadai
- Departments of Neurology and Neurosurgery, Parkinson’s Disease and Movement Disorders Research Centre, Citi Neuro Centre, Hyderabad, Telangana, India
| | - Sai S. Meka
- Departments of Neurology and Neurosurgery, Parkinson’s Disease and Movement Disorders Research Centre, Citi Neuro Centre, Hyderabad, Telangana, India
| | - Sruthi Kola
- Departments of Neurology and Neurosurgery, Parkinson’s Disease and Movement Disorders Research Centre, Citi Neuro Centre, Hyderabad, Telangana, India
| | - Rajesh Alugolu
- Departments of Neurology and Neurosurgery, Parkinson’s Disease and Movement Disorders Research Centre, Citi Neuro Centre, Hyderabad, Telangana, India
| | - Rupam Borgohain
- Departments of Neurology and Neurosurgery, Parkinson’s Disease and Movement Disorders Research Centre, Citi Neuro Centre, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Beydler E, Katzell L, Putinta K, Holbert R, Carr B. Deep brain stimulation programming for intractable obsessive-compulsive disorder using a long pulse width. Front Psychiatry 2023; 14:1142677. [PMID: 37457764 PMCID: PMC10344357 DOI: 10.3389/fpsyt.2023.1142677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Around 25% of patients with obsessive-compulsive disorder (OCD) do not respond to medication or psychotherapy, producing significant impairment and treatment challenges. Deep Brain Stimulation (DBS) has been shown in multiple blinded trials to be a safe and durable emerging option for treatment-refractory OCD. Intraoperative device interrogation offers a theoretical anchor for starting outpatient DBS programming; however, no definitive post-operative programming algorithm for psychiatrists exists currently. Case Here we present a 58-year-old female with childhood-onset, severe, intractable OCD with multiple failed trials of psychotherapy, medication, and electroconvulsive therapy. After interdisciplinary evaluation, she underwent bilateral electrode implantation targeting the anterior limb of the internal capsule, nucleus accumbens (ALIC/NAc). Intraoperative interrogation afforded sparse information about a preferred lead contact or current density target. Subsequent outpatient interrogation consisted of systematic and independent mapping using monopolar cathodic stimulation with constant current. Modulating bipolar and triple monopolar configurations, amplitude, and pulse width all failed to induce observable effects. Given negligible interrogation feedback, we created an electrical field through the ALIC bilaterally, using the three most ventral contacts to create triple monopoles, with a long pulse width and moderate amperage. Conclusion Three months post-programming, the patient reported significant improvement in OCD symptoms, particularly checking behaviors, with response sustained over the next several months. As with our case, the majority of DBS lead contacts do not induce affective or physiological markers in patients, complicating programming optimization. Here, we discuss an approach to titrating various stimulation parameters and purported mechanisms of physiological markers in DBS for OCD.
Collapse
Affiliation(s)
- Emily Beydler
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Lauren Katzell
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Kevin Putinta
- Department of Psychiatry, University of South Alabama, Mobile, AL, United States
| | - Richard Holbert
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Brent Carr
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Munhoz RP, Albuainain G. Deep brain stimulation - New programming algorithms and teleprogramming. Expert Rev Neurother 2023; 23:467-478. [PMID: 37115193 DOI: 10.1080/14737175.2023.2208749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Thanks to a variety of factors, the field of neuromodulation has evolved significantly over the past decade. Developments include new indications and innovations of hardware, software, and stimulation techniques leading to an expansion in scope and role of these techniques as powerful therapies. They also imply the realization that practical application involves new nuances that make patient selection, surgical technique and the programming process even more complex, requiring continuous education and an organized structured approach. AREAS COVERED In this review, the authors explore the developments in deep brain stimulation technology, including electrodes, implantable pulse generators, contact configurations (i.e, directional leads and independent current control), remote programming and sensing using local field potentials. EXPERT OPINION The innovations in the field of deep brain stimulation discussed in this review potentially provide increased effectiveness and flexibility not only to improve therapeutic response but also to address troubleshooting challenges seen in clinical practice. Directional leads and shorter pulse widths may broaden the therapeutic window of stimulation, avoiding current spread to structures that might trigger stimulation-related side effects. Similarly, independent control of current to individual contacts allows for the shaping of the electric field. Finally, sensing and remote programming represent important developments for more effective and individualized patient care.
Collapse
Affiliation(s)
- Renato Puppi Munhoz
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, M5T 2S8, Canada
| | - Ghadh Albuainain
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Abdollahifard S, Farrokhi A, Mosalamiaghili S, Assadian K, Yousefi O, Razmkon A. Constant current or constant voltage deep brain stimulation: short answers to a long story. Acta Neurol Belg 2023; 123:1-8. [PMID: 36309957 DOI: 10.1007/s13760-022-02118-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Recently, the feature of generating constant current output has been added to the implantable pulse generators (IPGs). The efficacy of the conventionally used constant voltage (CV) stimulation has been proved in different movement and psychiatric disorders. In this systematic review, we aimed to discuss the effect of constant current (CC) and constant voltage stimulation on patients with Parkinson's disease (PD) who had subthalamic nucleus deep brain stimulation implantation; we also compared these methods of stimulation with each other. METHODS Using the words "Deep brain stimulation", "constant current" and "constant voltage", we developed a broad search strategy and a systematic search was conducted in PubMed, Scopus, Web of Science and Cochrane electronic bibliographic databases. Studies on the Parkinson's disease patients with subthalamic deep brain stimulation, which mentioned constant current or/and constant voltage setting stimulation were included. RESULTS After screening of 284 articles, 10 reports were found eligible for this study. The score of unified Parkinson's disease rating scale part 3 was improved compared to the baseline, whether the stimulation was CV at baseline or CC. No significant change in non-motor outcomes was found. CONCLUSIONS Although CC stimulation has shown a significant improvement in both motor and non-motor symptoms of PD, switching from CV to CC did not result in a significant change in the score of these items based on UPDRS. To sum up, implantation of constant current devices is safe and significantly improves motor function; it also maintains an acceptable safety profile in patients with PD.
Collapse
Affiliation(s)
- Saeed Abdollahifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirmohammad Farrokhi
- Research Center for Neuromodulation and Pain, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedarad Mosalamiaghili
- Research Center for Neuromodulation and Pain, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kasra Assadian
- Research Center for Neuromodulation and Pain, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Yousefi
- Research Center for Neuromodulation and Pain, Shiraz, Iran
| | - Ali Razmkon
- Research Center for Neuromodulation and Pain, Shiraz, Iran.
- Pierre Deniker Clinical Research Unit, Henri Laborit Hospital Centre, Poitiers, France.
| |
Collapse
|
23
|
Ramanathan PV, Salas-Vega S, Shenai MB. Directional Deep Brain Stimulation-A Step in the Right Direction? A Systematic Review of the Clinical and Therapeutic Efficacy of Directional Deep Brain Stimulation in Parkinson Disease. World Neurosurg 2023; 170:54-63.e1. [PMID: 36435384 DOI: 10.1016/j.wneu.2022.11.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The use of directional deep brain stimulation (dDBS) electrodes for the treatment of movement disorders such as Parkinson disease (PD) has become relatively widespread. However, the efficacy of dDBS relative to its omnidirectional deep brain stimulation (oDBS) counterpart is not well characterized. This systematic review aims to synthesize the literature comparing clinical and therapeutic outcomes of dDBS relative to oDBS in patients with PD. METHODS A systematic literature search for studies with comparative clinical outcome data between dDBS and oDBS was performed across the PubMed, Ovid MEDLINE, and Web of Science databases. Data including therapeutic window (TW) and surrogate measures and the Unified Parkinson's Disease Rating Scale score were collected and summarized across multiple time periods. RESULTS Ten studies met the eligibility criteria. Three of these studies evaluated motor performance in the form of Unified Parkinson's Disease Rating Scale III, with none finding differences between dDBS and oDBS. Two studies assessed quality-of-life measures with neither finding differences between dDBS and oDBS. TW or a surrogate measure was assessed in 6 studies; 5 studies found an increase or strong trend toward increase in dDBS relative to oDBS. CONCLUSIONS The current evidence, although limited by bias, does suggest that dDBS in the treatment of PD yields improvements in motor symptoms and quality of life that are comparable to oDBS; TW and surrogate measures are consistently improved in patients with PD under a directional configuration relative to omnidirectional.
Collapse
Affiliation(s)
| | | | - Mahesh B Shenai
- Department of Neurosurgery, INOVA Medical Group, Fairfax, Virginia, USA.
| |
Collapse
|
24
|
Johnson KA, Cagle JN, Lopes JL, Wong JK, Okun MS, Gunduz A, Shukla AW, Hilliard JD, Foote KD, de Hemptinne C. Globus pallidus internus deep brain stimulation evokes resonant neural activity in Parkinson's disease. Brain Commun 2023; 5:fcad025. [PMID: 36895960 PMCID: PMC9989134 DOI: 10.1093/braincomms/fcad025] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/07/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Globus pallidus internus deep brain stimulation is an established therapy for patients with medication-refractory Parkinson's disease. Clinical outcomes are highly dependent on applying stimulation to precise locations in the brain. However, robust neurophysiological markers are needed to determine the optimal electrode location and to guide postoperative stimulation parameter selection. In this study, we evaluated evoked resonant neural activity in the pallidum as a potential intraoperative marker to optimize targeting and stimulation parameter selection to improve outcomes of deep brain stimulation for Parkinson's disease. Intraoperative local field potential recordings were acquired in 22 patients with Parkinson's disease undergoing globus pallidus internus deep brain stimulation implantation (N = 27 hemispheres). A control group of patients undergoing implantation in the subthalamic nucleus (N = 4 hemispheres) for Parkinson's disease or the thalamus for essential tremor (N = 9 patients) were included for comparison. High-frequency (135 Hz) stimulation was delivered from each electrode contact sequentially while recording the evoked response from the other contacts. Low-frequency stimulation (10 Hz) was also applied as a comparison. Evoked resonant neural activity features, including amplitude, frequency and localization were measured and analysed for correlation with empirically derived postoperative therapeutic stimulation parameters. Pallidal evoked resonant neural activity elicited by stimulation in the globus pallidus internus or externus was detected in 26 of 27 hemispheres and varied across hemispheres and across stimulating contacts within individual hemispheres. Bursts of high-frequency stimulation elicited evoked resonant neural activity with similar amplitudes (P = 0.9) but a higher frequency (P = 0.009) and a higher number of peaks (P = 0.004) than low-frequency stimulation. We identified a 'hotspot' in the postero-dorsal pallidum where stimulation elicited higher evoked resonant neural activity amplitudes (P < 0.001). In 69.6% of hemispheres, the contact that elicited the maximum amplitude intraoperatively matched the contact empirically selected for chronic therapeutic stimulation by an expert clinician after 4 months of programming sessions. Pallidal and subthalamic nucleus evoked resonant neural activity were similar except for lower pallidal amplitudes. No evoked resonant neural activity was detected in the essential tremor control group. Given its spatial topography and correlation with postoperative stimulation parameters empirically selected by expert clinicians, pallidal evoked resonant neural activity shows promise as a potential marker to guide intraoperative targeting and to assist the clinician with postoperative stimulation programming. Importantly, evoked resonant neural activity may also have the potential to guide directional and closed-loop deep brain stimulation programming for Parkinson's disease.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Jackson N Cagle
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Janine Lobo Lopes
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Justin D Hilliard
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
D’Alessandro S, Handler M, Saba R, Garnham C, Baumgarten D. Computer Simulation of the Electrical Stimulation of the Human Vestibular System: Effects of the Reactive Component of Impedance on Voltage Waveform and Nerve Selectivity. J Assoc Res Otolaryngol 2022; 23:815-833. [PMID: 36050508 PMCID: PMC9789245 DOI: 10.1007/s10162-022-00868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/13/2022] [Indexed: 01/06/2023] Open
Abstract
The vestibular system is responsible for our sense of balance and spatial orientation. Recent studies have shown the possibility of partially restoring the function of this system using vestibular implants. Electrical modeling is a valuable tool in assisting the development of these implants by analyzing stimulation effects. However, previous modeling approaches of the vestibular system assumed quasi-static conditions. In this work, an extended modeling approach is presented that considers the reactive component of impedance and the electrode-tissue interface and their effects are investigated in a 3D human vestibular computer model. The Fourier finite element method was employed considering the frequency-dependent electrical properties of the different tissues. The electrode-tissue interface was integrated by an instrumental electrode model. A neuron model of myelinated fibers was employed to predict the nerve responses to the electrical stimulus. Morphological changes of the predicted voltage waveforms considering the dielectric tissue properties were found compared to quasi-static simulations, particularly during monopolar electrode configuration. Introducing the polarization capacitance and the scar tissue around the electrode in combination with a power limitation leads to a considerable current reduction applied through the active electrode and, consequently, to reduced voltage amplitudes of the stimulus waveforms. The reactive component of impedance resulted in better selectivity for the excitation of target nerves compared to the quasi-static simulation at the expense of slightly increased stimulus current amplitudes. We conclude that tissue permittivity and effects of the electrode-tissue interface should be considered to improve the accuracy of the simulations.
Collapse
Affiliation(s)
- Simone D’Alessandro
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Michael Handler
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | | | | | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| |
Collapse
|
26
|
Gelineau-Morel R, Kruer MC, Garris JF, Libdeh AA, Barbosa DAN, Coffman KA, Moon D, Barton C, Vera AZ, Bruce AB, Larsh T, Wu SW, Gilbert DL, O’Malley JA. Deep Brain Stimulation for Pediatric Dystonia: A Review of the Literature and Suggested Programming Algorithm. J Child Neurol 2022; 37:813-824. [PMID: 36053123 PMCID: PMC9912476 DOI: 10.1177/08830738221115248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.
Collapse
Affiliation(s)
- Rose Gelineau-Morel
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital & University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85016
| | - Jordan F Garris
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Amal Abu Libdeh
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards Bldg, Stanford, CA, 94305
| | - Keith A Coffman
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - David Moon
- Department of Child Neurology, Division of Neurosciences, Helen DeVos Children’s Hospital, 100 Michigan St NE, Grand Rapids, MI 49503
| | - Christopher Barton
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky; Division of Child Neurology, Norton Children’s Medical Group, 231 E Chestnut St, Louisville, KY 40202
| | - Alonso Zea Vera
- Department of Neurology, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, 20010
| | - Adrienne B Bruce
- Division of Pediatric Neurology, Department of Pediatrics, Prisma Health, 200 Patewood Drive A350, Greenville, SC, USA 29615; University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC, 29605
| | - Travis Larsh
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Steve W Wu
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Jennifer A O’Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, 750 Welch Road, Suite 317, Palo Alto, California, 94304
| |
Collapse
|
27
|
Bukowski N, Laurin A, Laforgue EJ, Preterre C, Rouaud T, Damier P, Raoul S, Dumont R, Loutrel O, Guitteny M, Derkinderen P, Bulteau S, Sauvaget A. Efficacy and Safety of Electroconvulsive Therapy in Patients With Deep Brain Stimulation: Literature Review, Case Report for Patient With Essential Tremor, and Practical Recommendations. J ECT 2022; 38:e29-e40. [PMID: 36018735 DOI: 10.1097/yct.0000000000000828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Deep brain stimulation (DBS) has proven to be an effective therapy of some treatment-resistant psychiatric disorders and movement disorders. Comorbid depressive symptoms are common and difficult to manage. Treatment with electroconvulsive therapy (ECT) may be required. There are few published cases describing the safety and efficacy of ECT for patients with DBS implants, and there are no available guidelines for administration of ECT in patients with DBS and mood disorders. The current study had 3 aims: (i) to conduct a systematic review of case reports on patients with DBS implants who received ECT; (ii) to report the case of a 69-year-old man with a DBS implant for essential tremor, who required ECT; and (iii) to provide practical recommendations for ECT in patients with DBS implants. METHODS We conducted a systematic review, in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, of existing case reports on patients with DBS implants administered ECT for psychiatric disorders. RESULTS Our search yielded 25 cases of ECT in patients implanted with DBS systems. In addition, we here describe successful ECT management of major depressive disorder in a patient treated by DBS. We also set forth ECT management guidelines based on points of consensus. The 2 most important practical recommendations are to make sure the DBS system is set to 0 V and turned off before ECT, and to avoid sites near the DBS electrodes. CONCLUSIONS Electroconvulsive therapy may be an effective and safe treatment for DBS patients with MDD.
Collapse
Affiliation(s)
- Nicolas Bukowski
- From the Addictology and Consultation-Liaison Psychiatry Department, CHU de Nantes
| | | | | | | | | | | | | | - Romain Dumont
- Department of Anesthesiology and Critical Care Medicine, Hôtel-Dieu-PTMC, CHU de Nantes, Nantes, France
| | - Olivier Loutrel
- Department of Anesthesiology and Critical Care Medicine, Hôtel-Dieu-PTMC, CHU de Nantes, Nantes, France
| | - Marie Guitteny
- From the Addictology and Consultation-Liaison Psychiatry Department, CHU de Nantes
| | | | | | | |
Collapse
|
28
|
Olson JW, Gonzalez CL, Brinkerhoff S, Boolos M, Wade MH, Hurt CP, Nakhmani A, Guthrie BL, Walker HC. Local anatomy, stimulation site, and time alter directional deep brain stimulation impedances. Front Hum Neurosci 2022; 16:958703. [PMID: 35992943 PMCID: PMC9381736 DOI: 10.3389/fnhum.2022.958703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Directional deep brain stimulation (DBS) contacts provide greater spatial flexibility for therapy than traditional ring-shaped electrodes, but little is known about longitudinal changes of impedance and orientation. We measured monopolar and bipolar impedance of DBS contacts in 31 patients who underwent unilateral subthalamic nucleus deep brain stimulation as part of a randomized study (SUNDIAL, NCT03353688). At different follow-up visits, patients were assigned new stimulation configurations and impedance was measured. Additionally, we measured the orientation of the directional lead during surgery, immediately after surgery, and 1 year later. Here we contrast impedances in directional versus ring contacts with respect to local anatomy, active stimulation contact(s), and over time. Directional contacts display larger impedances than ring contacts. Impedances generally increase slightly over the first year of therapy, save for a transient decrease immediately post-surgery under general anesthesia during pulse generator placement. Local impedances decrease at active stimulation sites, and contacts in closest proximity to internal capsule display higher impedances than other anatomic sites. DBS leads rotate slightly in the immediate postoperative period (typically less than the angle of a single contact) but otherwise remain stable over the following year. These data provide useful information for setting clinical stimulation parameters over time.
Collapse
Affiliation(s)
- Joseph W. Olson
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher L. Gonzalez
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah Brinkerhoff
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Melissa H. Wade
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher P. Hurt
- Department of Physical Therapy, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arie Nakhmani
- Department of Electrical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bart L. Guthrie
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Harrison C. Walker,
| |
Collapse
|
29
|
Whitsitt QA, Koo B, Celik ME, Evans BM, Weiland JD, Purcell EK. Spatial Transcriptomics as a Novel Approach to Redefine Electrical Stimulation Safety. Front Neurosci 2022; 16:937923. [PMID: 35928007 PMCID: PMC9344921 DOI: 10.3389/fnins.2022.937923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Current standards for safe delivery of electrical stimulation to the central nervous system are based on foundational studies which examined post-mortem tissue for histological signs of damage. This set of observations and the subsequently proposed limits to safe stimulation, termed the "Shannon limits," allow for a simple calculation (using charge per phase and charge density) to determine the intensity of electrical stimulation that can be delivered safely to brain tissue. In the three decades since the Shannon limits were reported, advances in molecular biology have allowed for more nuanced and detailed approaches to be used to expand current understanding of the physiological effects of stimulation. Here, we demonstrate the use of spatial transcriptomics (ST) in an exploratory investigation to assess the biological response to electrical stimulation in the brain. Electrical stimulation was delivered to the rat visual cortex with either acute or chronic electrode implantation procedures. To explore the influence of device type and stimulation parameters, we used carbon fiber ultramicroelectrode arrays (7 μm diameter) and microwire electrode arrays (50 μm diameter) delivering charge and charge density levels selected above and below reported tissue damage thresholds (range: 2-20 nC, 0.1-1 mC/cm2). Spatial transcriptomics was performed using Visium Spatial Gene Expression Slides (10x Genomics, Pleasanton, CA, United States), which enabled simultaneous immunohistochemistry and ST to directly compare traditional histological metrics to transcriptional profiles within each tissue sample. Our data give a first look at unique spatial patterns of gene expression that are related to cellular processes including inflammation, cell cycle progression, and neuronal plasticity. At the acute timepoint, an increase in inflammatory and plasticity related genes was observed surrounding a stimulating electrode compared to a craniotomy control. At the chronic timepoint, an increase in inflammatory and cell cycle progression related genes was observed both in the stimulating vs. non-stimulating microwire electrode comparison and in the stimulating microwire vs. carbon fiber comparison. Using the spatial aspect of this method as well as the within-sample link to traditional metrics of tissue damage, we demonstrate how these data may be analyzed and used to generate new hypotheses and inform safety standards for stimulation in cortex.
Collapse
Affiliation(s)
- Quentin A. Whitsitt
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Beomseo Koo
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mahmut Emin Celik
- Department of Electrical and Electronics Engineering, Gazi University, Ankara, Turkey
| | - Blake M. Evans
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - James D. Weiland
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Erin K. Purcell
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
30
|
Kolovou-Kouri K, Rashidi A, Varkevisser F, Serdijn WA, Giagka V. Energy Savings of Multi-Channel Neurostimulators with Non-Rectangular Current-Mode Stimuli Using Multiple Supply Rails. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3443-3446. [PMID: 36086191 DOI: 10.1109/embc48229.2022.9871145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In neuromodulation applications, conventional current mode stimulation is often preferred over its voltage mode equivalent due to its good control of the injected charge. However, it comes at the cost of less energy-efficient output stages. To increase energy efficiency, recent studies have explored non-rectangular stimuli. The current work highlights the importance of an adaptive supply for an output stage with programmable non-rectangular stimuli and accordingly proposes a system-level architecture for multi-channel stimulators. In the proposed architecture, a multi-output DC/DC Converter (DDC) allows each channel to choose among the available supply levels (i.e., DDC outputs) independently and based on its instant voltage/current requirement. A system-level analysis is carried out in Matlab to calculate the possible energy savings of this solution, compared to the conventional approach with a fixed supply. The energy savings have been simulated for a variety of supply levels and waveform amplitudes, suggesting energy savings of up to 83% when employing 6 DDC outputs and the lowest current amplitude explored ( 250 μA), and as high as 26% for a full-scale amplitude (4 mA).
Collapse
|
31
|
Johansson JD, Wardell K. DBSim and ELMA - Freeware for Simulations of Deep Brain Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1719-1724. [PMID: 36086324 DOI: 10.1109/embc48229.2022.9871821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Finite Element Method (FEM) simulations of the electric field is a useful tool to estimate the activated tissue around Deep Brain Stimulation (DBS) electrodes. Based on our previous research, a two-part software package named DBSim and ELMA is presented. ELMA is used to classify brain tissue into grey matter, white matter, blood, and cerebrospinal fluid and assign electric conductivities accordingly. This data is then used in DBSim to generate patient-specific simulations of the electric field around currently implemented leads Medtronic 3387 and 3389, and Abbott 6180 and 6181. The software is available for free download at https://liu.se/en/article/ne-downloads Clinical Relevance- This is a tool meant for research and educational purposes for e.g. studies on optimal target areas for DBS.
Collapse
|
32
|
Evers J, Sridhar K, Liegey J, Brady J, Jahns H, Lowery M. Stimulation-induced changes at the electrode-tissue interface and their influence on deep brain stimulation. J Neural Eng 2022; 19. [PMID: 35728575 DOI: 10.1088/1741-2552/ac7ad6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE During deep brain stimulation (DBS) the electrode-tissue interface forms a critical path between device and brain tissue. Although changes in the electrical double layer and glial scar can impact stimulation efficacy, the effects of chronic DBS on the electrode-tissue interface have not yet been established. APPROACH In this study, we characterised the electrode-tissue interface surrounding chronically implanted DBS electrodes in rats and compared the impedance and histological properties at the electrode interface in animals that received daily stimulation and in those where no stimulation was applied, up to eight weeks post-surgery. A computational model was developed based on the experimental data, which allowed the dispersive electrical properties of the surrounding encapsulation tissue to be estimated. The model was then used to study the effect of stimulation-induced changes in the electrode-tissue interface on the electric field and neural activation during voltage- and current-controlled stimulation. MAIN RESULTS Incorporating the observed changes in simulations in silico, we estimated the frequency-dependent dielectric properties of the electrical double layer and surrounding encapsulation tissue. Through simulations we show how stimulation-induced changes in the properties of the electrode-tissue interface influence the electric field and alter neural activation during voltage-controlled stimulation. A substantial increase in the number of stimulated collaterals, and their distance from the electrode, was observed during voltage-controlled stimulation with stimulated ETI properties. In vitro examination of stimulated electrodes confirmed that high frequency stimulation leads to desorption of proteins at the electrode interface, with a concomitant reduction in impedance. SIGNIFICANCE The demonstration of stimulation-induced changes in the electrode-tissue interface has important implications for future DBS systems including closed-loop systems where the applied stimulation may change over time. Understanding these changes is particularly important for systems incorporating simultaneous stimulation and sensing, which interact dynamically with brain networks.
Collapse
Affiliation(s)
- J Evers
- School of Electrical and Electronic Engineering, University College Dublin, Engineering Building, UCD Belfield, Dublin, Dublin, 4, IRELAND
| | - K Sridhar
- School of Electrical and Electronic Engineering, University College Dublin, Engineering Building, UCD Belfield, Dublin, Dublin, 4, IRELAND
| | - J Liegey
- School of Electrical and Electronic Engineering, University College Dublin, Engineering Building, UCD Belfield, Dublin, Dublin, 4, IRELAND
| | - J Brady
- School of Veterinary Medicine, University College Dublin, Veterinary Science Center, Dublin, 4, IRELAND
| | - H Jahns
- School of Veterinary Medicine, University College Dublin, Veterinary Science Center, Dublin, 4, IRELAND
| | - M Lowery
- School of Electrical, Electronic & Mechancial Engineering, University College Dublin, Engineering & Materials Science Centre, Belfield, Dublin 4, Dublin, 4, IRELAND
| |
Collapse
|
33
|
Malvea A, Babaei F, Boulay C, Sachs A, Park J. Deep brain stimulation for Parkinson’s Disease: A Review and Future Outlook. Biomed Eng Lett 2022; 12:303-316. [PMID: 35892031 PMCID: PMC9308849 DOI: 10.1007/s13534-022-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 12/29/2021] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder that manifests as an impairment of motor and non-motor abilities due to a loss of dopamine input to deep brain structures. While there is presently no cure for PD, a variety of pharmacological and surgical therapeutic interventions have been developed to manage PD symptoms. This review explores the past, present and future outlooks of PD treatment, with particular attention paid to deep brain stimulation (DBS), the surgical procedure to deliver DBS, and its limitations. Finally, our group's efforts with respect to brain mapping for DBS targeting will be discussed.
Collapse
Affiliation(s)
- Anahita Malvea
- Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, ON Canada
| | - Farbod Babaei
- School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5 Ottawa, ON Canada
| | - Chadwick Boulay
- The Ottawa Hospital Research Institute, Ottawa, Ontario Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario Canada
| | - Adam Sachs
- The Ottawa Hospital Research Institute, Ottawa, Ontario Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario Canada
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, Ontario Canada
| | - Jeongwon Park
- School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5 Ottawa, ON Canada
- Department of Electrical and Biomedical Engineering, University of Nevada, 89557 Reno, NV USA
| |
Collapse
|
34
|
Yang AI, Parker D, Vijayakumari AA, Ramayya AG, Donley-Fletcher MP, Aunapu D, Wolf RL, Baltuch GH, Verma R. Tractography-Based Surgical Targeting for Thalamic Deep Brain Stimulation: A Comparison of Probabilistic vs Deterministic Fiber Tracking of the Dentato-Rubro-Thalamic Tract. Neurosurgery 2022; 90:419-425. [PMID: 35044356 PMCID: PMC9514748 DOI: 10.1227/neu.0000000000001840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The ventral intermediate (VIM) thalamic nucleus is the main target for the surgical treatment of refractory tremor. Initial targeting traditionally relies on atlas-based stereotactic targeting formulas, which only minimally account for individual anatomy. Alternative approaches have been proposed, including direct targeting of the dentato-rubro-thalamic tract (DRTT), which, in clinical settings, is generally reconstructed with deterministic tracking. Whether more advanced probabilistic techniques are feasible on clinical-grade magnetic resonance acquisitions and lead to enhanced reconstructions is poorly understood. OBJECTIVE To compare DRTT reconstructed with deterministic vs probabilistic tracking. METHODS This is a retrospective study of 19 patients with essential tremor who underwent deep brain stimulation (DBS) with intraoperative neurophysiology and stimulation testing. We assessed the proximity of the DRTT to the DBS lead and to the active contact chosen based on clinical response. RESULTS In the commissural plane, the deterministic DRTT was anterior (P < 10-4) and lateral (P < 10-4) to the DBS lead. By contrast, although the probabilistic DRTT was also anterior to the lead (P < 10-4), there was no difference in the mediolateral dimension (P = .5). Moreover, the 3-dimensional Euclidean distance from the active contact to the probabilistic DRTT was smaller vs the distance to the deterministic DRTT (3.32 ± 1.70 mm vs 5.01 ± 2.12 mm; P < 10-4). CONCLUSION DRTT reconstructed with probabilistic fiber tracking was superior in spatial proximity to the physiology-guided DBS lead and to the empirically chosen active contact. These data inform strategies for surgical targeting of the VIM.
Collapse
Affiliation(s)
- Andrew I. Yang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Drew Parker
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Anupa A. Vijayakumari
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ashwin G. Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | | - Darien Aunapu
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ronald L. Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon H. Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ragini Verma
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat Biomed Eng 2022; 6:706-716. [PMID: 35361934 PMCID: PMC9213237 DOI: 10.1038/s41551-022-00873-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023]
Abstract
Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm × 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals’ sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators. An endovascular wireless and battery-free millimetric implant enables the stimulation of peripheral nerves that are difficult to reach via traditional surgeries.
Collapse
|
36
|
Gonzalez-Escamilla G, Koirala N, Bange M, Glaser M, Pintea B, Dresel C, Deuschl G, Muthuraman M, Groppa S. Deciphering the Network Effects of Deep Brain Stimulation in Parkinson's Disease. Neurol Ther 2022; 11:265-282. [PMID: 35000133 PMCID: PMC8857357 DOI: 10.1007/s40120-021-00318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/21/2021] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established therapy for Parkinson's disease (PD). However, a more detailed characterization of the targeted network and its grey matter (GM) terminals that drive the clinical outcome is needed. In this direction, the use of MRI after DBS surgery is now possible due to recent advances in hardware, opening a window for the clarification of the association between the affected tissue, including white matter fiber pathways and modulated GM regions, and the DBS-related clinical outcome. Therefore, we present a computational framework for reconstruction of targeted networks on postoperative MRI. METHODS We used a combination of preoperative whole-brain T1-weighted (T1w) and diffusion-weighted MRI data for morphometric integrity assessment and postoperative T1w MRI for electrode reconstruction and network reconstruction in 15 idiopathic PD patients. Within this framework, we made use of DBS lead artifact intensity profiles on postoperative MRI to determine DBS locations used as seeds for probabilistic tractography to cortical and subcortical targets within the motor circuitry. Lastly, we evaluated the relationship between brain microstructural characteristics of DBS-targeted brain network terminals and postoperative clinical outcomes. RESULTS The proposed framework showed robust performance for identifying the DBS electrode positions. Connectivity profiles between the primary motor cortex (M1), supplementary motor area (SMA), and DBS locations were strongly associated with the stimulation intensity needed for the optimal clinical outcome. Local diffusion properties of the modulated pathways were related to DBS outcomes. STN-DBS motor symptom improvement was highly associated with cortical thickness in the middle frontal and superior frontal cortices, but not with subcortical volumetry. CONCLUSION These data suggest that STN-DBS outcomes largely rely on the modulatory interference from cortical areas, particularly M1 and SMA, to DBS locations.
Collapse
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Nabin Koirala
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Manuel Bange
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital Bergmannsheil, Bürkle de la Camp-Platz 1, 44789, Bochum, Germany
| | - Christian Dresel
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Günther Deuschl
- Department of Neurology, Schleswig-Holstein University Hospital UKSH, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
37
|
Sharafkhani N, Kouzani AZ, Adams SD, Long JM, Lissorgues G, Rousseau L, Orwa JO. Neural tissue-microelectrode interaction: Brain micromotion, electrical impedance, and flexible microelectrode insertion. J Neurosci Methods 2022; 365:109388. [PMID: 34678387 DOI: 10.1016/j.jneumeth.2021.109388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
Insertion of a microelectrode into the brain to record/stimulate neurons damages neural tissue and blood vessels and initiates the brain's wound healing response. Due to the large difference between the stiffness of neural tissue and microelectrode, brain micromotion also leads to neural tissue damage and associated local immune response. Over time, following implantation, the brain's response to the tissue damage can result in microelectrode failure. Reducing the microelectrode's cross-sectional dimensions to single-digit microns or using soft materials with elastic modulus close to that of the neural tissue are effective methods to alleviate the neural tissue damage and enhance microelectrode longevity. However, the increase in electrical impedance of the microelectrode caused by reducing the microelectrode contact site's dimensions can decrease the signal-to-noise ratio. Most importantly, the reduced dimensions also lead to a reduction in the critical buckling force, which increases the microelectrode's propensity to buckling during insertion. After discussing brain micromotion, the main source of neural tissue damage, surface modification of the microelectrode contact site is reviewed as a key method for addressing the increase in electrical impedance issue. The review then focuses on recent approaches to aiding insertion of flexible microelectrodes into the brain, including bending stiffness modification, effective length reduction, and application of a magnetic field to pull the electrode. An understanding of the advantages and drawbacks of the developed strategies offers a guide for dealing with the buckling phenomenon during implantation.
Collapse
Affiliation(s)
- Naser Sharafkhani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia.
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | - Scott D Adams
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | - John M Long
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | | | | | - Julius O Orwa
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia.
| |
Collapse
|
38
|
Johansson JD. Estimation of electric field impact in deep brain stimulation from axon diameter distribution in the human brain. Biomed Phys Eng Express 2021; 7. [PMID: 34619674 DOI: 10.1088/2057-1976/ac2dd4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/07/2021] [Indexed: 11/12/2022]
Abstract
Objective.Finite element method (FEM) simulations of the electric field magnitude (EF) are commonly used to estimate the affected tissue surrounding the active contact of deep brain stimulation (DBS) leads. Previous studies have found that DBS starts to noticeably activate axons at approximately 0.2 V mm-1, corresponding to activation of 3.4μm axons in simulations of individual axon triggering. Most axons in the brain are considerably smaller however, and the effect of the electric field is thus expected to be stronger with increasing EF as more and more axons become activated. The objective of this study is to estimate the fraction of activated axons as a function of electric field magnitude.Approach. The EF thresholds required for axon stimulation of myelinated axon diameters between 1 and 5μm were obtained from a combined cable and Hodgkin-Huxley model in a FEM-simulated electric field from a Medtronic 3389 lead. These thresholds were compared with the average axon diameter distribution from literature from several structures in the human brain to obtain an estimate of the fraction of axons activated at EF levels between 0.1 and 1.8 V mm-1.Main results. The effect of DBS is estimated to be 47·EF-8.8% starting at a threshold levelEFt0 = 0.19 V mm-1.Significance. The fraction of activated axons from DBS in a voxel is estimated to increase linearly with EF above the threshold level of 0.19 V mm-1. This means linear regression between EF above 0.19 V mm-1and clinical outcome is a suitable statistical method when doing improvement maps for DBS.
Collapse
Affiliation(s)
- Johannes D Johansson
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
39
|
Sarica C, Iorio-Morin C, Aguirre-Padilla DH, Najjar A, Paff M, Fomenko A, Yamamoto K, Zemmar A, Lipsman N, Ibrahim GM, Hamani C, Hodaie M, Lozano AM, Munhoz RP, Fasano A, Kalia SK. Implantable Pulse Generators for Deep Brain Stimulation: Challenges, Complications, and Strategies for Practicality and Longevity. Front Hum Neurosci 2021; 15:708481. [PMID: 34512295 PMCID: PMC8427803 DOI: 10.3389/fnhum.2021.708481] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) represents an important treatment modality for movement disorders and other circuitopathies. Despite their miniaturization and increasing sophistication, DBS systems share a common set of components of which the implantable pulse generator (IPG) is the core power supply and programmable element. Here we provide an overview of key hardware and software specifications of commercially available IPG systems such as rechargeability, MRI compatibility, electrode configuration, pulse delivery, IPG case architecture, and local field potential sensing. We present evidence-based approaches to mitigate hardware complications, of which infection represents the most important factor. Strategies correlating positively with decreased complications include antibiotic impregnation and co-administration and other surgical considerations during IPG implantation such as the use of tack-up sutures and smaller profile devices.Strategies aimed at maximizing battery longevity include patient-related elements such as reliability of IPG recharging or consistency of nightly device shutoff, and device-specific such as parameter delivery, choice of lead configuration, implantation location, and careful selection of electrode materials to minimize impedance mismatch. Finally, experimental DBS systems such as ultrasound, magnetoelectric nanoparticles, and near-infrared that use extracorporeal powered neuromodulation strategies are described as potential future directions for minimally invasive treatment.
Collapse
Affiliation(s)
- Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David H Aguirre-Padilla
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurology & Neurosurgery, Center Campus, Universidad de Chile, Santiago, Chile
| | - Ahmed Najjar
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Surgery, College of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Michelle Paff
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, University of California, Irvine, Irvine, CA, United States
| | - Anton Fomenko
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ajmal Zemmar
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, Henan University School of Medicine, Zhengzhou, China.,Department of Neurosurgery, University of Louisville School of Medicine, Louisville, KY, United States
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada.,KITE, University Health Network, Toronto, ON, Canada
| |
Collapse
|
40
|
Charlebois CM, Caldwell DJ, Rampersad SM, Janson AP, Ojemann JG, Brooks DH, MacLeod RS, Butson CR, Dorval AD. Validating Patient-Specific Finite Element Models of Direct Electrocortical Stimulation. Front Neurosci 2021; 15:691701. [PMID: 34408621 PMCID: PMC8365306 DOI: 10.3389/fnins.2021.691701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.
Collapse
Affiliation(s)
- Chantel M Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
| | - David J Caldwell
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Center for Neurotechnology, University of Washington, Seattle, WA, United States.,Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Sumientra M Rampersad
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Andrew P Janson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Dana H Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Rob S MacLeod
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
| | - Christopher R Butson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States.,Department of Neurology, Neurosurgery and Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Alan D Dorval
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
41
|
Johansson JD, Zsigmond P. Comparison between patient-specific deep brain stimulation simulations and commercial system SureTune3. Biomed Phys Eng Express 2021; 7. [PMID: 34161929 DOI: 10.1088/2057-1976/ac0dcd] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022]
Abstract
Objective. Software to visualize estimated volume of tissue activated (VTA) in deep brain stimulation assuming a homogeneous tissue surrounding such as SureTune3 has recently become available for clinical use. The objective of this study is to compare SureTune3 with homogeneous and heterogeneous patient-specific finite element method (FEM) simulations of the VTA to elucidate how well they coincide in their estimates.Approach. FEM simulations of the VTA were performed in COMSOL Multiphysics and compared with VTA from SureTune3 with variation of voltage and current amplitude, pulse width, axon diameter, number of active contacts, and surrounding homogeneous grey or white matter. Patient-specific simulations with heterogeneous tissue were also performed.Main results. The VTAs corresponded well for voltage control in homogeneous tissue, though with the smallest VTAs being slightly larger in SureTune3 and the largest VTAs being slightly larger in the FEM simulations. In current control, FEM estimated larger VTAs in white matter and smaller VTAs in grey matter compared to SureTune3 as grey matter has higher electric conductivity than white matter and requires less voltage to reach the same current. The VTAs also corresponded well in the patient-specific cases except for one case with a cyst of highly conductive cerebrospinal fluid (CSF) near the active contacts.Significance. The VTA estimates without taking the surrounding tissue into account in SureTune3 are in good agreement with patient-specific FEM simulations when using voltage control in the absence of CSF-filled cyst. In current control or when CSF is present near the active contacts, the tissue characteristics are important for the VTA and needs consideration.Clinical. trial ethical approval: Local ethics committee at Linköping University (2012/434-31).
Collapse
Affiliation(s)
- Johannes D Johansson
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden
| | - Peter Zsigmond
- Department of Neurosurgery and Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
42
|
Prox J, Seicol B, Qi H, Argall A, Araya N, Behnke N, Guo L. Toward living neuroprosthetics: developing a biological brain pacemaker as a living neuromodulatory implant for improving parkinsonian symptoms. J Neural Eng 2021; 18. [PMID: 34010821 DOI: 10.1088/1741-2552/ac02dd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Objective.Therapeutic intervention for Parkinson's disease (PD) via deep brain stimulation (DBS) represents the current paradigm for managing the advanced stages of the disease in patients when treatment with pharmaceuticals becomes inadequate. Although DBS is the prevailing therapy in these cases, the overall effectiveness and reliability of DBS can be diminished over time due to hardware complications and biocompatibility issues with the electronic implants. To achieve a lifetime solution, we envision that the next generation of neural implants will be entirely 'biological' and 'autologous', both physically and functionally. Thus, in this study, we set forth toward developing a biological brain pacemaker for treating PD. Our focus is to investigate engineering strategies for creating a multicellular biological circuit that integrates innate biological design and function while incorporating principles of neuromodulation to create a biological mechanism for delivering high-frequency stimulation with cellular specificity.Approach.We engineer a 3D multicellular circuit design built entirely from biological and biocompatible components using established tissue engineering protocols to demonstrate the feasibility of creating a living neural implant. Furthermore, using 2D co-culture systems, we investigate the physiologically relevant parameters that would be necessary to further develop a therapeutic benefit of high-frequency stimulation with cellular specificity within our construct design.Main results.Our results demonstrate the feasibility of fabricating a 3D multicellular circuit device in an implantable form. Furthermore, we show we can organize cellular materials to create potential functional connections in normal physiological conditions, thus laying down the foundation of designing a high-frequency pacing system for selective and controlled therapeutic neurostimulation.Significance.The findings from this study may lead to the future development of autologous living neural implants that both circumvent the issues inherent in electronic neural implants and form more biocompatible devices with lifelong robustness to repair and restore motor functions, with the ultimate benefit for patients with PD.
Collapse
Affiliation(s)
- Jordan Prox
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States of America
| | - Benjamin Seicol
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States of America
| | - Hao Qi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Aaron Argall
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States of America
| | - Neway Araya
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States of America
| | - Nicholas Behnke
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Liang Guo
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
43
|
Opie NL, O'Brien TJ. The potential of closed-loop endovascular neurostimulation as a viable therapeutic approach for drug-resistant epilepsy: A critical review. Artif Organs 2021; 46:337-348. [PMID: 34101849 DOI: 10.1111/aor.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Over the last few decades, biomedical implants have successfully delivered therapeutic electrical stimulation to reduce the frequency and severity of seizures in people with drug-resistant epilepsy. However, neurostimulation approaches require invasive surgery to implant stimulating electrodes, and surgical, medical, and hardware complications are not uncommon. An endovascular approach provides a potentially safer and less invasive surgical alternative. This article critically evaluates the feasibility of endovascular closed-loop neuromodulation for the treatment of epilepsy. By reviewing literature that reported the impact of direct electrical stimulation to reduce the frequency of epileptic seizures, we identified clinically validated extracranial, cortical, and deep cortical neural targets. We identified veins in close proximity to these targets and evaluated the potential of delivering an endovascular implant to these veins based on their diameter. We then compared the risks and benefits of existing technology to describe a benchmark of clinical safety and efficacy that would need to be achieved for endovascular neuromodulation to provide therapeutic benefit. For the majority of brain regions that have been clinically demonstrated to reduce seizure occurrence in response to delivered electrical stimulation, vessels of appropriate diameter for delivery of an endovascular electrode to these regions could be achieved. This includes delivery to the vagus nerve via the 13.2 ± 0.9 mm diameter internal jugular vein, the motor cortex via the 6.5 ± 1.7 mm diameter superior sagittal sinus, and the cerebellum via the 7.7 ± 1.4 mm diameter sigmoid sinus or 6.2 ± 1.4 mm diameter transverse sinus. Deep cerebral targets can also be accessed with an endovascular approach, with the 1.9 ± 0.5 mm diameter internal cerebral vein and 1.2-mm-diameter thalamostriate vein lying in close proximity to the anterior and centromedian nuclei of the thalamus, respectively. This work identified numerous veins that are in close proximity to conventional stimulation targets that are of a diameter large enough for delivery and deployment of an endovascular electrode array, supporting future work to assess clinical efficacy and chronic safety of an endovascular approach to deliver therapeutic neurostimulation.
Collapse
Affiliation(s)
- Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Synchron Inc., San Francisco, CA, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Ali HAM, Abdullah SS, Faraj MK. High impedance analysis in recordings of deep brain stimulation surgery. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Neudorfer C, Chow CT, Boutet A, Loh A, Germann J, Elias GJ, Hutchison WD, Lozano AM. Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimul 2021; 14:513-530. [PMID: 33757930 DOI: 10.1016/j.brs.2021.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electrical stimulation in the kilohertz-frequency range has gained interest in the field of neuroscience. The mechanisms underlying stimulation in this frequency range, however, are poorly characterized to date. OBJECTIVE/HYPOTHESIS To summarize the manifold biological effects elicited by kilohertz-frequency stimulation in the context of the currently existing literature and provide a mechanistic framework for the neural responses observed in this frequency range. METHODS A comprehensive search of the peer-reviewed literature was conducted across electronic databases. Relevant computational, clinical, and mechanistic studies were selected for review. RESULTS The effects of kilohertz-frequency stimulation on neural tissue are diverse and yield effects that are distinct from conventional stimulation. Broadly, these can be divided into 1) subthreshold, 2) suprathreshold, 3) synaptic and 4) thermal effects. While facilitation is the dominating mechanism at the subthreshold level, desynchronization, spike-rate adaptation, conduction block, and non-monotonic activation can be observed during suprathreshold kilohertz-frequency stimulation. At the synaptic level, kilohertz-frequency stimulation has been associated with the transient depletion of the available neurotransmitter pool - also known as synaptic fatigue. Finally, thermal effects associated with extrinsic (environmental) and intrinsic (associated with kilohertz-frequency stimulation) temperature changes have been suggested to alter the neural response to stimulation paradigms. CONCLUSION The diverse spectrum of neural responses to stimulation in the kilohertz-frequency range is distinct from that associated with conventional stimulation. This offers the potential for new therapeutic avenues across stimulation modalities. However, stimulation in the kilohertz-frequency range is associated with distinct challenges and caveats that need to be considered in experimental paradigms.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin Jb Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - William D Hutchison
- Krembil Research Institute, University of Toronto, Ontario, Canada; Department of Physiology, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada; Krembil Research Institute, University of Toronto, Ontario, Canada.
| |
Collapse
|
46
|
Luo M, Narasimhan S, Larson PS, Martin AJ, Konrad PE, Miga MI. Impact of brain shift on neural pathways in deep brain stimulation: a preliminary analysis via multi-physics finite element models. J Neural Eng 2021; 18. [PMID: 33740780 DOI: 10.1088/1741-2552/abf066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/19/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The effectiveness of deep brain stimulation (DBS) depends on electrode placement accuracy, which can be compromised by brain shift during surgery. While there have been efforts in assessing the impact of electrode misplacement due to brain shift using preop- and postop- imaging data, such analysis using preop- and intraop- imaging data via biophysical modeling has not been conducted. This work presents a preliminary study that applies a multi-physics analysis framework using finite element biomechanical and bioelectric models to examine the impact of realistic intraoperative shift on neural pathways determined by tractography. APPROACH The study examined six patients who had undergone interventional magnetic resonance (iMR)-guided DBS surgery. The modeling framework utilized a biomechanical approach to update preoperative MR to reflect shift-induced anatomical changes. Using this anatomically deformed image and its undeformed counterpart, bioelectric effects from shifting electrode leads could be simulated and neural activation differences were approximated. Specifically, for each configuration, volume of tissue activation (VTA) was computed and subsequently used for tractography estimation. Total tract volume and overlapping volume with motor regions as well as connectivity profile were compared. In addition, volumetric overlap between different fiber bundles among configurations was computed and correlated to estimated shift. MAIN RESULT The study found deformation-induced differences in tract volume, motor region overlap, and connectivity behavior, suggesting the impact of shift. There is a strong correlation (R=-0.83) between shift from intended target and intended neural pathway recruitment, where at threshold of ~2.94 mm, intended recruitment completely degrades. The determined threshold is consistent with and provides quantitative support to prior observations and literature that deviations of 2-3 mm are detrimental. SIGNIFICANCE The findings support and advance prior studies and understanding to illustrate the need to account for shift in DBS and the potentiality of computational modeling for estimating influence of shift on neural activation.
Collapse
Affiliation(s)
- Ma Luo
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee, 37232, UNITED STATES
| | - Saramati Narasimhan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Village at Vanderbilt, 1500 21st Ave. South, Nashville, Tennessee, 37212, UNITED STATES
| | - Paul S Larson
- Department of Neurological Surgery, University of California San Francisco, Box 0112, 505 Parnassus Ave, Room M779, San Francisco, California, 94143, UNITED STATES
| | - Alastiar J Martin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, California, 94143, UNITED STATES
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, PO Box 9183, Morgantown, West Virginia, 26506, UNITED STATES
| | - Michael I Miga
- Department of Biomedical Engineering, Vanderbilt University, 5901 Stevenson Center, Nashville, Tennessee, 37235, UNITED STATES
| |
Collapse
|
47
|
Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, White JJ, Sillitoe RV. Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nat Commun 2021; 12:1295. [PMID: 33637754 PMCID: PMC7910465 DOI: 10.1038/s41467-021-21417-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Deep brain stimulation (DBS) relieves motor dysfunction in Parkinson's disease, and other movement disorders. Here, we demonstrate the potential benefits of DBS in a model of ataxia by targeting the cerebellum, a major motor center in the brain. We use the Car8 mouse model of hereditary ataxia to test the potential of using cerebellar nuclei DBS plus physical activity to restore movement. While low-frequency cerebellar DBS alone improves Car8 mobility and muscle function, adding skilled exercise to the treatment regimen additionally rescues limb coordination and stepping. Importantly, the gains persist in the absence of further stimulation. Because DBS promotes the most dramatic improvements in mice with early-stage ataxia, we postulated that cerebellar circuit function affects stimulation efficacy. Indeed, genetically eliminating Purkinje cell neurotransmission blocked the ability of DBS to reduce ataxia. These findings may be valuable in devising future DBS strategies.
Collapse
Affiliation(s)
- Lauren N. Miterko
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Tao Lin
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Joy Zhou
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Meike E. van der Heijden
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Jaclyn Beckinghausen
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Joshua J. White
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Roy V. Sillitoe
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
48
|
Johnson KA, Duffley G, Anderson DN, Ostrem JL, Welter ML, Baldermann JC, Kuhn J, Huys D, Visser-Vandewalle V, Foltynie T, Zrinzo L, Hariz M, Leentjens AFG, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Foote KD, Okun MS, Butson CR. Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain 2020; 143:2607-2623. [PMID: 32653920 DOI: 10.1093/brain/awaa188] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Daria Nesterovich Anderson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Marie-Laure Welter
- Institut du Cerveau et de la Moelle Epiniere, Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Foltynie
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Marwan Hariz
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,Department of Clinical Neuroscience, Umea University, Umea, Sweden
| | - Albert F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alon Y Mogilner
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
49
|
Iwasa SN, Shi HH, Hong SH, Chen T, Marquez-Chin M, Iorio-Morin C, Kalia SK, Popovic MR, Naguib HE, Morshead CM. Novel Electrode Designs for Neurostimulation in Regenerative Medicine: Activation of Stem Cells. Bioelectricity 2020; 2:348-361. [PMID: 34471854 PMCID: PMC8370381 DOI: 10.1089/bioe.2020.0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neural stem and progenitor cells (i.e., neural precursors) are found within specific regions in the central nervous system and have great regenerative capacity. These cells are electrosensitive and their behavior can be regulated by the presence of electric fields (EFs). Electrical stimulation is currently used to treat neurological disorders in a clinical setting. Herein we propose that electrical stimulation can be used to enhance neural repair by regulating neural precursor cell (NPC) kinetics and promoting their migration to sites of injury or disease. We discuss how intrinsic and extrinsic factors can affect NPC migration in the presence of an EF and how this impacts electrode design with the goal of enhancing tissue regeneration. We conclude with an outlook on future clinical applications of electrical stimulation and highlight technological advances that would greatly support these applications.
Collapse
Affiliation(s)
- Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
| | - HaoTian H Shi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Sung Hwa Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Melissa Marquez-Chin
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Christian Iorio-Morin
- Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
- Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, Canada
| | - Milos R Popovic
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Hani E Naguib
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, Canada
| | - Cindi M Morshead
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
50
|
Aubignat M, Lefranc M, Tir M, Krystkowiak P. Deep brain stimulation programming in Parkinson's disease: Introduction of current issues and perspectives. Rev Neurol (Paris) 2020; 176:770-779. [DOI: 10.1016/j.neurol.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
|