1
|
Wang L, Li M, Xu D, Yang Y. Cortical ROI Importance Improves MI Decoding From EEG Using Fused Light Neural Network. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3636-3646. [PMID: 39283802 DOI: 10.1109/tnsre.2024.3461339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Decoding motor imagery (MI) using deep learning in cortical level has potential in brain computer interface based intelligent rehabilitation. However, a mass of dipoles is inconvenient to extract the personalized features and requires a more complex neural network. In consideration of the structural and functional similarity of the neurons in a neuroanatomical region, i.e., a region of interest (ROI), we propose that the comprehensive performance of each ROI may be reflected by a specific representative dipole (RD), and the time-frequency spectrums of all RDs are applied simultaneously to Random Forest algorithm to give a quantitative metric of each ROI importance (RI). Then, the more divided sub-band spectral powers are reinforced by RI, and they are interpolated to a 2-dimensional (2D) plane transformed from 3D space of all RDs, yielding an ensemble representation of RD feature image sequences (ERDFIS). Furthermore, a lightweight network, including 2D separable convolution and gated recurrent unit (2DSCG), is developed to extract and classify the frequency-spatial and temporal features from ERDFIS, forming a novel MI decoding method in cortical level (called ERDFIS-2DSCG). Based on two public datasets, the decoding accuracies of ten-fold cross-validation are 89.89% and 94.35%, respectively. The results suggest that RD can embody the overall property of ROI in time-frequency-space domains, and ROI importance is helpful to highlight the subject-based characteristics of MI-EEG. Meanwhile, 2DSCG is matched well with ERDFIS, jointly improving the decoding performance.
Collapse
|
2
|
Vorwerk J, Wolters CH, Baumgarten D. Global sensitivity of EEG source analysis to tissue conductivity uncertainties. Front Hum Neurosci 2024; 18:1335212. [PMID: 38532791 PMCID: PMC10963400 DOI: 10.3389/fnhum.2024.1335212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction To reliably solve the EEG inverse problem, accurate EEG forward solutions based on a detailed, individual volume conductor model of the head are essential. A crucial-but often neglected-aspect in generating a volume conductor model is the choice of the tissue conductivities, as these may vary from subject to subject. In this study, we investigate the sensitivity of EEG forward and inverse solutions to tissue conductivity uncertainties for sources distributed over the whole cortex surface. Methods We employ a detailed five-compartment head model distinguishing skin, skull, cerebrospinal fluid, gray matter, and white matter, where we consider uncertainties of skin, skull, gray matter, and white matter conductivities. We use the finite element method (FEM) to calculate EEG forward solutions and goal function scans (GFS) as inverse approach. To be able to generate the large number of EEG forward solutions, we employ generalized polynomial chaos (gPC) expansions. Results For sources up to a depth of 4 cm, we find the strongest influence on the signal topography of EEG forward solutions for the skull conductivity and a notable effect for the skin conductivity. For even deeper sources, e.g., located deep in the longitudinal fissure, we find an increasing influence of the white matter conductivity. The conductivity variations translate to varying source localizations particularly for quasi-tangential sources on sulcal walls, whereas source localizations of quasi-radial sources on the top of gyri are less affected. We find a strong correlation between skull conductivity and the variation of source localizations and especially the depth of the reconstructed source for quasi-tangential sources. We furthermore find a clear but weaker correlation between depth of the reconstructed source and the skin conductivity. Discussion Our results clearly show the influence of tissue conductivity uncertainties on EEG source analysis. We find a particularly strong influence of skull and skin conductivity uncertainties.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
3
|
Chericoni A, Ricci L, Ntolkeras G, Billardello R, Stone SSD, Madsen JR, Papadelis C, Grant PE, Pearl PL, Taffoni F, Rotenberg A, Tamilia E. Sleep Spindle Generation Before and After Epilepsy Surgery: A Source Imaging Study in Children with Drug-Resistant Epilepsy. Brain Topogr 2024; 37:88-101. [PMID: 37737957 DOI: 10.1007/s10548-023-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Literature lacks studies investigating the cortical generation of sleep spindles in drug-resistant epilepsy (DRE) and how they evolve after resection of the epileptogenic zone (EZ). Here, we examined sleep EEGs of children with focal DRE who became seizure-free after focal epilepsy surgery, and aimed to investigate the changes in the spindle generation before and after the surgery using low-density scalp EEG and electrical source imaging (ESI). METHODS We analyzed N2-sleep EEGs from 19 children with DRE before and after surgery. We identified slow (8-12 Hz) and fast spindles (13-16 Hz), computed their spectral features and cortical generators through ESI and computed their distance from the EZ and irritative zone (IZ). We performed two-way ANOVA testing the effect of spindle type (slow vs. fast) and surgical phase (pre-surgery vs. post-surgery) on each feature. RESULTS Power, frequency and cortical activation of slow spindles increased after surgery (p < 0.005), while this was not seen for fast spindles. Before surgery, the cortical generators of slow spindles were closer to the EZ (57.3 vs. 66.2 mm, p = 0.007) and IZ (41.3 vs. 55.5 mm, p = 0.02) than fast spindle generators. CONCLUSIONS Our data indicate alterations in the EEG slow spindles after resective epilepsy surgery. Fast spindle generation on the contrary did not change after surgery. Although the study is limited by its retrospective nature, lack of healthy controls, and reduced cortical spatial sampling, our findings suggest a spatial relationship between the slow spindles and the epileptogenic generators.
Collapse
Affiliation(s)
- Assia Chericoni
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Lorenzo Ricci
- Department of Medicine and Surgery, Research Unit of Neurology, Neurobiology, Neurophysiology, University Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Georgios Ntolkeras
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Billardello
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Advanced Robotics and Human-Centred Technologies - CREO Lab, Campus Bio-Medico di Roma, Rome, Italy
| | - Scellig S D Stone
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook children's Health Care System, Boston, TX, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fabrizio Taffoni
- Advanced Robotics and Human-Centred Technologies - CREO Lab, Campus Bio-Medico di Roma, Rome, Italy
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleonora Tamilia
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Singh J, Ebersole JS, Brinkmann BH. From theory to practical fundamentals of electroencephalographic source imaging in localizing the epileptogenic zone. Epilepsia 2022; 63:2476-2490. [PMID: 35811476 PMCID: PMC9796417 DOI: 10.1111/epi.17361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023]
Abstract
With continued advancement in computational technologies, the analysis of electroencephalography (EEG) has shifted from pure visual analysis to a noninvasive computational technique called EEG source imaging (ESI), which involves mathematical modeling of dipolar and distributed sources of a given scalp EEG pattern. ESI is a noninvasive phase I test for presurgical localization of the seizure onset zone in focal epilepsy. It is a relatively inexpensive modality, as it leverages scalp EEG and magnetic resonance imaging (MRI) data already collected typically during presurgical evaluation. With an adequate number of electrodes and combined with patient-specific MRI-based head models, ESI has proven to be a valuable and accurate clinical diagnostic tool for localizing the epileptogenic zone. Despite its advantages, however, ESI is routinely used at only a minority of epilepsy centers. This paper reviews the current evidence and practical fundamentals for using ESI of interictal and ictal epileptic activity during the presurgical evaluation of drug-resistant patients. We identify common errors in processing and interpreting ESI studies, describe the differences in approach needed for localizing interictal and ictal EEG discharges through practical examples, and describe best practices for optimizing the diagnostic information available from these studies.
Collapse
Affiliation(s)
- Jaysingh Singh
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - John S. Ebersole
- Northeast Regional Epilepsy GroupAtlantic Health Neuroscience InstituteSummitNew JerseyUSA
| | - Benjamin H. Brinkmann
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA,Department of Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
5
|
Sato Y, Tsuji Y, Yamazaki M, Fujii Y, Shirasawa A, Harada K, Mizutani T. Interictal High Gamma Oscillation Regularity as a Marker for Presurgical Epileptogenic Zone Localization. Oper Neurosurg (Hagerstown) 2022; 23:164-173. [PMID: 35486873 DOI: 10.1227/ons.0000000000000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/12/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND To ensure that epilepsy surgery is effective, accurate presurgical localization of the epileptogenic zone is essential. Our previous reports demonstrated that interictal high gamma oscillation (30-70 Hz) regularity (GOR) on intracranial electroencephalograms is related to epileptogenicity. OBJECTIVE To examine whether preoperative GOR analysis with interictal high-density electroencephalography (HD-EEG) improves the accuracy of epileptogenic focus localization and enhances postoperative seizure control. METHODS We calculated GOR from 20 seconds of HD-EEG data for 21 patients with refractory focal epilepsy (4 with nonlesional temporal lobe epilepsy) scheduled for epilepsy surgery. Low-resolution brain electromagnetic tomography was used to analyze the high GOR source. To validate our findings, we made comparisons with other conventional localization methods and postoperative seizure outcomes. RESULTS In all patients, the areas of interictal high GOR were identified and resected. All patients were seizure-free after the operation. The concordance between the results of interictal high GOR on HD-EEG and those of source estimation of interictal discharge was fully overlapping in 10 cases, partially overlapping in 8 cases, and discordant in 3 cases. The concordance between the results of interictal high GOR on HD-EEG and those of interictal 123 I-iomazenil single-photon emission computed tomography was fully overlapping in 8 cases, partially overlapping in 11 cases, and discordant in 2 cases. In 4 patients with nonlesional temporal lobe epilepsy, the interictal high GOR on HD-EEG was useful in confirming the epileptogenic zone. CONCLUSION The interictal high GOR on HD-EEG is an excellent marker for presurgical epileptogenic zone localization.
Collapse
Affiliation(s)
- Yosuke Sato
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihito Tsuji
- Department of Neurosurgery, Matsubara Tokushukai Hospital, Osaka, Japan
| | | | | | | | | | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Saute RL, Peixoto-Santos JE, Velasco TR, Leite JP. Improving surgical outcome with electric source imaging and high field magnetic resonance imaging. Seizure 2021; 90:145-154. [PMID: 33608134 DOI: 10.1016/j.seizure.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
While most patients with focal epilepsy present with clear structural abnormalities on standard, 1.5 or 3 T MRI, some patients are MRI-negative. For those, quantitative MRI techniques, such as volumetry, voxel-based morphometry, and relaxation time measurements can aid in finding the epileptogenic focus. High-field MRI, just recently approved for clinical use by the FDA, increases the resolution and, in several publications, was shown to improve the detection of focal cortical dysplasias and mild cortical malformations. For those cases without any tissue abnormality in neuroimaging, even at 7 T, scalp EEG alone is insufficient to delimitate the epileptogenic zone. They may benefit from the use of high-density EEG, in which the increased number of electrodes helps improve spatial sampling. The spatial resolution of even low-density EEG can benefit from electric source imaging techniques, which map the source of the recorded abnormal activity, such as interictal epileptiform discharges, focal slowing, and ictal rhythm. These EEG techniques help localize the irritative, functional deficit, and seizure-onset zone, to better estimate the epileptogenic zone. Combining those technologies allows several drug-resistant cases to be submitted to surgery, increasing the odds of seizure freedom and providing a must needed hope for patients with epilepsy.
Collapse
Affiliation(s)
- Ricardo Lutzky Saute
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista School of Medicine, Unifesp, Brazil
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
7
|
Wang D, Liu Z, Tao Y, Chen W, Chen B, Wang Q, Yan X, Wang G. Improvement in EEG Source Imaging Accuracy by Means of Wavelet Packet Transform and Subspace Component Selection. IEEE Trans Neural Syst Rehabil Eng 2021; 29:650-661. [PMID: 33687844 DOI: 10.1109/tnsre.2021.3064665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The electroencephalograph (EEG) source imaging (ESI) method is a non-invasive method that provides high temporal resolution imaging of brain electrical activity on the cortex. However, because the accuracy of EEG source imaging is often affected by unwanted signals such as noise or other source-irrelevant signals, the results of ESI are often incongruous with the real sources of brain activities. This study presents a novel ESI method (WPESI) that is based on wavelet packet transform (WPT) and subspace component selection to image the cerebral activities of EEG signals on the cortex. First, the original EEG signals are decomposed into several subspace components by WPT. Second, the subspaces associated with brain sources are selected and the relevant signals are reconstructed by WPT. Finally, the current density distribution in the cerebral cortex is obtained by establishing a boundary element model (BEM) from head MRI and applying the appropriate inverse calculation. In this study, the localization results obtained by this proposed approach were better than those of the original sLORETA approach (OESI) in the computer simulations and visual evoked potential (VEP) experiments. For epilepsy patients, the activity sources estimated by this proposed algorithm conformed to the seizure onset zones. The WPESI approach is easy to implement achieved favorable accuracy in terms of EEG source imaging. This demonstrates the potential for use of the WPESI algorithm to localize epileptogenic foci from scalp EEG signals.
Collapse
|
8
|
Stoyell SM, Wilmskoetter J, Dobrota MA, Chinappen DM, Bonilha L, Mintz M, Brinkmann BH, Herman ST, Peters JM, Vulliemoz S, Seeck M, Hämäläinen MS, Chu CJ. High-Density EEG in Current Clinical Practice and Opportunities for the Future. J Clin Neurophysiol 2021; 38:112-123. [PMID: 33661787 PMCID: PMC8083969 DOI: 10.1097/wnp.0000000000000807] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
SUMMARY High-density EEG (HD-EEG) recordings use a higher spatial sampling of scalp electrodes than a standard 10-20 low-density EEG montage. Although several studies have demonstrated improved localization of the epileptogenic cortex using HD-EEG, widespread implementation is impeded by cost, setup and interpretation time, and lack of specific or sufficient procedural billing codes. Despite these barriers, HD-EEG has been in use at several institutions for years. These centers have noted utility in a variety of clinical scenarios where increased spatial resolution from HD-EEG has been required, justifying the extra time and cost. We share select scenarios from several centers, using different recording techniques and software, where HD-EEG provided information above and beyond the standard low-density EEG. We include seven cases where HD-EEG contributed directly to current clinical care of epilepsy patients and highlight two novel techniques which suggest potential opportunities to improve future clinical care. Cases illustrate how HD-EEG allows clinicians to: case 1-lateralize falsely generalized interictal epileptiform discharges; case 2-improve localization of falsely generalized epileptic spasms; cases 3 and 4-improve localization of interictal epileptiform discharges in anatomic regions below the circumferential limit of standard low-density EEG coverage; case 5-improve noninvasive localization of the seizure onset zone in lesional epilepsy; cases 6 and 7-improve localization of the seizure onset zone to guide invasive investigation near eloquent cortex; case 8-identify epileptic fast oscillations; and case 9-map language cortex. Together, these nine cases illustrate that using both visual analysis and advanced techniques, HD-EEG can play an important role in clinical management.
Collapse
Affiliation(s)
- Sally M Stoyell
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Janina Wilmskoetter
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Mary-Ann Dobrota
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, U.S.A
| | | | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Mark Mintz
- The Center for Neurological and Neurodevelopmental Health, Voorhees, New Jersey, U.S.A
| | | | - Susan T Herman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, U.S.A
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, U.S.A
- Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
9
|
Reduced effective connectivity between right parietal and inferior frontal cortex during audiospatial perception in neglect patients with a right-hemisphere lesion. Hear Res 2020; 399:108052. [PMID: 32800615 DOI: 10.1016/j.heares.2020.108052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/23/2022]
Abstract
A lesion to the right hemisphere of the brain in humans commonly leads to perceptual neglect of the left side of the sensorium. The clinical observation that lesions to disparate cortical and subcortical areas converge upon similar behavioural symptoms points to neglect as a dysconnection syndrome that may result from the disruption of a distributed network, rather than aberrant computations in any particular brain region. To test this hypothesis, we used Bayesian analysis of effective connectivity based on electroencephalographic recordings in ten patients (6 male, 4 female; age range 41-68) with left-sided neglect following a right-hemisphere lesion. In line with previous research, age-matched healthy controls showed a contralateral increase in connection strength between parietal and frontal cortex with respect to the laterality of audiospatial oddball stimuli. Neglect patients, however, showed a dysconnection between parietal and frontal cortex in the right hemisphere when oddballs appeared on their left side, but preserved connectivity in the left hemisphere when stimuli appeared on their right. This preserved fronto-parietal connectivity was associated with lower neglect severity. Moreover, we saw ipsilateral fronto-temporal connectivity increases for oddballs appearing on the neglected side, which might be a compensatory mechanism for residual left side awareness. No group differences were found in intrinsic (within-region) connectivity. While further validation is required in a bigger sample, our findings are in keeping with the idea that neglect results from the disruption of a distributed network, rather than a lesion to any single brain region. SIGNIFICANCE STATEMENT: Lesions to the right hemisphere of the brain commonly lead to neglect syndrome, characterized by perceptual deficits where patients are unaware of the left side of their body and environment. Using analysis of non-invasive electrophysiological recordings, we provide evidence that patients with left-sided neglect have reduced connectivity between the right parietal and frontal cortex during audiospatial stimuli, but preserved connectivity between regions in the non-lesioned left hemisphere. Moreover, for these intact connections we observed an ipsilateral fronto-temporal increase in connectivity during oddballs appearing on the neglected side, which might be a compensatory mechanism for residual perception. Crucially, we found that patients with more severe neglect symptoms had reduced connectivity between parietal and frontal cortex in the left hemisphere. This suggests that neglect may be caused by the disruption of a distributed network in the brain, rather than a lesion to any particular brain region.
Collapse
|
10
|
Khosropanah P, Ho ETW, Lim KS, Fong SL, Thuy Le MA, Narayanan V. EEG Source Imaging (ESI) utility in clinical practice. BIOMED ENG-BIOMED TE 2020; 65:/j/bmte.ahead-of-print/bmt-2019-0128/bmt-2019-0128.xml. [PMID: 32623371 DOI: 10.1515/bmt-2019-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/21/2020] [Indexed: 11/15/2022]
Abstract
Epilepsy surgery is an important treatment modality for medically refractory focal epilepsy. The outcome of surgery usually depends on the localization accuracy of the epileptogenic zone (EZ) during pre-surgical evaluation. Good localization can be achieved with various electrophysiological and neuroimaging approaches. However, each approach has its own merits and limitations. Electroencephalography (EEG) Source Imaging (ESI) is an emerging model-based computational technique to localize cortical sources of electrical activity within the brain volume, three-dimensionally. ESI based pre-surgical evaluation gives an overall clinical yield of 73-91%, depending on choice of head model, inverse solution and EEG electrode density. It is a cost effective, non-invasive method which provides valuable additional information in presurgical evaluation due to its high localizing value specifically in MRI-negative cases, extra or basal temporal lobe epilepsy, multifocal lesions such as tuberous sclerosis or cases with multiple hypotheses. Unfortunately, less than 1% of surgical centers in developing countries use this method as a part of pre-surgical evaluation. This review promotes ESI as a useful clinical tool especially for patients with lesion-negative MRI to determine EZ cost-effectively with high accuracy under the optimized conditions.
Collapse
Affiliation(s)
- Pegah Khosropanah
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eric Tatt-Wei Ho
- Center for Intelligent Signal & Imaging Research, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Department of Electrical & Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Minh-An Thuy Le
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
High-Density Adaptive Ten Ten: Proposal for Electrode Nomenclature for High-Density EEG. J Clin Neurophysiol 2020; 37:263-270. [DOI: 10.1097/wnp.0000000000000632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
12
|
Mégevand P, Seeck M. Electric source imaging for presurgical epilepsy evaluation: current status and future prospects. Expert Rev Med Devices 2020; 17:405-412. [DOI: 10.1080/17434440.2020.1748008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pierre Mégevand
- Epilepsy Unit, Neurology Division, Clinical Neuroscience Department, Geneva University Hospitals, Genève, Switzerland
- Basic Neuroscience Department, Faculty of Medicine, University of Geneva, Genève, Switzerland
| | - Margitta Seeck
- Epilepsy Unit, Neurology Division, Clinical Neuroscience Department, Geneva University Hospitals, Genève, Switzerland
| |
Collapse
|
13
|
Sharma P, Seeck M, Beniczky S. Accuracy of Interictal and Ictal Electric and Magnetic Source Imaging: A Systematic Review and Meta-Analysis. Front Neurol 2019; 10:1250. [PMID: 31849817 PMCID: PMC6901665 DOI: 10.3389/fneur.2019.01250] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/11/2019] [Indexed: 11/14/2022] Open
Abstract
Background: Electric and magnetic source imaging methods (ESI, MSI) estimate the location in the brain of the sources generating the interictal epileptiform discharges (II-ESI, II-MSI) and the ictal activity (IC-ESI, IC-MSI). These methods provide potentially valuable clinical information in the presurgical evaluation of patients with drug-resistant focal epilepsy, evaluated for surgical therapy. In spite of the significant technical advances in this field, and the numerous papers published on clinical validation of these methods, ESI and MSI are still underutilized in most epilepsy centers performing a presurgical evaluation. Our goal was to review and summarize the published evidence on the diagnostic accuracy of interictal and ictal ESI and MSI in epilepsy surgery. Methods: We searched the literature for papers on ESI and MSI that specified the diagnostic reference standard as the site of resection and the postoperative outcome (seizure-freedom). We extracted data from the selected studies, to calculate the diagnostic accuracy measures. Results: Our search resulted in 797 studies; 48 studies fulfilled the selection criteria (25 ESI and 23 MSI studies), providing data from 1,152 operated patients (515 for II-ESI, 440 for II-MSI, 159 for IC-ESI, and 38 for IC-MSI). The sensitivity of source imaging methods was between 74 and 90% (highest for IC-ESI). The specificity of the source imaging methods was between 20 and 54% (highest for II-MSI). The overall accuracy was between 50 and 75% (highest for IC-ESI). Diagnostic Odds Ratio was between 0.8 (IC-MSI) and 4.02–7.9 (II-ESI < II-MSI < IC-ESI). Conclusions: Our systematic review and meta-analysis provides evidence for the accuracy of source imaging in presurgical evaluation of patients with drug-resistant focal epilepsy. These methods have high sensitivity (up to 90%) and diagnostic odds ratio (up to 7.9), but the specificity is lower (up to 54%). ESI and MSI should be included in the multimodal presurgical evaluation.
Collapse
Affiliation(s)
- Praveen Sharma
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Neurology, King George's Medical University, Lucknow, India
| | - Margitta Seeck
- EEG & Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Toscano G, Carboni M, Rubega M, Spinelli L, Pittau F, Bartoli A, Momjian S, Manni R, Terzaghi M, Vulliemoz S, Seeck M. Visual analysis of high density EEG: As good as electrical source imaging? Clin Neurophysiol Pract 2019; 5:16-22. [PMID: 31909306 PMCID: PMC6939057 DOI: 10.1016/j.cnp.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 11/29/2022] Open
Abstract
Visual analysis of HD-EEG is an excellent tool to explore the epileptogenic focus. ESI remains the gold standard for presurgical evaluation of the cortical source. ESI at 50% slope/ESI at peak discordance could predict worse surgical outcome.
Objective In this study, we sought to determine whether visual analysis of high density EEG (HD-EEG) would provide similar localizing information comparable to electrical source imaging (ESI). Methods HD-EEG (256 electrodes) recordings from 20 patients suffering from unifocal, drug-resistant epilepsy (13 women, mean age 29.1 ± 2.62 years, 11 with temporal lobe epilepsy) were examined. In the visual analysis condition, we identified the 5 contacts with maximal spike amplitude and determined their localization with respect to the underlying cortex. ESI was computed using the LAURA algorithm of the averaged spikes in the patient’s individual MRI. We considered the localization “correct” if all 5 contacts were concordant with the resection volume underneath or if ESI was located within the resection as determined by the postoperative MRI. Results Twelve patients were postoperatively seizure-free (Engel Class IA), while the remaining eight were in class IB to IV. Visual analysis and ESI showed sensitivity of 58% and 75%, specificity of 75% and 87%, and accuracy of 65% and 80%, respectively. In 70% of cases, visual analysis and ESI provided concordant results. Conclusions Localization of the electrodes with maximal spike amplitude provides very good estimation of the localization of the underlying source. However, ESI has a higher accuracy and adds 3D information; therefore, it should remain the tool of choice for presurgical evaluation. Significance The present study proposes the possibility to analyze HD-EEG visually, in tandem with ESI or alone, if ESI is not accessible.
Collapse
Affiliation(s)
- Gianpaolo Toscano
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland.,Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Italy
| | - Margherita Carboni
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland.,Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Maria Rubega
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Francesca Pittau
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Andrea Bartoli
- Department of Neurosurgery, University Hospital of Geneva, Geneva, Switzerland
| | - Shahan Momjian
- Department of Neurosurgery, University Hospital of Geneva, Geneva, Switzerland
| | - Raffaele Manni
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Terzaghi
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Italy
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Cecotti H, Jha G. 3D Convolutional Neural Networks for Event-Related Potential detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:4160-4163. [PMID: 31946786 DOI: 10.1109/embc.2019.8856485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep learning techniques have recently been successful in the classification of brain evoked responses for multiple applications, including brain-machine interface. Single-trial detection in the electroencephalogram (EEG) of brain evoked responses, like event-related potentials (ERPs), requires multiple processing stages, in the spatial and temporal domains, to extract high level features. Convolutional neural networks, as a type of deep learning method, have been used for EEG signal detection as the underlying structure of the EEG signal can be included in such system, facilitating the learning step. The EEG signal is typically decomposed into 2 main dimensions: space and time. However, the spatial dimension can be decomposed into 2 dimensions that better represent the relationships between the sensors that are involved in the classification. We propose to analyze the performance of 2D and 3D convolutional neural networks for the classification of ERPs with a dataset based on 64 EEG channels. We propose and compare 6 conv net architectures: 4 using 3D convolutions, that vary in relation to the number of layers and feature maps, and 2 using 2D convolutions. The results support the conclusion that 3D convolutions provide better performance than 2D convolutions for the binary classification of ERPs.
Collapse
|
16
|
Mégevand P, Hamid L, Dümpelmann M, Heers M. New horizons in clinical electric source imaging. ZEITSCHRIFT FUR EPILEPTOLOGIE 2019. [DOI: 10.1007/s10309-019-0258-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Michel CM, Brunet D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front Neurol 2019; 10:325. [PMID: 31019487 PMCID: PMC6458265 DOI: 10.3389/fneur.2019.00325] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
The electroencephalogram (EEG) is one of the oldest technologies to measure neuronal activity of the human brain. It has its undisputed value in clinical diagnosis, particularly (but not exclusively) in the identification of epilepsy and sleep disorders and in the evaluation of dysfunctions in sensory transmission pathways. With the advancement of digital technologies, the analysis of EEG has moved from pure visual inspection of amplitude and frequency modulations over time to a comprehensive exploration of the temporal and spatial characteristics of the recorded signals. Today, EEG is accepted as a powerful tool to capture brain function with the unique advantage of measuring neuronal processes in the time frame in which these processes occur, namely in the sub-second range. However, it is generally stated that EEG suffers from a poor spatial resolution that makes it difficult to infer to the location of the brain areas generating the neuronal activity measured on the scalp. This statement has challenged a whole community of biomedical engineers to offer solutions to localize more precisely and more reliably the generators of the EEG activity. High-density EEG systems combined with precise information of the head anatomy and sophisticated source localization algorithms now exist that convert the EEG to a true neuroimaging modality. With these tools in hand and with the fact that EEG still remains versatile, inexpensive and portable, electrical neuroimaging has become a widely used technology to study the functions of the pathological and healthy human brain. However, several steps are needed to pass from the recording of the EEG to 3-dimensional images of neuronal activity. This review explains these different steps and illustrates them in a comprehensive analysis pipeline integrated in a stand-alone freely available academic software: Cartool. The information about how the different steps are performed in Cartool is only meant as a suggestion. Other EEG source imaging software may apply similar or different approaches to the different steps.
Collapse
Affiliation(s)
- Christoph M. Michel
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging Lausanne-Geneva (CIBM), Geneva, Switzerland
| | - Denis Brunet
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging Lausanne-Geneva (CIBM), Geneva, Switzerland
| |
Collapse
|
18
|
Electroencephalography, magnetoencephalography and source localization: their value in epilepsy. Curr Opin Neurol 2019; 31:176-183. [PMID: 29432218 DOI: 10.1097/wco.0000000000000545] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Source localization of cerebral activity using electroencephalography (EEG) or magnetoencephalography (MEG) can reveal noninvasively the generators of the abnormal signals recorded in epilepsy, such as interictal epileptic discharges (IEDs) and seizures. Here, we review recent progress showcasing the usefulness of these techniques in treating patients with drug-resistant epilepsy. RECENT FINDINGS The source localization of IEDs by high-density EEG and MEG has now been proved in large patient cohorts to be accurate and clinically relevant, with positive and negative predictive values rivaling those of structural MRI. Localizing seizure onsets is an emerging technique that seems to perform similarly well to the localization of interictal spikes, although there remain questions regarding the processing of signals for reliable results. The localization of somatosensory cortex using EEG/MEG is well established. The localization of language cortex is less reliable, although progress has been made regarding hemispheric lateralization. Source localization is also able to reveal how epilepsy alters the dynamics of neuronal activity in the large-scale networks that underlie cerebral function. SUMMARY Given the high performance of EEG/MEG source localization, these tools should find a place similar to that of established techniques like MRI in the assessment of patients for epilepsy surgery.
Collapse
|
19
|
Latikka J, Eskola H. The Resistivity of Human Brain Tumours In Vivo. Ann Biomed Eng 2019; 47:706-713. [PMID: 30610409 DOI: 10.1007/s10439-018-02189-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
The histological structure of tumour tissues differs from healthy brain tissues. It can therefore be assumed that there are differences also in the electrical characteristics of these tissues. The electrical characteristics of the tissues define how electric current is distributed within volume conductors, such as the human body or head. Incorrect values affect, for example, the accuracy of impedance tomography or EEG source localisation. However, no controlled experimental data for human in vivo brain tumour resistivity values have been reported thus far. We have developed a controlled method for detecting the electrical resistivities of living brain tissue and investigated different types of brain tumours. The measurements were taken during brain surgeries conducted to remove the tumours. For analysis purposes, the tumours were divided into the following categories: meningiomas, low-grade gliomas, high-grade gliomas (glioblastomas) and other tumours or lesions. The averages of the measured resistivity values were 530 Ω-cm for meningiomas, 160 Ω-cm for low-grade gliomas, and 498 Ω-cm for high-grade gliomas. The differences in high- and low-grade glioma values and meningioma and low-grade glioma values were statistically highly significant. The tumour values were also compared to surrounding healthy brain tissues, and the difference ranged from 40 to 330%. The results suggest that certain tumour types have different electronic properties and that the resistivity values could be used to distinguish tumour tissue from surrounding healthy tissue and to identify and classify certain brain tumour types.
Collapse
Affiliation(s)
- J Latikka
- Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland.
| | - H Eskola
- Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
20
|
|
21
|
Abreu R, Leal A, Lopes da Silva F, Figueiredo P. EEG synchronization measures predict epilepsy-related BOLD-fMRI fluctuations better than commonly used univariate metrics. Clin Neurophysiol 2018; 129:618-635. [PMID: 29414405 DOI: 10.1016/j.clinph.2017.12.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 11/29/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We hypothesize that the hypersynchronization associated with epileptic activity is best described by EEG synchronization measures, and propose to use these as predictors of epilepsy-related BOLD fluctuations. METHODS We computed the phase synchronization index (PSI) and global field synchronization (GFS), within two frequency bands, a broadband (1-45 Hz) and a narrower band focused on the presence of epileptic activity (3-10 Hz). The associated epileptic networks were compared with those obtained using conventional unitary regressors and two power-weighted metrics (total power and root mean square frequency), on nine simultaneous EEG-fMRI datasets from four epilepsy patients, exhibiting inter-ictal epileptiform discharges (IEDs). RESULTS The average PSI within 3-10 Hz achieved the best performance across several measures reflecting reliability in all datasets. The results were cross-validated through electrical source imaging of the IEDs. The applicability of PSI when no IEDs are recorded on the EEG was evaluated on three additional patients, yielding partially plausible networks in all cases. CONCLUSIONS Epileptic networks can be mapped based on the EEG PSI metric within an IED-specific frequency band, performing better than commonly used EEG metrics. SIGNIFICANCE This is the first study to investigate EEG synchronization measures as potential predictors of epilepsy-related BOLD fluctuations.
Collapse
Affiliation(s)
- Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Portugal.
| | - Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | | | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Portugal
| |
Collapse
|
22
|
MEG May Reveal Hidden Population of Spikes in Epilepsy With Porencephalic Cyst/Encephalomalacia. J Clin Neurophysiol 2017; 34:546-549. [DOI: 10.1097/wnp.0000000000000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Abdallah C, Maillard LG, Rikir E, Jonas J, Thiriaux A, Gavaret M, Bartolomei F, Colnat-Coulbois S, Vignal JP, Koessler L. Localizing value of electrical source imaging: Frontal lobe, malformations of cortical development and negative MRI related epilepsies are the best candidates. NEUROIMAGE-CLINICAL 2017; 16:319-329. [PMID: 28856095 PMCID: PMC5565782 DOI: 10.1016/j.nicl.2017.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We aimed to prospectively assess the anatomical concordance of electric source localizations of interictal discharges with the epileptogenic zone (EZ) estimated by stereo-electroencephalography (SEEG) according to different subgroups: the type of epilepsy, the presence of a structural MRI lesion, the aetiology and the depth of the EZ. METHODS In a prospective multicentric observational study, we enrolled 85 consecutive patients undergoing pre-surgical SEEG investigation for focal drug-resistant epilepsy. Electric source imaging (ESI) was performed before SEEG. Source localizations were obtained from dipolar and distributed source methods. Anatomical concordance between ESI and EZ was defined according to 36 predefined sublobar regions. ESI was interpreted blinded to- and subsequently compared with SEEG estimated EZ. RESULTS 74 patients were finally analyzed. 38 patients had temporal and 36 extra-temporal lobe epilepsy. MRI was positive in 52. 41 patients had malformation of cortical development (MCD), 33 had another or an unknown aetiology. EZ was medial in 27, lateral in 13, and medio-lateral in 34. In the overall cohort, ESI completely or partly localized the EZ in 85%: full concordance in 13 cases and partial concordance in 50 cases. The rate of ESI full concordance with EZ was significantly higher in (i) frontal lobe epilepsy (46%; p = 0.05), (ii) cases of negative MRI (36%; p = 0.01) and (iii) MCD (27%; p = 0.03). The rate of ESI full concordance with EZ was not statistically different according to the depth of the EZ. SIGNIFICANCE We prospectively demonstrated that ESI more accurately estimated the EZ in subgroups of patients who are often the most difficult cases in epilepsy surgery: frontal lobe epilepsy, negative MRI and the presence of MCD.
Collapse
Affiliation(s)
- Chifaou Abdallah
- Neurology Department, University Hospital of Nancy, Nancy, France
| | - Louis G Maillard
- Neurology Department, University Hospital of Nancy, Nancy, France.,CRAN, UMR 7039, Lorraine University, Vandœuvre-les-Nancy Cedex, France.,CNRS, CRAN, UMR 7039, Vandœuvre-les-Nancy Cedex, France.,Medical Faculty, Lorraine University, Nancy, France
| | - Estelle Rikir
- Neurology Department, University Hospital of Sart-Tilman, Liege, Belgium.,Medical Faculty, Liege University, Liege, Belgium
| | - Jacques Jonas
- Neurology Department, University Hospital of Nancy, Nancy, France.,CRAN, UMR 7039, Lorraine University, Vandœuvre-les-Nancy Cedex, France.,CNRS, CRAN, UMR 7039, Vandœuvre-les-Nancy Cedex, France
| | - Anne Thiriaux
- Neurology department, University Hospital of Reims, Reims, France
| | - Martine Gavaret
- Clinical Neurophysiology Department, AP-HM, University Hospital la Timone, Marseille, France.,INSERM UMR 1106, Institut de Neurosciences des Systemes, Marseille, France.,Medical Faculty, Aix-Marseille University, Marseille, France
| | - Fabrice Bartolomei
- Clinical Neurophysiology Department, AP-HM, University Hospital la Timone, Marseille, France.,INSERM UMR 1106, Institut de Neurosciences des Systemes, Marseille, France.,Medical Faculty, Aix-Marseille University, Marseille, France
| | - Sophie Colnat-Coulbois
- Medical Faculty, Lorraine University, Nancy, France.,Neurosurgery Department, University Hospital of Nancy, Nancy, France
| | - Jean-Pierre Vignal
- Neurology Department, University Hospital of Nancy, Nancy, France.,CRAN, UMR 7039, Lorraine University, Vandœuvre-les-Nancy Cedex, France.,CNRS, CRAN, UMR 7039, Vandœuvre-les-Nancy Cedex, France
| | - Laurent Koessler
- Neurology Department, University Hospital of Nancy, Nancy, France.,CRAN, UMR 7039, Lorraine University, Vandœuvre-les-Nancy Cedex, France.,CNRS, CRAN, UMR 7039, Vandœuvre-les-Nancy Cedex, France
| |
Collapse
|
24
|
Caschera S, Petti M, Mattia D, Astolfi L. EEG source estimation accuracy in presence of simulated cortical lesions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:544-547. [PMID: 29059930 DOI: 10.1109/embc.2017.8036882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Methods to reconstruct the neuroelectrical activity in the brain source space can be used to improve the spatial resolution of scalp-recorded EEG and to estimate the locations of electrical sources in the brain. This procedure can improve the investigation of the functional organization of the human brain, exploiting the high temporal resolution of EEG to follow the temporal dynamics of information processing. As for today, the uncertainties about the effects of inhomogeneities due to brain lesions preclude the adoption of EEG functional mapping on patients with lesioned brain. The aim of this work is to quantify the accuracy of a distributed source localization method in recovering extended sources of activated cortex when cortical lesions of different dimensions are introduced in simulated data. For this purpose, EEG source-distributed activity estimated from real data was modified including silent lesion areas. Then, for each simulated lesion, forward and inverse calculations were carried out to localize the produced scalp activity and the reconstructed cortical activity. Finally, the error induced in the reconstruction by the presence of the lesion was computed and analyzed in relation to the number of electrodes and to the size of the simulated lesion. Results returned values of global error in the whole cortex and of error in the non-lesioned area which are strongly dependent on the number of recorded scalp sensors, as they increase when a lower spatial sampling is performed on the scalp (64 versus 32 EEG channels). For increasing spatial sampling frequencies, the accuracy of the source reconstruction improves and even the presence of small lesions induces significantly higher error levels with respect to the lesion-free condition.
Collapse
|
25
|
Tyrand R, Momjian S, Pollo C, Lysakowski C, Lascano AM, Vulliémoz S, Schaller K, Boëx C. Continuous Intraoperative Monitoring of Temporal Lobe Epilepsy Surgery. Stereotact Funct Neurosurg 2016; 94:404-412. [PMID: 27997922 DOI: 10.1159/000452842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 10/18/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The monitoring of interictal epileptiform discharge rates (IEDRs) all along anterior temporal lobe resections (ATLRs) has never been reported. Here the effect of ATLR on continuous IEDR monitoring is described. METHODS IEDRs computed automatically during entire interventions were recorded in 34 patients (38.2%, 13/34 depth; 61.8%, 21/34 scalp electrodes only). Monitorings were invalidated when burst suppression occurred or if initial IEDRs were <5. RESULTS Monitoring was successful for 69.2% (9/13) of the patients with depth recordings and for 4.8% (1/21) of the patients with scalp recordings. Burst suppressions precluded it in 30.8% (4/13) of the depth and in 57.1% (12/21) of the scalp recordings. Initial IEDRs were <5 for 38.1% (8/21) of the scalp recordings. Significant IEDR decreases were observed in 8/10 patients with successful monitoring. These decreases started with resection of the superior temporal gyrus. IEDRs decreased further with amygdalohippocampectomy in 3/5 patients. At the 12-month follow-up, all patients with IEDR decreases remained seizure free; both patients without did not. CONCLUSION IEDR monitoring was possible with depth, but not with scalp electrodes. IEDR decreases started with resection of the superior temporal gyrus. A larger patient cohort is necessary to confirm the high predictive values of IEDR monitoring that could become a tool for surgery customization.
Collapse
Affiliation(s)
- Rémi Tyrand
- Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fellrath J, Mottaz A, Schnider A, Guggisberg AG, Ptak R. Theta-band functional connectivity in the dorsal fronto-parietal network predicts goal-directed attention. Neuropsychologia 2016; 92:20-30. [DOI: 10.1016/j.neuropsychologia.2016.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/21/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023]
|
27
|
Gschwind M, Seeck M. Transcranial direct-current stimulation as treatment in epilepsy. Expert Rev Neurother 2016; 16:1427-1441. [DOI: 10.1080/14737175.2016.1209410] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Advances in EEG: home video telemetry, high frequency oscillations and electrical source imaging. J Neurol 2016; 263:2139-44. [DOI: 10.1007/s00415-016-8159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
29
|
Akdeniz G. Electrical source localization by LORETA in patients with epilepsy: Confirmation by postoperative MRI. Ann Indian Acad Neurol 2016; 19:37-43. [PMID: 27011626 PMCID: PMC4782550 DOI: 10.4103/0972-2327.168632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/01/2015] [Accepted: 06/05/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Few studies have been conducted that have compared electrical source localization (ESL) results obtained by analyzing ictal patterns in scalp electroencephalogram (EEG) with the brain areas that are found to be responsible for seizures using other brain imaging techniques. Additionally, adequate studies have not been performed to confirm the accuracy of ESL methods. MATERIALS AND METHODS In this study, ESL was conducted using LORETA (Low Resolution Brain Electromagnetic Tomography) in 9 patients with lesions apparent on magnetic resonance imaging (MRI) and in 6 patients who did not exhibit lesions on their MRIs. EEGs of patients who underwent surgery for epilepsy and had follow-ups for at least 1 year after operations were analyzed for ictal spike, rhythmic, paroxysmal fast, and obscured EEG activities. Epileptogenic zones identified in postoperative MRIs were then compared with localizations obtained by LORETA model we employed. RESULTS We found that brain areas determined via ESL were in concordance with resected brain areas for 13 of the 15 patients evaluated, and those 13 patients were post-operatively determined as being seizure-free. CONCLUSION ESL, which is a noninvasive technique, may contribute to the correct delineation of epileptogenic zones in patients who will eventually undergo surgery to treat epilepsy, (regardless of neuroimaging status). Moreover, ESL may aid in deciding on the number and localization of intracranial electrodes to be used in patients who are candidates for invasive recording.
Collapse
Affiliation(s)
- Gülsüm Akdeniz
- Department of Biophysics, Ankara Atatürk Training and Research Hospital, Yıldırım Beyazıt University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
30
|
All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI. Eur J Nucl Med Mol Imaging 2015; 42:1133-43. [PMID: 25893383 DOI: 10.1007/s00259-015-3045-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE In patients with pharmacoresistant focal epilepsy, resection of the epileptic focus can lead to freedom from seizures or significant improvement in well-selected candidates. Localization of the epileptic focus with multimodal concordance is crucial for a good postoperative outcome. Beyond the detection of epileptogenic lesions on structural MRI and focal hypometabolism on FDG PET, EEG-based Electric Source Imaging (ESI) and simultaneous EEG and functional MRI (EEG-fMRI) are increasingly applied for mapping epileptic activity. We here report presurgical multimodal interictal imaging using a hybrid PET/MR scanner for single-session FDG PET, MRI, EEG-fMRI and ESI. METHODS This quadrimodal imaging procedure was performed in a single session in 12 patients using a high-density (256 electrodes) MR-compatible EEG system and a hybrid PET/MR scanner. EEG was used to exclude subclinical seizures during uptake of the PET tracer, to compute ESI on interictal epileptiform discharges and to guide fMRI analysis for mapping haemodynamic changes correlated with interictal epileptiform activity. RESULTS The whole multimodal recording was performed in less than 2 hours with good patient comfort and data quality. Clinically contributory examinations with at least two modalities were obtained in nine patients and with all modalities in five patients. CONCLUSION This single-session quadrimodal imaging procedure provided reliable and contributory interictal clinical data. This procedure avoids multiple scanning sessions and is associated with less radiation exposure than PET-CT. Moreover, it guarantees the same medication level and medical condition for all modalities. The procedure improves workflow and could reduce the duration and cost of presurgical epilepsy evaluations.
Collapse
|
31
|
Cuspineda-Bravo ER, Martínez-Montes E, Farach-Fumero M, Machado-Curbelo C. Improving electroencephalographic source localization of epileptogenic zones with time-frequency analysis. Clin EEG Neurosci 2015; 46:153-68. [PMID: 24879437 DOI: 10.1177/1550059414522231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/20/2013] [Indexed: 11/17/2022]
Abstract
The combination of recently developed methods for electroencephalographic (EEG) space-time-frequency analysis can provide noninvasive functional neuroimages necessary for obtaining an accurate localization of the epileptogenic zone. The aim of this study was to determine if time-frequency (TF) analysis, followed by EEG source localization, would improve the detection and identification of epileptogenic and related activity. Seventeen patients with refractory frontal lobe epilepsy (FLE) were studied using video EEG recording. TF analysis identified the first epileptogenic EEG changes. Using the Bayesian model averaging (BMA) approach, we compared brain electromagnetic tomographic (BET) images, constructed from the TF domain, with BET images constructed from the time domain only. We determined if the localization identified by BET images was concordant with the localization from medical history and video EEG recording. TF analysis provided a clear display of subtle EEG features, including EEG lateralization, and more concordant and delimited epileptogenic zones, compared with time-domain source analysis. In conclusion, EEG TF analysis improves source localization. After a thorough validation, this methodology could become a useful noninvasive tool for localizing the epileptogenic zone in clinical practice.
Collapse
|
32
|
Lascano AM, Grouiller F, Genetti M, Spinelli L, Seeck M, Schaller K, Michel CM. Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging. Neurosurgery 2014; 74:517-26. [PMID: 24463494 DOI: 10.1227/neu.0000000000000298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Resection of abnormal brain tissue lying near the sensorimotor cortex entails precise localization of the central sulcus. Mapping of this area is achieved by applying invasive direct cortical electrical stimulation. However, noninvasive methods, particularly functional magnetic resonance imaging (fMRI), are also used. As a supplement to fMRI, localization of somatosensory-evoked potentials (SEPs) recorded with an electroencephalogram (EEG) has been proposed, but has not found its place in clinical practice. OBJECTIVE To assess localization accuracy of the hand somatosensory cortex with SEP source imaging. METHODS We applied electrical source imaging in 49 subjects, recorded with high-density EEG (256 channels). We compared it with fMRI in 18 participants and with direct cortical electrical stimulation in 6 epileptic patients. RESULTS Comparison of SEP source imaging with fMRI indicated differences of 3 to 8 mm, with the exception of the mesial-distal orientation, where variances of up to 20 mm were found. This discrepancy is explained by the fact that the source maximum of the first SEP peak is localized deep in the central sulcus (area 3b), where information initially arrives. Conversely, fMRI showed maximal signal change on the lateral surface of the postcentral gyrus (area 1), where sensory information is integrated later in time. Electrical source imaging and fMRI showed mean Euclidean distances of 13 and 14 mm, respectively, from the contacts where electrocorticography elicited sensory phenomena of the contralateral upper limb. CONCLUSION SEP source imaging, based on high-density EEG, reliably identifies the depth of the central sulcus. Moreover, it is a simple, flexible, and relatively inexpensive alternative to fMRI.
Collapse
Affiliation(s)
- Agustina M Lascano
- *Department of Neurology, University Hospital of Geneva, Geneva, Switzerland; ‡Functional Brain Mapping Laboratory, Department of Neurology, University Hospital of Geneva and University Medical Centre, Geneva, Switzerland; §Department of Radiology and Medical Informatics, University Hospital of Geneva, Geneva, Switzerland; ¶Department of Neurosurgery, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Iannotti GR, Pittau F, Michel CM, Vulliemoz S, Grouiller F. Pulse artifact detection in simultaneous EEG-fMRI recording based on EEG map topography. Brain Topogr 2014; 28:21-32. [PMID: 25307731 DOI: 10.1007/s10548-014-0409-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022]
Abstract
One of the major artifact corrupting electroencephalogram (EEG) acquired during functional magnetic resonance imaging (fMRI) is the pulse artifact (PA). It is mainly due to the motion of the head and attached electrodes and wires in the magnetic field occurring after each heartbeat. In this study we propose a novel method to improve PA detection by considering the strong gradient and inversed polarity between left and right EEG electrodes. We acquired high-density EEG-fMRI (256 electrodes) with simultaneous electrocardiogram (ECG) at 3 T. PA was estimated as the voltage difference between right and left signals from the electrodes showing the strongest artifact (facial and temporal). Peaks were detected on this estimated signal and compared to the peaks in the ECG recording. We analyzed data from eleven healthy subjects, two epileptic patients and four healthy subjects with an insulating layer between electrodes and scalp. The accuracy of the two methods was assessed with three criteria: (i) standard deviation, (ii) kurtosis and (iii) confinement into the physiological range of the inter-peak intervals. We also checked whether the new method has an influence on the identification of epileptic spikes. Results show that estimated PA improved artifact detection in 15/17 cases, when compared to the ECG method. Moreover, epileptic spike identification was not altered by the correction. The proposed method improves the detection of pulse-related artifacts, particularly crucial when the ECG is of poor quality or cannot be recorded. It will contribute to enhance the quality of the EEG increasing the reliability of EEG-informed fMRI analysis.
Collapse
Affiliation(s)
- Giannina R Iannotti
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Geneva University Hospital, 1211, Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
34
|
High density EEG-what do we have to lose? Clin Neurophysiol 2014; 126:433-4. [PMID: 25113273 DOI: 10.1016/j.clinph.2014.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/22/2022]
|
35
|
Britz J, Díaz Hernàndez L, Ro T, Michel CM. EEG-microstate dependent emergence of perceptual awareness. Front Behav Neurosci 2014; 8:163. [PMID: 24860450 PMCID: PMC4030136 DOI: 10.3389/fnbeh.2014.00163] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/17/2014] [Indexed: 01/26/2023] Open
Abstract
We investigated whether the differences in perceptual awareness for stimuli at the threshold of awareness can arise from different global brain states before stimulus onset indexed by the EEG microstate. We used a metacontrast backward masking paradigm in which subjects had to discriminate between two weak stimuli and obtained measures of accuracy and awareness while their EEG was recorded from 256 channels. Comparing targets that were correctly identified with and without awareness allowed us to contrast differences in awareness while keeping performance constant for identical physical stimuli. Two distinct pre-stimulus scalp potential fields (microstate maps) dissociated correct identification with and without awareness, and their estimated intracranial generators were stronger in primary visual cortex before correct identification without awareness. This difference in activity cannot be explained by differences in alpha power or phase which were less reliably linked with differential pre-stimulus activation of primary visual cortex. Our results shed a new light on the function of pre-stimulus activity in early visual cortex in visual awareness and emphasize the importance of trial-by-trials analysis of the spatial configuration of the scalp potential field identified with multichannel EEG.
Collapse
Affiliation(s)
- Juliane Britz
- Department of Fundamental Neuroscience, Centre Médical Universitaire, University of Geneva Geneva, Switzerland ; EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University of Geneva Geneva, Switzerland
| | - Laura Díaz Hernàndez
- Department of Fundamental Neuroscience, Centre Médical Universitaire, University of Geneva Geneva, Switzerland ; Department of Psychiatric Neurophysiology, University Hospital of Psychiatry Bern, Switzerland
| | - Tony Ro
- Department of Psychology, The City College and Graduate Center, City University of New York New York, NY, USA
| | - Christoph M Michel
- Department of Fundamental Neuroscience, Centre Médical Universitaire, University of Geneva Geneva, Switzerland
| |
Collapse
|
36
|
Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 2014. [PMID: 24715886 DOI: 10.3389/fneur.2014.00031.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Francesca Pittau
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
37
|
Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 2014; 5:31. [PMID: 24715886 PMCID: PMC3970017 DOI: 10.3389/fneur.2014.00031] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/06/2014] [Indexed: 12/25/2022] Open
Abstract
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Francesca Pittau
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
38
|
Localization of the epileptogenic tuber with electric source imaging in patients with tuberous sclerosis. Epilepsy Res 2014; 108:267-79. [PMID: 24315017 DOI: 10.1016/j.eplepsyres.2013.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/04/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
|
39
|
Effect of brain-to-skull conductivity ratio on EEG source localization accuracy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:459346. [PMID: 23691502 PMCID: PMC3652134 DOI: 10.1155/2013/459346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
The goal of this study was to investigate the influence of the brain-to-skull conductivity ratio (BSCR) on EEG source localization accuracy. In this study, we evaluated four BSCRs: 15, 20, 25, and 80, which were mainly discussed according to the literature. The scalp EEG signals were generated by BSCR-related forward computation for each cortical dipole source. Then, for each scalp EEG measurement, the source reconstruction was performed to identify the estimated dipole sources by the actual BSCR and the misspecified BSCRs. The estimated dipole sources were compared with the simulated dipole sources to evaluate EEG source localization accuracy. In the case of considering noise-free EEG measurements, the mean localization errors were approximately equal to zero when using actual BSCR. The misspecified BSCRs resulted in substantial localization errors which ranged from 2 to 16 mm. When considering noise-contaminated EEG measurements, the mean localization errors ranged from 8 to 18 mm despite the BSCRs used in the inverse calculation. The present results suggest that the localization accuracy is sensitive to the BSCR in EEG source reconstruction, and the source activity can be accurately localized when the actual BSCR and the EEG scalp signals with high signal-to-noise ratio (SNR) are used.
Collapse
|
40
|
Donaire A, Capdevila A, Carreño M, Setoain X, Rumià J, Aparicio J, Campistol J, Padilla N, Sanmartí F, Vernet O, Pintor L, Boget T, Ortells J, Bargalló N. Identifying the cortical substrates of interictal epileptiform activity in patients with extratemporal epilepsy: An EEG-fMRI sequential analysis and FDG-PET study. Epilepsia 2013; 54:678-90. [PMID: 23362864 DOI: 10.1111/epi.12091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to apply sequential analysis of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) data to study the cortical substrates related to the generation of the interictal epileptiform activity (IEA) in patients with pharmacoresistant extratemporal epilepsy. METHODS We analyzed fMRI data from 21 children, adolescents, and young adults patients who showed frequent bursts or runs of spikes on EEG, by using the sequential analysis method. We contrasted consecutive fixed-width blocks of 10 s to obtain the relative variations in cerebral activity along the entire fMRI runs. Significant responses (p < 0.05, family-wise error (FWE) corrected), time-related to the IEA recorded on scalp EEG, were considered potential IEA cortical sources. These results were compared with those from the fluorodeoxyglucose-positron emission tomography (FDG-PET), intracranial EEG (two patients), and surgery outcome (eight patients). KEY FINDINGS The typical IEA was recorded in all patients. After the sequential analysis, at least one significant blood oxygen level-dependent (BOLD) response spatially consistent with the presumed epileptogenic zone was found. These IEA-related activation areas coincided when superimposed with the hypometabolism depicted by the FDG-PET. These data were also consistent with the invasive EEG findings. Epileptic seizures were recorded in eight patients. A subset of IEA-associated fMRI activations was consistent the activations at seizure-onset determined by sequential analysis. The inclusion of the IEA-related areas in the resection rendered the patients seizure-free (five of eight operated patients). SIGNIFICANCE The EEG-fMRI data sequential analysis could noninvasively identify cortical areas involved in the IEA generation. The spatial relationship of these areas with the cortical metabolic abnormalities depicted by the FDG-PET and their intrinsic relationship regarding the ictal-onset zone could be useful in epilepsy surgery planning.
Collapse
Affiliation(s)
- Antonio Donaire
- Department of Neurology, Hospital Clínic, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bartoli A, Vulliemoz S, Haller S, Schaller K, Seeck M. Imaging techniques for presurgical evaluation of temporal lobe epilepsy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/iim.12.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Elshoff L, Groening K, Grouiller F, Wiegand G, Wolff S, Michel C, Stephani U, Siniatchkin M. The value of EEG-fMRI and EEG source analysis in the presurgical setup of children with refractory focal epilepsy. Epilepsia 2012; 53:1597-606. [DOI: 10.1111/j.1528-1167.2012.03587.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012; 61:371-85. [DOI: 10.1016/j.neuroimage.2011.12.039] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
|
44
|
Crevecoeur G, Restrepo VM, Staelens S. Subspace electrode selection methodology for the reduction of the effect of uncertain conductivity values in the EEG dipole localization: a simulation study using a patient-specific head model. Phys Med Biol 2012; 57:1963-86. [PMID: 22421525 DOI: 10.1088/0031-9155/57/7/1963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The simulation of the electroencephalogram (EEG) using a realistic head model needs the correct conductivity values of several tissues. However, these values are not precisely known and have an influence on the accuracy of the EEG source analysis problem. This paper presents a novel numerical methodology for the increase of accuracy of the EEG dipole source localization problem. The presented subspace electrode selection (SES) methodology is able to limit the effect of uncertain conductivity values on the solution of the EEG inverse problem, yielding improved source localization accuracy. We redefine the traditional cost function associated with the EEG inverse problem and introduce a selection procedure of EEG potentials. In each iteration of the presented EEG cost function minimization procedure, potentials are selected that are affected as little as possible by the uncertain conductivity value. Using simulation data, the proposed SES methodology is able to enhance the neural source localization accuracy dependent on the dipole location, the assumed versus actual conductivity and the possible noise in measurements.
Collapse
Affiliation(s)
- G Crevecoeur
- Department of Electrical Energy, Systems and Automation, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
| | | | | |
Collapse
|
45
|
EEG-fMRI validation studies in comparison with icEEG: a review. Int J Psychophysiol 2012; 84:233-9. [PMID: 22342239 DOI: 10.1016/j.ijpsycho.2012.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/16/2011] [Accepted: 01/26/2012] [Indexed: 11/21/2022]
Abstract
Simultaneous EEG-fMRI is a non-invasive investigation technique developed to localize the generators of interictal epileptiform discharges (IED) in patients with epilepsy. Although the value of EEG-fMRI in epilepsy presurgical evaluation is being assessed clinically, its utility is still controversial. In this review, we considered EEG-fMRI applications in epilepsy presurgical evaluation with a focus on validation studies that compared the results of EEG-fMRI with those of the current "gold standard" intracranial EEG (icEEG) in order to assess its utility of seizure focus localization and the possibility for EEG-fMRI to reduce the need for invasive techniques such as icEEG. Since the advances of EEG-fMRI partially rely on the maturation of its data analysis, we also reviewed the methodological developments in EEG-fMRI analysis. It is possible that combining with other neuroimaging modalities such as MEG/MSI and ESI, EEG-fMRI may play a greater role in epilepsy presurgical evaluation.
Collapse
|
46
|
Brodbeck V, Spinelli L, Lascano AM, Wissmeier M, Vargas MI, Vulliemoz S, Pollo C, Schaller K, Michel CM, Seeck M. Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 2011; 134:2887-97. [PMID: 21975586 PMCID: PMC3187544 DOI: 10.1093/brain/awr243] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128–256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluation.
Collapse
Affiliation(s)
- Verena Brodbeck
- Department of Basic and Clinical Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lu Y, Yang L, Worrell GA, He B. Seizure source imaging by means of FINE spatio-temporal dipole localization and directed transfer function in partial epilepsy patients. Clin Neurophysiol 2011; 123:1275-83. [PMID: 22172768 DOI: 10.1016/j.clinph.2011.11.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the usage of a high-density EEG recording system and source imaging technique for localizing seizure activity in patients with medically intractable partial epilepsy. METHODS High-density, 76-channel scalp EEG signals were recorded in 10 patients with partial epilepsy. The patients underwent routine clinical pre-surgical evaluation and all had resective surgery with seizure free outcome. After applying a FINE (first principle vectors) spatio-temporal source localization and DTF (directed transfer function) connectivity analysis approach, ictal sources were imaged. Effects of number of scalp EEG electrodes on the seizure localization were also assessed using 76, 64, 48, 32, and 21 electrodes, respectively. RESULTS Surgical resections were used to assess the source imaging results. Results from the 76-channel EEG in the 10 patients showed high correlation with the surgically resected brain regions. The localization of seizure onset zone from 76-channel EEG showed improved source detection accuracy compared to other EEG configurations with fewer electrodes. CONCLUSIONS FINE together with DTF was able to localize seizure onset zones of partial epilepsy patients. High-density EEG recording can help achieve improved seizure source imaging. SIGNIFICANCE The present results suggest the promise of high-density EEG and electrical source imaging for noninvasively localizing seizure onset zones.
Collapse
Affiliation(s)
- Yunfeng Lu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
48
|
Thornton R, Vulliemoz S, Rodionov R, Carmichael DW, Chaudhary UJ, Diehl B, Laufs H, Vollmar C, McEvoy AW, Walker MC, Bartolomei F, Guye M, Chauvel P, Duncan JS, Lemieux L. Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann Neurol 2011; 70:822-37. [PMID: 22162063 PMCID: PMC3500670 DOI: 10.1002/ana.22535] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 06/07/2011] [Accepted: 06/24/2011] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Surgical treatment of focal epilepsy in patients with focal cortical dysplasia (FCD) is most successful if all epileptogenic tissue is resected. This may not be evident on structural magnetic resonance imaging (MRI), so intracranial electroencephalography (icEEG) is needed to delineate the seizure onset zone (SOZ). EEG-functional MRI (fMRI) can reveal interictal discharge (IED)-related hemodynamic changes in the irritative zone (IZ). We assessed the value of EEG-fMRI in patients with FCD-associated focal epilepsy by examining the relationship between IED-related hemodynamic changes, icEEG findings, and postoperative outcome. METHODS Twenty-three patients with FCD-associated focal epilepsy undergoing presurgical evaluation including icEEG underwent simultaneous EEG-fMRI at 3T. IED-related hemodynamic changes were modeled, and results were overlaid on coregistered T1-weighted MRI scans fused with computed tomography scans showing the intracranial electrodes. IED-related hemodynamic changes were compared with the SOZ on icEEG and postoperative outcome at 1 year. RESULTS Twelve of 23 patients had IEDs during recording, and 11 of 12 had significant IED-related hemodynamic changes. The fMRI results were concordant with the SOZ in 5 of 11 patients, all of whom had a solitary SOZ on icEEG. Four of 5 had >50% reduction in seizure frequency following resective surgery. The remaining 6 of 11 patients had widespread or discordant regions of IED-related fMRI signal change. Five of 6 had either a poor surgical outcome (<50% reduction in seizure frequency) or widespread SOZ precluding surgery. INTERPRETATION Comparison of EEG-fMRI with icEEG suggests that EEG-fMRI may provide useful additional information about the SOZ in FCD. Widely distributed discordant regions of IED-related hemodynamic change appear to be associated with a widespread SOZ and poor postsurgical outcome.
Collapse
Affiliation(s)
- Rachel Thornton
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Grouiller F, Thornton RC, Groening K, Spinelli L, Duncan JS, Schaller K, Siniatchkin M, Lemieux L, Seeck M, Michel CM, Vulliemoz S. With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain 2011; 134:2867-86. [PMID: 21752790 PMCID: PMC3656675 DOI: 10.1093/brain/awr156] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 11/13/2022] Open
Abstract
In patients with medically refractory focal epilepsy who are candidates for epilepsy surgery, concordant non-invasive neuroimaging data are useful to guide invasive electroencephalographic recordings or surgical resection. Simultaneous electroencephalography and functional magnetic resonance imaging recordings can reveal regions of haemodynamic fluctuations related to epileptic activity and help localize its generators. However, many of these studies (40-70%) remain inconclusive, principally due to the absence of interictal epileptiform discharges during simultaneous recordings, or lack of haemodynamic changes correlated to interictal epileptiform discharges. We investigated whether the presence of epilepsy-specific voltage maps on scalp electroencephalography correlated with haemodynamic changes and could help localize the epileptic focus. In 23 patients with focal epilepsy, we built epilepsy-specific electroencephalographic voltage maps using averaged interictal epileptiform discharges recorded during long-term clinical monitoring outside the scanner and computed the correlation of this map with the electroencephalographic recordings in the scanner for each time frame. The time course of this correlation coefficient was used as a regressor for functional magnetic resonance imaging analysis to map haemodynamic changes related to these epilepsy-specific maps (topography-related haemodynamic changes). The method was first validated in five patients with significant haemodynamic changes correlated to interictal epileptiform discharges on conventional analysis. We then applied the method to 18 patients who had inconclusive simultaneous electroencephalography and functional magnetic resonance imaging studies due to the absence of interictal epileptiform discharges or absence of significant correlated haemodynamic changes. The concordance of the results with subsequent intracranial electroencephalography and/or resection area in patients who were seizure free after surgery was assessed. In the validation group, haemodynamic changes correlated to voltage maps were similar to those obtained with conventional analysis in 5/5 patients. In 14/18 patients (78%) with previously inconclusive studies, scalp maps related to epileptic activity had haemodynamic correlates even when no interictal epileptiform discharges were detected during simultaneous recordings. Haemodynamic changes correlated to voltage maps were spatially concordant with intracranial electroencephalography or with the resection area. We found better concordance in patients with lateral temporal and extratemporal neocortical epilepsy compared to medial/polar temporal lobe epilepsy, probably due to the fact that electroencephalographic voltage maps specific to lateral temporal and extratemporal epileptic activity are more dissimilar to maps of physiological activity. Our approach significantly increases the yield of simultaneous electroencephalography and functional magnetic resonance imaging to localize the epileptic focus non-invasively, allowing better targeting for surgical resection or implantation of intracranial electrode arrays.
Collapse
Affiliation(s)
- Frédéric Grouiller
- 1 Presurgical Epilepsy Evaluation Unit and Functional Brain Mapping Laboratory, Neurology Department, University Hospital, University of Geneva, 1 Geneva, Switzerland
| | - Rachel C. Thornton
- 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and Epilepsy Society, London, WC1N 3BG, UK
| | - Kristina Groening
- 3 Department of Paediatric Neurology, Children's Hospital, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Laurent Spinelli
- 1 Presurgical Epilepsy Evaluation Unit and Functional Brain Mapping Laboratory, Neurology Department, University Hospital, University of Geneva, 1 Geneva, Switzerland
| | - John S. Duncan
- 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and Epilepsy Society, London, WC1N 3BG, UK
| | - Karl Schaller
- 4 Department of Neurosurgery, University Hospital, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Siniatchkin
- 3 Department of Paediatric Neurology, Children's Hospital, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
- 5 Department of Children and Adolescents Psychiatry and Psychotherapy, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Louis Lemieux
- 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and Epilepsy Society, London, WC1N 3BG, UK
| | - Margitta Seeck
- 1 Presurgical Epilepsy Evaluation Unit and Functional Brain Mapping Laboratory, Neurology Department, University Hospital, University of Geneva, 1 Geneva, Switzerland
| | - Christoph M. Michel
- 1 Presurgical Epilepsy Evaluation Unit and Functional Brain Mapping Laboratory, Neurology Department, University Hospital, University of Geneva, 1 Geneva, Switzerland
| | - Serge Vulliemoz
- 1 Presurgical Epilepsy Evaluation Unit and Functional Brain Mapping Laboratory, Neurology Department, University Hospital, University of Geneva, 1 Geneva, Switzerland
- 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and Epilepsy Society, London, WC1N 3BG, UK
| |
Collapse
|
50
|
Wang G, Worrell G, Yang L, Wilke C, He B. Interictal spike analysis of high-density EEG in patients with partial epilepsy. Clin Neurophysiol 2011; 122:1098-105. [PMID: 21126908 PMCID: PMC3232053 DOI: 10.1016/j.clinph.2010.10.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 10/10/2010] [Accepted: 10/21/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the use of interictal spikes to localize epileptogenic brain from noninvasive scalp EEG recordings in patients with medically intractable epilepsy. METHODS Source reconstructions were performed using a high density electrode montage and a low density electrode montage by means of a distributed source modeling method. The source of interictal spike activity was localized using both a realistic geometry boundary element method (BEM) head model and 3-shell spherical head model. RESULTS In the analysis of 7 patients, the high density electrode montage was found to provide results more consistent with the suspected region of epileptogenic brain identified for surgical resection using intracranial EEG recordings and structural MRI lesions, as compared to the spatial low density electrode montage used in routine clinical practice. Furthermore, the realistic geometry BEM head model provided better source localization. CONCLUSIONS Our results indicate the merits of using high density scalp EEG recordings and realistic geometry head modeling for source localization of interictal spikes in patients with partial epilepsy. SIGNIFICANCE The present results suggest further improvement of source localization accuracy of epileptogenic brain from interictal EEG recorded using high density scalp electrode montage and realistic geometry head models.
Collapse
Affiliation(s)
- Gang Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, U.S.A
- Center for Neuroengineering, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Lin Yang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, U.S.A
- Center for Neuroengineering, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Christopher Wilke
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, U.S.A
- Center for Neuroengineering, University of Minnesota, Minneapolis, Minnesota, U.S.A
| |
Collapse
|