1
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
2
|
Xu C, Yuan Z, Chen Z, Liao Z, Li S, Feng Y, Tang Z, Nian J, Huang X, Zhong H, Xie Q. Perturbational complexity index in assessing responsiveness to rTMS treatment in patients with disorders of consciousness: a cross-over randomized controlled trial study. J Neuroeng Rehabil 2024; 21:167. [PMID: 39300529 PMCID: PMC11411826 DOI: 10.1186/s12984-024-01455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Disorders of Consciousness (DoC) caused by severe brain injuries represent a challenging clinical entity, which is easy to misdiagnosis and lacks effective treatment options. Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive neuroelectric stimulation method that shows promise in improving consciousness for DoC, especially in minimally conscious state (MCS). However, there is little evidence of its effectiveness, especially in RCT studies. METHODS Twenty MCS patients participated in a double-blind, randomized, crossover, sham-controlled clinical study to evaluate the safety and efficacy of rTMS for MCS. Subjects were randomized into two groups: one group received rTMS-active for 10 consecutive days (n = 10), and the other group received rTMS-sham for 10 consecutive days (n = 10). After a 10-day washout period, the two groups were crossed over and received the opposite treatment. the rTMS protocol consisted of 2,000 pulses per day in the left dorsolateral prefrontal cortex (L-DLPFC), sent at 10 Hz. The stimulation intensity was 90% of the resting motor threshold. Coma Recovery Scale Revised (CRS-R), the main evaluation index, was evaluated before and after each phase in a double-blind manner. Meanwhile RS-EEG and TMS-EEG data were acquired and relative alpha power (RAP), and perturbational complexity index based on state transitions (PCIst) were caculated. RESULTS One-way ANOVA revealed significantly higher scores in rTMS-active treatment compared to rTMS-sham across various measures, including CRS-R total score, RAP, PCIst (all P < 0.05). Among the 20 MCS patients, 7 (35%) were identified as responders following rTMS treatment. Compared to rTMS-sham, responder scores for CRS-R, RAP, and PCIst (all P < 0.05) were significantly elevated after rTMS-active treatment. Conversely, there was no significant difference observed in non-responders. Furthermore, post-hoc analysis revealed that baseline PCIst was significantly higher in responders than non-responders. Upon a 6-month follow-up, CRS-R scores significantly increased in all 20 patients (P = 0.026). However, the responder group exhibited a more favorable prognosis compared to the non-responder group (P = 0.031). CONCLUSIONS Applying 10 Hz rTMS to L-DLPFC significantly increased consciousness level in MCS patients. PCIst is a neurophysiological index that has the potential to evaluate and predict therapeutic efficacy. TRIAL REGISTRATION www. CLINICALTRIALS gov , identifier: NCT05187000.
Collapse
Affiliation(s)
- Chengwei Xu
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, 1023 Shatai SouthRoad, Guangzhou, Guangdong, 510515, China
| | - Zhanxing Yuan
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai SouthRoad, Guangzhou, Guangdong, 510515, China
| | - Zerong Chen
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ziqin Liao
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shuiyan Li
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yanqi Feng
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ziqiang Tang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jichan Nian
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiyan Huang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haili Zhong
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuyou Xie
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
- Department of hyperbaric oxygenation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai SouthRoad, Guangzhou, Guangdong, 510515, China.
- School of Rehabilitation Sciences, Southern Medical University, 1023 Shatai SouthRoad, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Szirmai D, Zabihi A, Kói T, Hegyi P, Wenning AS, Engh MA, Molnár Z, Csukly G, Horváth AA. EEG connectivity and network analyses predict outcome in patients with disorders of consciousness - A systematic review and meta-analysis. Heliyon 2024; 10:e31277. [PMID: 38826755 PMCID: PMC11141356 DOI: 10.1016/j.heliyon.2024.e31277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Outcome prediction in prolonged disorders of consciousness (DOC) remains challenging. This can result in either inappropriate withdrawal of treatment or unnecessary prolongation of treatment. Electroencephalography (EEG) is a cheap, portable, and non-invasive device with various opportunities for complex signal analysis. Computational EEG measures, such as EEG connectivity and network metrics, might be ideal candidates for the investigation of DOC, but their capacity in prognostication is still undisclosed. We conducted a meta-analysis aiming to compare the prognostic power of the widely used clinical scale, Coma Recovery Scale-Revised - CRS-R and EEG connectivity and network metrics. We found that the prognostic power of the CRS-R scale was moderate (AUC: 0.67 (0.60-0.75)), but EEG connectivity and network metrics predicted outcome with significantly (p = 0.0071) higher accuracy (AUC:0.78 (0.70-0.86)). We also estimated the prognostic capacity of EEG spectral power, which was not significantly (p = 0.3943) inferior to that of the EEG connectivity and graph-theory measures (AUC:0.75 (0.70-0.80)). Multivariate automated outcome prediction tools seemed to outperform clinical and EEG markers.
Collapse
Affiliation(s)
- Danuta Szirmai
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
| | - Arashk Zabihi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
- Mathematical Institute, Department of Stochastics, Budapest University of Technology and Economics, Budapest, Hungary (Műegyetem rkp. 3, Budapest, H-1111, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary (Tömő u. 25-29, Budapest, H-1083, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary (Szigeti út 12., Pécs, H-7624, Hungary
| | - Alexander Schulze Wenning
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
| | - Zsolt Molnár
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary (Üllői út 78., Budapest, H-1082, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland (49 Przybyszewskiego St, Poznan, Poland, 60-355, Poland
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary (Balassa u. 6, Budapest, H-1083, Hungary
| | - András Attila Horváth
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
- Neurocognitive Research Center, National Institute of Mental Health, Neurology, Neurosurgery, Budapest, Hungary (Amerikai út 57., Budapest, H-1145, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary (Üllői út 26., Budapest, H-1085, Hungary
| |
Collapse
|
4
|
Casarotto S, Hassan G, Rosanova M, Sarasso S, Derchi CC, Trimarchi PD, Viganò A, Russo S, Fecchio M, Devalle G, Navarro J, Massimini M, Comanducci A. Dissociations between spontaneous electroencephalographic features and the perturbational complexity index in the minimally conscious state. Eur J Neurosci 2024; 59:934-947. [PMID: 38440949 DOI: 10.1111/ejn.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
The analysis of spontaneous electroencephalogram (EEG) is a cornerstone in the assessment of patients with disorders of consciousness (DoC). Although preserved EEG patterns are highly suggestive of consciousness even in unresponsive patients, moderately or severely abnormal patterns are difficult to interpret. Indeed, growing evidence shows that consciousness can be present despite either large delta or reduced alpha activity in spontaneous EEG. Quantifying the complexity of EEG responses to direct cortical perturbations (perturbational complexity index [PCI]) may complement the observational approach and provide a reliable assessment of consciousness even when spontaneous EEG features are inconclusive. To seek empirical evidence of this hypothesis, we compared PCI with EEG spectral measures in the same population of minimally conscious state (MCS) patients (n = 40) hospitalized in rehabilitation facilities. We found a remarkable variability in spontaneous EEG features across MCS patients as compared with healthy controls: in particular, a pattern of predominant delta and highly reduced alpha power-more often observed in vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients-was found in a non-negligible number of MCS patients. Conversely, PCI values invariably fell above an externally validated empirical cutoff for consciousness in all MCS patients, consistent with the presence of clearly discernible, albeit fleeting, behavioural signs of awareness. These results confirm that, in some MCS patients, spontaneous EEG rhythms may be inconclusive about the actual capacity for consciousness and suggest that a perturbational approach can effectively compensate for this pitfall with practical implications for the individual patient's stratification and tailored rehabilitation.
Collapse
Affiliation(s)
- Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | | | | | - Simone Russo
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guya Devalle
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Angela Comanducci
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
5
|
Tao T, Lu S, Hu N, Xu D, Xu C, Li F, Wang Q, Peng Y. Prognosis of comatose patients with reduced EEG montage by combining quantitative EEG features in various domains. Front Neurosci 2023; 17:1302318. [PMID: 38144206 PMCID: PMC10748426 DOI: 10.3389/fnins.2023.1302318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Objective As the frontoparietal network underlies recovery from coma, a limited frontoparietal montage was used, and the prognostic values of EEG features for comatose patients were assessed. Methods Collected with a limited frontoparietal EEG montage, continuous EEG recordings of 81 comatose patients in ICU were used retrospectively. By the 60-day Glasgow outcome scale (GOS), the patients were dichotomized into favorable and unfavorable outcome groups. Temporal-, frequency-, and spatial-domain features were automatically extracted for comparison. Partial correlation analysis was applied to eliminate redundant factors, and multiple correspondence analysis was used to explore discrimination between groups. Prognostic characteristics were calculated to assess the performance of EEG feature-based predictors established by logistic regression. Analyses were performed on all-patients group, strokes subgroup, and traumatic brain injury (TBI) subgroup. Results By analysis of all patients, raised burst suppression ratio (BSR), suppressed root mean square (RMS), raised power ratio of β to α rhythm (β/α), and suppressed phase-lag index between F3 and P4 (PLI [F3, P4]) were associated with unfavorable outcome, and yielded AUC of 0.790, 0.811, 0.722, and 0.844, respectively. For the strokes subgroup, the significant variables were BSR, RMS, θ/total, θ/δ, and PLI (F3, P4), while for the TBI subgroup, only PLI (F3, P4) was significant. BSR combined with PLI (F3, P4) gave the best predictor by cross-validation analysis in the all-patients group (AUC = 0.889, 95% CI: 0.819-0.960). Conclusion Features extracted from limited frontoparietal montage EEG served as valuable coma prognostic tools, where PLI (F3, P4) was always significant. Combining PLI (F3, P4) with features in other domains may achieve better performance. Significance A limited-montage EEG coupled with an automated algorithm is valuable for coma prognosis.
Collapse
Affiliation(s)
- Tao Tao
- Intensive Care Unit, The First People’s Hospital of Kunshan, Kunshan Affiliated Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Shiqi Lu
- Emergency Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Nan Hu
- School of Electronics and Information Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Dongyang Xu
- Center for Intelligent Acoustics and Signal Processing, Huzhou Institute of Zhejiang University, Huzhou, China
| | - Chenyang Xu
- Intensive Care Unit, The First People’s Hospital of Kunshan, Kunshan Affiliated Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Fajun Li
- Intensive Care Unit, The First People’s Hospital of Kunshan, Kunshan Affiliated Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qin Wang
- Intensive Care Unit, The First People’s Hospital of Kunshan, Kunshan Affiliated Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuan Peng
- Intensive Care Unit, The First People’s Hospital of Kunshan, Kunshan Affiliated Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
6
|
De Koninck BP, Brazeau D, Guay S, Herrero Babiloni A, De Beaumont L. Transcranial Alternating Current Stimulation to Modulate Alpha Activity: A Systematic Review. Neuromodulation 2023; 26:1549-1584. [PMID: 36725385 DOI: 10.1016/j.neurom.2022.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has been one of numerous investigation methods used for their potential to modulate brain oscillations; however, such investigations have given contradictory results and a lack of standardization. OBJECTIVES In this systematic review, we aimed to assess the potential of tACS to modulate alpha spectral power. The secondary outcome was the identification of tACS methodologic key parameters, adverse effects, and sensations. MATERIALS AND METHODS Studies in healthy adults who were receiving active and sham tACS intervention or any differential condition were included. The main outcome assessed was the increase/decrease of alpha spectral power through either electroencephalography or magnetoencephalography. Secondary outcomes were methodologic parameters, sensation reporting, and adverse effects. Risks of bias and the study quality were assessed with the Cochrane assessment tool. RESULTS We obtained 1429 references, and 20 met the selection criteria. A statistically significant alpha-power increase was observed in nine studies using continuous tACS stimulation and two using intermittent tACS stimulation set at a frequency within the alpha range. A statistically significant alpha-power increase was observed in three more studies using a stimulation frequency outside the alpha range. Heterogeneity among stimulation parameters was recognized. Reported adverse effects were mild. The implementation of double blind was identified as challenging using tACS, in part owing to electrical artifacts generated by stimulation on the recorded signal. CONCLUSIONS Most assessed studies reported that tACS has the potential to modulate brain alpha power. The optimization of this noninvasive brain stimulation method is of interest mostly for its potential clinical applications with neurological conditions associated with perturbations in alpha brain activity. However, more research efforts are needed to standardize optimal parameters to achieve lasting modulation effects, develop methodologic alternatives to reduce experimental bias, and improve the quality of studies using tACS to modulate brain activity.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada.
| | - Daphnée Brazeau
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Samuel Guay
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Alberto Herrero Babiloni
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
7
|
Qin X, Chen X, Wang B, Zhao X, Tang Y, Yao L, Liang Z, He J, Li X. EEG Changes during Propofol Anesthesia Induction in Vegetative State Patients Undergoing Spinal Cord Stimulation Implantation Surgery. Brain Sci 2023; 13:1608. [PMID: 38002567 PMCID: PMC10669685 DOI: 10.3390/brainsci13111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE To compare the EEG changes in vegetative state (VS) patients and non-craniotomy, non-vegetative state (NVS) patients during general anesthesia with low-dose propofol and to find whether it affects the arousal rate of VS patients. METHODS Seven vegetative state patients (VS group: five with traumatic brain injury, two with ischemic-hypoxic VS) and five non-craniotomy, non-vegetative state patients (NVS group) treated in the Department of Neurosurgery, Peking University International Hospital from January to May 2022 were selected. All patients were induced with 0.5 mg/kg propofol, and the Bispectral Index (BIS) changes within 5 min after administration were observed. Raw EEG signals and perioperative EEG signals were collected and analyzed using EEGLAB in the MATLAB software environment, time-frequency spectrums were calculated, and EEG changes were analyzed using power spectrums. RESULTS There was no significant difference in the general data before surgery between the two groups (p > 0.05); the BIS reduction in the VS group was significantly greater than that in the NVS group at 1 min, 2 min, 3 min, 4 min, and 5 min after 0.5 mg/kg propofol induction (p < 0.05). Time-frequency spectrum analysis showed the following: prominent α band energy around 10 Hz and decreased high-frequency energy in the NVS group, decreased high-frequency energy and main energy concentrated below 10 Hz in traumatic brain injury VS patients, higher energy in the 10-20 Hz band in ischemic-hypoxic VS patients. The power spectrum showed that the brain electrical energy of the NVS group was weakened R5 min after anesthesia induction compared with 5 min before induction, mainly concentrated in the small wave peak after 10 Hz, i.e., the α band peak; the energy of traumatic brain injury VS patients was weakened after anesthesia induction, but no α band peak appeared; and in ischemic-hypoxic VS patients, there was no significant change in low-frequency energy after anesthesia induction, high-frequency energy was significantly weakened, and a clear α band peak appeared slightly after 10 Hz. Three months after the operation, follow-up visits were made to the VS group patients who had undergone SCS surgery. One patient with traumatic brain injury VS was diagnosed with MCS-, one patient with ischemic-hypoxic VS had increased their CRS-R score by 1 point, and the remaining five patients had no change in their CRS scores. CONCLUSIONS Low doses of propofol cause great differences in the EEG of different types of VS patients, which may be the unique response of damaged nerve cell residual function to propofol, and these weak responses may also be the basis of brain recovery.
Collapse
Affiliation(s)
- Xuewei Qin
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Xuanling Chen
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Bo Wang
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Xin Zhao
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Yi Tang
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Lan Yao
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China;
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Jiang M, Niu Z, Liu G, Huang H, Li X, Su Y. Quantitative EEG and brain network analysis: predicting awakening from early coma after cardiopulmonary resuscitation. Neurol Res 2023; 45:969-978. [PMID: 37643397 DOI: 10.1080/01616412.2023.2252281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE For patients in early coma after cardiopulmonary resuscitation (CPR), quantitative electroencephalogram (EEG) and brain network analysis was performed to identify relevant indicators of awakening. METHODS A prospective cohort study was conducted on comatose patients after CPR in the neuro-critical care unit. The included patients received clinical evaluation. The bedside high-density (64-lead) EEG monitoring was performed for visual grading and calculation of power spectrum and brain network parameters. A 3-month prognostic assessment was performed and the patients were dichotomized into the awakening group and the unawakening group. RESULTS A total of 25 patients were included. The awakening group had higher GCS score, more slow wave pattern and reactive EEG than the unawakening group (P = 0.003, P < 0.001, P < 0.001, respectively). Compared with the unawakening group, (1) the awakening group had significantly higher absolute and relative θ power and slow/fast band ratio of the whole brain (P < 0.05), (2) the awakening group had stronger connection based on coherence, phase synchronization, phase lag index and cross-correlation (P < 0.05), (3) the awakening group had higher small-worldness, clustering coefficient and average path length based on graph theory (P < 0.05). CONCLUSIONS The power spectrum and brain network characteristics in patients in early coma after CPR have predictive value for recovery.
Collapse
Affiliation(s)
- Mengdi Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Currently working at Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zikang Niu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern, Beijing Normal University, Beijing, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huijin Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern, Beijing Normal University, Beijing, China
| | - Yingying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Rubinos C, Bruzzone MJ, Viswanathan V, Figueredo L, Maciel CB, LaRoche S. Electroencephalography as a Biomarker of Prognosis in Acute Brain Injury. Semin Neurol 2023; 43:675-688. [PMID: 37832589 DOI: 10.1055/s-0043-1775816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Electroencephalography (EEG) is a noninvasive tool that allows the monitoring of cerebral brain function in critically ill patients, aiding with diagnosis, management, and prognostication. Specific EEG features have shown utility in the prediction of outcomes in critically ill patients with status epilepticus, acute brain injury (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, and traumatic brain injury), anoxic brain injury, and toxic-metabolic encephalopathy. Studies have also found an association between particular EEG patterns and long-term functional and cognitive outcomes as well as prediction of recovery of consciousness following acute brain injury. This review summarizes these findings and demonstrates the value of utilizing EEG findings in the determination of prognosis.
Collapse
Affiliation(s)
- Clio Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Vyas Viswanathan
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | - Lorena Figueredo
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Carolina B Maciel
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Suzette LaRoche
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Xu C, Wu W, Zheng X, Liang Q, Huang X, Zhong H, Xiao Q, Lan Y, Bai Y, Xie Q. Repetitive transcranial magnetic stimulation over the posterior parietal cortex improves functional recovery in nonresponsive patients: A crossover, randomized, double-blind, sham-controlled study. Front Neurol 2023; 14:1059789. [PMID: 36873436 PMCID: PMC9978157 DOI: 10.3389/fneur.2023.1059789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
Background Recent studies have shown that patients with disorders of consciousness (DoC) can benefit from repetitive transcranial magnetic stimulation (rTMS) therapy. The posterior parietal cortex (PPC) is becoming increasingly important in neuroscience research and clinical treatment for DoC as it plays a crucial role in the formation of human consciousness. However, the effect of rTMS on the PPC in improving consciousness recovery remains to be studied. Method We conducted a crossover, randomized, double-blind, sham-controlled clinical study to assess the efficacy and safety of 10 Hz rTMS over the left PPC in unresponsive patients. Twenty patients with unresponsive wakefulness syndrome were recruited. The participants were randomly divided into two groups: one group received active rTMS treatment for 10 consecutive days (n = 10) and the other group received sham treatment for the same period (n = 10). After a 10-day washout period, the groups crossed over and received the opposite treatment. The rTMS protocol involved the delivery of 2000 pulses/day at a frequency of 10 Hz, targeting the left PPC (P3 electrode sites) at 90% of the resting motor threshold. The primary outcome measure was the JFK Coma Recovery Scele-Revised (CRS-R), and evaluations were conducted blindly. EEG power spectrum assessments were also conducted simultaneously before and after each stage of the intervention. Result rTMS-active treatment resulted in a significant improvement in the CRS-R total score (F = 8.443, p = 0.009) and the relative alpha power (F = 11.166, p = 0.004) compared to sham treatment. Furthermore, 8 out of 20 patients classified as rTMS responders showed improvement and evolved to a minimally conscious state (MCS) as a result of active rTMS. The relative alpha power also significantly improved in responders (F = 26.372, p = 0.002) but not in non-responders (F = 0.704, p = 0.421). No adverse effects related to rTMS were reported in the study. Conclusions This study suggests that 10 Hz rTMS over the left PPC can significantly improve functional recovery in unresponsive patients with DoC, with no reported side effects. Clinical trial registration www.ClinicalTrials.gov, identifier: NCT05187000.
Collapse
Affiliation(s)
- Chengwei Xu
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wanchun Wu
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Zheng
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qimei Liang
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiyan Huang
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haili Zhong
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuyi Xiao
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yang Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuyou Xie
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Biophysical mechanism underlying compensatory preservation of neural synchrony over the adult lifespan. Commun Biol 2022; 5:567. [PMID: 35681107 PMCID: PMC9184644 DOI: 10.1038/s42003-022-03489-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
We propose that the preservation of functional integration, estimated from measures of neural synchrony, is a key objective of neurocompensatory mechanisms associated with healthy human ageing. To support this proposal, we demonstrate how phase-locking at the peak alpha frequency in Magnetoencephalography recordings remains invariant over the lifespan in a large cohort of human participants, aged 18-88 years. Using empirically derived connection topologies from diffusion tensor imaging data, we create an in-silico model of whole-brain alpha dynamics. We show that enhancing inter-areal coupling can cancel the effect of increased axonal transmission delays associated with age-related degeneration of white matter tracts, albeit at slower network frequencies. By deriving analytical solutions for simplified connection topologies, we further establish the theoretical principles underlying compensatory network re-organization. Our findings suggest that frequency slowing with age- frequently observed in the alpha band in diverse populations- may be viewed as an epiphenomenon of the underlying compensatory mechanism. Analysis of MEG data from healthy participants and whole-brain network modeling suggests that the brain compensates for age-related disruptions in connectivity by slowing down the frequency of neural synchronization.
Collapse
|
12
|
Huang H, Su Y, Niu Z, Liu G, Li X, Jiang M. Comatose Patients After Cardiopulmonary Resuscitation: An Analysis Based on Quantitative Methods of EEG Reactivity. Front Neurol 2022; 13:877406. [PMID: 35720067 PMCID: PMC9205205 DOI: 10.3389/fneur.2022.877406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Every year, approximately 50–110/1,00,000 people worldwide suffer from cardiac arrest, followed by hypoxic-ischemic encephalopathy after cardiopulmonary resuscitation (CPR), and approximately 40–66% of patients do not recover. The purpose of this study was to identify the brain network parameters and key brain regions associated with awakening by comparing the reactivity characteristics of the brain networks between the awakening and unawakening groups of CPR patients after coma, thereby providing a basis for further awakening interventions. Method This study involved a prospective cohort study. Using a 64-electrode electroencephalography (EEG) wireless 64A system, EEG signals were recorded from 16 comatose patients after CPR in the acute phase (<1 month) from 2019 to 2020. MATLAB (2017b) was used to quantitatively analyze the reactivity (power spectrum and entropy) and brain network characteristics (coherence and phase lag index) after pain stimulation. The patients were divided into an awakening group and an unawakening group based on their ability to execute commands or engage in repeated and continuous purposeful behavior after 3 months. The above parameters were compared to determine whether there were differences between the two groups. Results (1) Power spectrum: the awakening group had higher gamma, beta and alpha spectral power after pain stimulation in the frontal and parietal lobes, and lower delta and theta spectral power in the bilateral temporal and occipital lobes than the unawakening group. (2) Entropy: after pain stimulation, the awakening group had higher entropy in the frontal and parietal lobes and lower entropy in the temporal occipital lobes than the unawakening group. (3) Connectivity: after pain stimulation, the awakening group had stronger gamma and beta connectivity in nearly the whole brain, but weaker theta and delta connectivity in some brain regions (e.g., the frontal-occipital lobe and parietal-occipital lobe) than the unawakening group. Conclusion After CPR, comatose patients were more likely to awaken if there was a higher stimulation of fast-frequency band spectral power, higher entropy, stronger whole-brain connectivity and better retention of frontal-parietal lobe function after pain stimulation.
Collapse
Affiliation(s)
- Huijin Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yingying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingying Su
| | - Zikang Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Beijing Normal University, Beijing, China
- Zikang Niu
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Gang Liu
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Beijing Normal University, Beijing, China
| | - Mengdi Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Duszyk-Bogorodzka A, Zieleniewska M, Jankowiak-Siuda K. Brain Activity Characteristics of Patients With Disorders of Consciousness in the EEG Resting State Paradigm: A Review. Front Syst Neurosci 2022; 16:654541. [PMID: 35720438 PMCID: PMC9198636 DOI: 10.3389/fnsys.2022.654541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The assessment of the level of consciousness in disorders of consciousness (DoC) is still one of the most challenging problems in contemporary medicine. Nevertheless, based on the multitude of studies conducted over the last 20 years on resting states based on electroencephalography (EEG) in DoC, it is possible to outline the brain activity profiles related to both patients without preserved consciousness and minimally conscious ones. In the case of patients without preserved consciousness, the dominance of low, mostly delta, frequency, and the marginalization of the higher frequencies were observed, both in terms of the global power of brain activity and in functional connectivity patterns. In turn, the minimally conscious patients revealed the opposite brain activity pattern—the characteristics of higher frequency bands were preserved both in global power and in functional long-distance connections. In this short review, we summarize the state of the art of EEG-based research in the resting state paradigm, in the context of providing potential support to the traditional clinical assessment of the level of consciousness.
Collapse
Affiliation(s)
- Anna Duszyk-Bogorodzka
- Behavioural Neuroscience Lab, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
- *Correspondence: Anna Duszyk-Bogorodzka
| | | | - Kamila Jankowiak-Siuda
- Behavioural Neuroscience Lab, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| |
Collapse
|
14
|
Porcaro C, Marino M, Carozzo S, Russo M, Ursino M, Valentinaruggiero, Ragno C, Proto S, Tonin P. Fractal Dimension Feature as a Signature of Severity in Disorders of Consciousness: An EEG Study. Int J Neural Syst 2022; 32:2250031. [DOI: 10.1142/s0129065722500319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Bai Y, Lin Y, Ziemann U. Managing disorders of consciousness: the role of electroencephalography. J Neurol 2021; 268:4033-4065. [PMID: 32915309 PMCID: PMC8505374 DOI: 10.1007/s00415-020-10095-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
Disorders of consciousness (DOC) are an important but still underexplored entity in neurology. Novel electroencephalography (EEG) measures are currently being employed for improving diagnostic classification, estimating prognosis and supporting medicolegal decision-making in DOC patients. However, complex recording protocols, a confusing variety of EEG measures, and complicated analysis algorithms create roadblocks against broad application. We conducted a systematic review based on English-language studies in PubMed, Medline and Web of Science databases. The review structures the available knowledge based on EEG measures and analysis principles, and aims at promoting its translation into clinical management of DOC patients.
Collapse
Affiliation(s)
- Yang Bai
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- Department of Neurology and Stroke, University of Tübingen, Hoppe‑Seyler‑Str. 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Yajun Lin
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe‑Seyler‑Str. 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
16
|
Riganello F, Vatrano M, Carozzo S, Russo M, Lucca LF, Ursino M, Ruggiero V, Cerasa A, Porcaro C. The Timecourse of Electrophysiological Brain-Heart Interaction in DoC Patients. Brain Sci 2021; 11:750. [PMID: 34198911 PMCID: PMC8228557 DOI: 10.3390/brainsci11060750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Disorders of Consciousness (DOC) are a spectrum of pathologies affecting one's ability to interact with the external world. Two possible conditions of patients with DOC are Unresponsive Wakefulness Syndrome/Vegetative State (UWS/VS) and Minimally Conscious State (MCS). Analysis of spontaneous EEG activity and the Heart Rate Variability (HRV) are effective techniques in exploring and evaluating patients with DOC. This study aims to observe fluctuations in EEG and HRV parameters in the morning/afternoon resting-state recording. The study enrolled 13 voluntary Healthy Control (HC) subjects and 12 DOC patients (7 MCS, 5 UWS/VS). EEG and EKG were recorded. PSDalpha, PSDtheta powerband, alpha-blocking, alpha/theta of the EEG, Complexity Index (CI) and SDNN of EKG were analyzed. Higher values of PSDalpha, alpha-blocking, alpha/theta and CI values and lower values of PSD theta characterized HC individuals in the morning with respect to DOC patients. In the afternoon, we detected a significant difference between groups in the CI, PSDalpha, PSDtheta, alpha/theta and SDNN, with lower PSDtheta value for HC. CRS-R scores showed a strong correlation with recorded parameters mainly during evaluations in the morning. Our finding put in evidence the importance of the assessment, as the stimulation of DOC patients in research for behavioural response, in the morning.
Collapse
Affiliation(s)
- Francesco Riganello
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Martina Vatrano
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Simone Carozzo
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Miriam Russo
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Lucia Francesca Lucca
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Maria Ursino
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Valentina Ruggiero
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Antonio Cerasa
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
- Institute for Biomedical Research and Innovation (IRIB)—National Research Council of Italy (CNR), 87050 Mangone, Italy
| | - Camillo Porcaro
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council (CNR), 00185 Rome, Italy
| |
Collapse
|
17
|
Wutzl B, Golaszewski SM, Leibnitz K, Langthaler PB, Kunz AB, Leis S, Schwenker K, Thomschewski A, Bergmann J, Trinka E. Narrative Review: Quantitative EEG in Disorders of Consciousness. Brain Sci 2021; 11:brainsci11060697. [PMID: 34070647 PMCID: PMC8228474 DOI: 10.3390/brainsci11060697] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
In this narrative review, we focus on the role of quantitative EEG technology in the diagnosis and prognosis of patients with unresponsive wakefulness syndrome and minimally conscious state. This paper is divided into two main parts, i.e., diagnosis and prognosis, each consisting of three subsections, namely, (i) resting-state EEG, including spectral power, functional connectivity, dynamic functional connectivity, graph theory, microstates and nonlinear measurements, (ii) sleep patterns, including rapid eye movement (REM) sleep, slow-wave sleep and sleep spindles and (iii) evoked potentials, including the P300, mismatch negativity, the N100, the N400 late positive component and others. Finally, we summarize our findings and conclude that QEEG is a useful tool when it comes to defining the diagnosis and prognosis of DOC patients.
Collapse
Affiliation(s)
- Betty Wutzl
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan; (B.W.); (K.L.)
- Symbiotic Intelligent Systems Research Center, Osaka University, Suita 565-0871, Japan
| | - Stefan M. Golaszewski
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Kenji Leibnitz
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan; (B.W.); (K.L.)
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita 565-0871, Japan
| | - Patrick B. Langthaler
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Department of Mathematics, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Alexander B. Kunz
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
| | - Stefan Leis
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Kerstin Schwenker
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Aljoscha Thomschewski
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jürgen Bergmann
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-5-7255-34600
| |
Collapse
|
18
|
He R, Fan J, Wang H, Zhong Y, Ma J. Differentiating Responders and Non-responders to rTMS Treatment for Disorder of Consciousness Using EEG After-Effects. Front Neurol 2020; 11:583268. [PMID: 33329325 PMCID: PMC7714935 DOI: 10.3389/fneur.2020.583268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background: It is controversial whether repetitive transcranial magnetic stimulation (rTMS) has potential benefits in improving the awareness of patients with disorder of consciousness (DOC). We hypothesized that rTMS could improve consciousness only in DOC patients who have measurable brain responses to rTMS. Objective: In this study, we aimed to investigate the EEG after-effects induced by rTMS in DOC patients and attempted to propose a prediction algorithm to discriminate between DOC patients who would respond to rTMS treatment from those who would not. Methods: Twenty-five DOC patients were enrolled in this study. Over 4 weeks, each patient received 20 sessions of 20 Hz rTMS that was applied over the left dorsolateral prefrontal cortex (DLPFC). For each patient, resting-state EEG was recorded before and immediately after one session of rTMS to assess the neurophysiologic modification induced by rTMS. The coma recovery scale revised (CRS-R) was used to define responders with improved consciousness. Results: Of the 25 DOC patients, 10 patients regained improved consciousness and were classified as responders. The responders were characterized by more preserved alpha power and a significant reduction of delta power induced by rTMS. The analysis of receiver operating characteristic (ROC) curves showed that the algorithm calculated from the relative alpha power and the relative delta power had a high accuracy in identifying DOC patients who were responders. Conclusions: DOC patients who had more preserved alpha power and a significant reduction in the delta band that was induced by rTMS are likely to regain improved consciousness, which provides a tool to identify DOC patients who may benefit in terms of therapeutic consciousness.
Collapse
Affiliation(s)
- Renhong He
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianzhong Fan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huijuan Wang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Billeri L, Filoni S, Russo EF, Portaro S, Militi D, Calabrò RS, Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci 2020; 10:brainsci10010042. [PMID: 31936844 PMCID: PMC7016627 DOI: 10.3390/brainsci10010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
The differential diagnosis of patients with Disorder of Consciousness (DoC), in particular in the chronic phase, is significantly difficult. Actually, about 40% of patients with unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS) are misdiagnosed. Indeed, only advanced paraclinical approaches, including advanced EEG analyses, can allow achieving a more reliable diagnosis, that is, discovering residual traces of awareness in patients with UWS (namely, functional Locked-In Syndrome (fLIS)). These approaches aim at capturing the residual brain network models, at rest or that may be activated in response to relevant stimuli, which may be appropriate for awareness to emerge (despite their insufficiency to generate purposeful motor behaviors). For this, different brain network models have been studied in patients with DoC by using sensory stimuli (i.e., passive tasks), probing response to commands (i.e., active tasks), and during resting-state. Since it can be difficult for patients with DoC to perform even simple active tasks, this scoping review aims at summarizing the current, innovative neurophysiological examination methods in resting state/passive modality to differentiate and prognosticate patients with DoC. We conclude that the electrophysiologically-based diagnostic procedures represent an important resource for diagnosis, prognosis, and, therefore, management of patients with DoC, using advance passive and resting state paradigm analyses for the patients who lie in the “greyzones” between MCS, UWS, and fLIS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, 71013 Foggia, Italy;
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | | | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| |
Collapse
|
20
|
Kotchoubey B, Pavlov YG. A Systematic Review and Meta-Analysis of the Relationship Between Brain Data and the Outcome in Disorders of Consciousness. Front Neurol 2018; 9:315. [PMID: 29867725 PMCID: PMC5954214 DOI: 10.3389/fneur.2018.00315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/20/2018] [Indexed: 12/29/2022] Open
Abstract
A systematic search revealed 68 empirical studies of neurophysiological [EEG, event-related brain potential (ERP), fMRI, PET] variables as potential outcome predictors in patients with Disorders of Consciousness (diagnoses Unresponsive Wakefulness Syndrome [UWS] and Minimally Conscious State [MCS]). Data of 47 publications could be presented in a quantitative manner and systematically reviewed. Insufficient power and the lack of an appropriate description of patient selection each characterized about a half of all publications. In more than 80% studies, neurologists who evaluated the patients' outcomes were familiar with the results of neurophysiological tests conducted before, and may, therefore, have been influenced by this knowledge. In most subsamples of datasets, effect size significantly correlated with its standard error, indicating publication bias toward positive results. Neurophysiological data predicted the transition from UWS to MCS substantially better than they predicted the recovery of consciousness (i.e., the transition from UWS or MCS to exit-MCS). A meta-analysis was carried out for predictor groups including at least three independent studies with N > 10 per predictor per improvement criterion (i.e., transition to MCS versus recovery). Oscillatory EEG responses were the only predictor group whose effect attained significance for both improvement criteria. Other perspective variables, whose true prognostic value should be explored in future studies, are sleep spindles in the EEG and the somatosensory cortical response N20. Contrary to what could be expected on the basis of neuroscience theory, the poorest prognostic effects were shown for fMRI responses to stimulation and for the ERP component P300. The meta-analytic results should be regarded as preliminary given the presence of numerous biases in the data.
Collapse
Affiliation(s)
- Boris Kotchoubey
- Institute of Medical Psychology, University of Tübingen, Tübingen, Germany
| | - Yuri G Pavlov
- Institute of Medical Psychology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
21
|
Effects of 20 Hz Repetitive Transcranial Magnetic Stimulation on Disorders of Consciousness: A Resting-State Electroencephalography Study. Neural Plast 2018; 2018:5036184. [PMID: 29770146 PMCID: PMC5889874 DOI: 10.1155/2018/5036184] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as an experimental approach for the treatment of disorders of consciousness (DOC). To date, there has been little research into the use of rTMS in DOC and the therapeutic effects have been variously documented. This study aimed to examine the effects of 20 Hz rTMS on the electroencephalography (EEG) reactivity and clinical response in patients with DOC and to explore the neuromodulatory effects of high-frequency rTMS. In this randomized, sham-controlled, crossover study, real or sham 20 Hz rTMS was applied to the left primary motor cortex (M1) of patients with DOC for 5 consecutive days. Evaluations were blindly performed at the baseline (T0), immediately after the end of the 5 days of treatment (T1) and 1 week after the treatment (T2) using the JFK coma recovery scale-revised (CRS-R) and resting-state EEG. Only one patient, with a history of 2 months of traumatic brain injury, showed long-lasting (T1, T2) behavioral and neurophysiological modifications after the real rTMS stimulation. The 5 remaining patients presented brain reactivity localized at several electrodes, and the EEG modification was not significant. rTMS stimulation may improve awareness and arousal of DOC. Additionally, EEG represents a potential biomarker for the therapeutic efficacy of rTMS. This trial is registered with (NCT03385278).
Collapse
|
22
|
Wu M, Bao WX, Zhang J, Hu YF, Gao J, Luo BY. Effect of acoustic stimuli in patients with disorders of consciousness: a quantitative electroencephalography study. Neural Regen Res 2018; 13:1900-1906. [PMID: 30233062 PMCID: PMC6183039 DOI: 10.4103/1673-5374.238622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Auditory stimuli are proposed as beneficial neurorehabilitation methods in patients with disorders of consciousness. However, precise and accurate quantitative indices to estimate their potential effect remain scarce. Fourteen patients were recruited from the Neuro-Rehabilitation Unit of Hangzhou Hospital of Zhejiang Armed Police Corps of China. Altogether, there were seven cases of unresponsive wakefulness syndrome (five males and two females, aged 45.7 ± 16.8 years) and seven cases of minimally conscious state (six males and one female, aged 42.3 ± 20.8 years). Simultaneously, fourteen healthy controls (10 males and 4 females, aged 51.7 ± 9.7 years) also participated in this case-control experiment. Brain response to music, subjects’ own name, and noise was monitored by quantitative electroencephalography (QEEG) in the resting state and with acoustic stimulation. Predictive QEEG values in various brain regions were investigated. Our results show that cerebral activation was high in subjects stimulated by their own name, especially in the temporal lobe in patients with disorders of consciousness, and the frontal lobe in the control group. Further, during resting and stimulation, QEEG index (δ + θ/α + β ratio) negatively correlated with the Coma Recovery Scale-Revised score in traumatic disorders of consciousness patients. Hence, we speculate that a subject's own name might be an effective awakening therapy for patients with disorders of consciousness. Moreover, QEEG index in specific stimulation states may be used as a prognostic indicator for disorders of consciousness patients (sensitivity, 75%; specificity, 50%). This clinical study has been registered at ClinicalTrials.gov (identifier: NCT03385291).
Collapse
Affiliation(s)
- Min Wu
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wang-Xiao Bao
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jie Zhang
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yang-Fan Hu
- Department of Computer Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou, Zhejiang Province, China
| | - Ben-Yan Luo
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Bai Y, Xia X, Li X. A Review of Resting-State Electroencephalography Analysis in Disorders of Consciousness. Front Neurol 2017; 8:471. [PMID: 28955295 PMCID: PMC5601979 DOI: 10.3389/fneur.2017.00471] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
Recently, neuroimaging technologies have been developed as important methods for assessing the brain condition of patients with disorders of consciousness (DOC). Among these technologies, resting-state electroencephalography (EEG) recording and analysis has been widely applied by clinicians due to its relatively low cost and convenience. EEG reflects the electrical activity of the underlying neurons, and it contains information regarding neuronal population oscillations, the information flow pathway, and neural activity networks. Some features derived from EEG signal processing methods have been proposed to describe the electrical features of the brain with DOC. The computation of these features is challenging for clinicians working to comprehend the corresponding physiological meanings and then to put them into clinical applications. This paper reviews studies that analyze spontaneous EEG of DOC, with the purpose of diagnosis, prognosis, and evaluation of brain interventions. It is expected that this review will promote our understanding of the EEG characteristics in DOC.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoyu Xia
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
24
|
Pain perception in patients with chronic disorders of consciousness: What can limbic system tell us? Clin Neurophysiol 2016; 128:454-462. [PMID: 28160751 DOI: 10.1016/j.clinph.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 12/10/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Although it is believed that patients with Unresponsive Wakefulness Syndrome (UWS) do not feel pain, recent neuroimaging and neurophysiologic studies have demonstrated some residual traces of nociceptive processing. METHODS To confirm this growing evidence, we evaluated 21 patients suffering from chronic disorders of consciousness (DOC) (both UWS, n=11, and Minimally Conscious State - MCS -, n=10), using an Event-Related Potential (ERP) Low-Resolution Brain Electromagnetic Tomography (LORETA) approach, based on nociceptive repeated laser stimulation (RLS). We delivered laser stimuli to the dorsum of both hands and analysed the γ-band LORETA activations and the ERP γ-power magnitude induced by laser stimulation, as well as the heart rate variability (HRV). RESULTS We found partially preserved cortical activations and ERP γ-power magnitude in all MCS and two UWS individuals. These effects were paralleled by a purposeful behaviour, and a reduced HRV concerning nociceptive stimulation, whereas the two UWS individuals showed no more than reflex behaviours, besides a strong limbic activation. CONCLUSIONS Some UWS patients may somehow perceive the affective components of nociceptive stimulation. SIGNIFICANCE The diagnosis of functional locked-in syndrome should be taken into account when dealing with DOC differential diagnosis.
Collapse
|
25
|
Alpha oscillations and their impairment in affective and post-traumatic stress disorders. Neurosci Biobehav Rev 2016; 68:794-815. [PMID: 27435239 DOI: 10.1016/j.neubiorev.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/26/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022]
Abstract
Affective and anxiety disorders are debilitating conditions characterized by impairments in cognitive and social functioning. Elucidating their neural underpinnings may assist in improving diagnosis and developing targeted interventions. Neural oscillations are fundamental for brain functioning. Specifically, oscillations in the alpha frequency range (alpha rhythms) are prevalent in the awake, conscious brain and play an important role in supporting perceptual, cognitive, and social processes. We review studies utilizing various alpha power measurements to assess abnormalities in brain functioning in affective and anxiety disorders as well as obsessive compulsive and post-traumatic stress disorders. Despite some inconsistencies, studies demonstrate associations between aberrant alpha patterns and these disorders both in response to specific cognitive and emotional tasks and during a resting state. We conclude by discussing methodological considerations and future directions, and underscore the need for much further research on the role of alpha functionality in social contexts. As social dysfunction accompanies most psychiatric conditions, research on alpha's involvement in social processes may provide a unique window into the neural mechanisms underlying these disorders.
Collapse
|
26
|
Towards a method to differentiate chronic disorder of consciousness patients' awareness: The Low-Resolution Brain Electromagnetic Tomography Analysis. J Neurol Sci 2016; 368:178-83. [PMID: 27538628 DOI: 10.1016/j.jns.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 01/18/2023]
Abstract
Assessing residual signs of awareness in patients suffering from chronic disorders of consciousness (DOC) is a challenging issue. DOC patient behavioral assessment is often doubtful since some individuals may retain covert traces of awareness; thus, some Unresponsive Wakefulness Syndrome (UWS) patients may be misdiagnosed. The aim of our study was to explore possible differences between the source powers within poly-modal cortices to differentiate Minimally Conscious State (MCS) from UWS. To this end, we recorded an electroencephalogram (EEG) during awake resting state and performed a Low-Resolution Brain Electromagnetic Tomography (LORETA), which is a 3D source localization method allowing the visualization of the most probable neuroanatomical generators of EEG differences. MCS and UWS patients showed significant variations concerning the frontal source power of delta-band, frontal and parietal of theta, parietal and occipital of alpha, central of beta, and parietal of gamma, in correlation with the Coma Recovery Scale-Revised (CRS-R) score. The alpha-band was the most significant LORETA data correlating with the consciousness level. In addition, we observed a significant correlation between central beta-peaks and the motor abilities and a dissociation between theta and gamma bands within parietal regions. Our findings suggest that LORETA analysis may be useful in DOC differential diagnosis since distinct neurophysiological correlates in some UWS patients could be used to assess deeper the residual cerebral activity of brain areas responsible for covert awareness.
Collapse
|
27
|
Schorr B, Schlee W, Arndt M, Bender A. Coherence in resting-state EEG as a predictor for the recovery from unresponsive wakefulness syndrome. J Neurol 2016; 263:937-953. [PMID: 26984609 DOI: 10.1007/s00415-016-8084-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 12/27/2022]
Abstract
We investigated differences of EEG coherence within (short-range), and between (long-range) specified brain areas as diagnostic markers for different states in disorders of consciousness (DOC), and their predictive value for recovery from unresponsive wakefulness syndrome (UWS). EEGs of 73 patients and 24 controls were recorded and coma recovery scale- revised (CRS-R) scores were assessed. CRS-R of UWS patients was collected after 12 months and divided into two groups (improved/unimproved). Frontal, parietal, fronto-parietal, fronto-temporal, and fronto-occipital coherence was computed, as well as EEG power over frontal, parietal, occipital, and temporal areas. Minimally conscious patients (MCS) and UWS patients could not be differentiated based on their coherence patterns or on EEG power. Fronto-parietal and parietal coherence could positively predict improvement of UWS patients, i.e. recovery from UWS to MCS. Parietal coherence was significantly higher in delta and theta frequencies in the improved group, as well as the coherence between frontal and parietal regions in delta, theta, alpha, and beta frequencies. High parietal delta and theta, and high fronto-parietal theta and alpha coherence appear to provide strong early evidence for recovery from UWS with high predictive sensitivity and specificity. Short and long-range coherence can have a diagnostic value in the prognosis of recovery from UWS.
Collapse
Affiliation(s)
- Barbara Schorr
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany. .,Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89069, Ulm, Germany.
| | - Winfried Schlee
- Institute for Psychiatry and Psychotherapy, University of Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Marion Arndt
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany
| | - Andreas Bender
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany.,Department of Neurology, Klinikum Grosshadern, University of Munich, Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
28
|
Pistoia F, Sacco S, Sarà M, Franceschini M, Carolei A. Intrathecal baclofen: effects on spasticity, pain, and consciousness in disorders of consciousness and locked-in syndrome. Curr Pain Headache Rep 2015; 19:466. [PMID: 25416459 DOI: 10.1007/s11916-014-0466-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Disorders of consciousness (DOCs) include coma, vegetative state (VS), and minimally conscious state (MCS). Coma is characterized by impaired wakefulness and consciousness, while VS and MCS are defined by lacking or discontinuous consciousness despite recovered wakefulness. Conversely, locked-in syndrome (LIS) is characterized by quadriplegia and lower cranial nerve paralysis with preserved consciousness. Intrathecal baclofen (ITB) is a useful treatment to improve spasticity both in patients with DOCs and LIS. Moreover, it supports the recovery of consciousness in some patients with VS or MCS. The precise mechanism underlying this recovery has not yet been elucidated. It has been hypothesized that ITB may act by reducing the overload of dysfunctional sensory stimuli reaching the injured brain or by stabilizing the imbalanced circadian rhythms. Although the current indication of ITB is the management of severe spasticity, its potential use in speeding the recovery of consciousness merits further investigation.
Collapse
Affiliation(s)
- Francesca Pistoia
- Neurological Institute, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy,
| | | | | | | | | |
Collapse
|
29
|
Höller Y, Trinka E. Is There a Relation between EEG-Slow Waves and Memory Dysfunction in Epilepsy? A Critical Appraisal. Front Hum Neurosci 2015; 9:341. [PMID: 26124717 PMCID: PMC4463866 DOI: 10.3389/fnhum.2015.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/28/2015] [Indexed: 12/12/2022] Open
Abstract
Is there a relationship between peri-ictal slow waves, loss of consciousness, memory, and slow-wave sleep, in patients with different forms of epilepsy? We hypothesize that mechanisms, which result in peri-ictal slow-wave activity as detected by the electroencephalogram, could negatively affect memory processes. Slow waves (≤4 Hz) can be found in seizures with impairment of consciousness and also occur in focal seizures without impairment of consciousness but with inhibited access to memory functions. Peri-ictal slow waves are regarded as dysfunctional and are probably caused by mechanisms, which are essential to disturb the consolidation of memory entries in these patients. This is in strong contrast to physiological slow-wave activity during deep sleep, which is thought to group memory-consolidating fast oscillatory activity. In patients with epilepsy, slow waves may not only correlate with the peri-ictal clouding of consciousness, but could be the epiphenomenon of mechanisms, which interfere with normal brain function in a wider range. These mechanisms may have transient impacts on memory, such as temporary inhibition of memory systems, altered patterns of hippocampal-neocortical interactions during slow-wave sleep, or disturbed cross-frequency coupling of slow and fast oscillations. In addition, repeated tonic-clonic seizures over the years in uncontrolled chronic epilepsy may cause a progressive cognitive decline. This hypothesis can only be assessed in long-term prospective studies. These studies could disentangle the reversible short-term impacts of seizures, and the impacts of chronic uncontrolled seizures. Chronic uncontrolled seizures lead to irreversible memory impairment. By contrast, short-term impacts do not necessarily lead to a progressive cognitive decline but result in significantly impaired peri-ictal memory performance.
Collapse
Affiliation(s)
- Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
30
|
Owen AM. Using functional magnetic resonance imaging and electroencephalography to detect consciousness after severe brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:277-93. [PMID: 25702223 DOI: 10.1016/b978-0-444-52892-6.00018-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent years, rapid technological developments in the field of neuroimaging have provided new methods for revealing thoughts, actions, and intentions based solely on the pattern of activity that is observed in the brain. In specialized centres, these methods are now being employed routinely in the assessment of patients diagnosed with so-called "disorders of consciousness," mapping patterns of residual function and dysfunction and helping to reduce diagnostic errors between related conditions such as the vegetative and minimally conscious states. Both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have now been shown to be effective tools for detecting covert awareness in behaviorally nonresponsive patients when standard clinical approaches have been unable to provide that information. Indeed, in some patients, communication with the outside world via simple "yes" and "no" questions has been achieved, even in cases where no possibility for behavioral interaction exists. These studies have profound implications for clinical care, diagnosis, prognosis and medical-legal decision making relating to the prolongation, or otherwise, of life after severe brain injury. Moreover, the results suggest an urgent need for a re-evaluation of the existing diagnostic guidelines for behaviorally nonresponsive patients to include information derived from functional neuroimaging.
Collapse
Affiliation(s)
- Adrian M Owen
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
31
|
Xie Y, Zhang T. Repetitive transcranial magnetic stimulation improves consciousness disturbance in stroke patients: A quantitative electroencephalography spectral power analysis. Neural Regen Res 2014; 7:2465-72. [PMID: 25337097 PMCID: PMC4200721 DOI: 10.3969/j.issn.1673-5374.2012.31.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/15/2012] [Indexed: 11/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation is a noninvasive treatment technique that can directly alter cortical excitability and improve cerebral functional activity in unconscious patients. To investigate the effects and the electrophysiological changes of repetitive transcranial magnetic stimulation cortical treatment, 10 stroke patients with non-severe brainstem lesions and with disturbance of consciousness were treated with repetitive transcranial magnetic stimulation. A quantitative electroencephalography spectral power analysis was also performed. The absolute power in the alpha band was increased immediately after the first repetitive transcranial magnetic stimulation treatment, and the energy was reduced in the delta band. The alpha band relative power values slightly decreased at 1 day post-treatment, then increased and reached a stable level at 2 weeks post-treatment. Glasgow Coma Score and JFK Coma Recovery Scale-Revised score were improved. Relative power value in the alpha band was positively related to Glasgow Coma Score and JFK Coma Recovery Scale-Revised score. These data suggest that repetitive transcranial magnetic stimulation is a noninvasive, safe, and effective treatment technology for improving brain functional activity and promoting awakening in unconscious stroke patients.
Collapse
Affiliation(s)
- Ying Xie
- Capital Medical University School of Rehabilitation Medicine, Department of Rehabilitation, Electric Power Teaching Hospital of Capital Medical University, Beijing 100073, China
| | - Tong Zhang
- Department of Neurology and Rehabilitation, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068, China
| |
Collapse
|
32
|
Connectivity biomarkers can differentiate patients with different levels of consciousness. Clin Neurophysiol 2014; 125:1545-55. [DOI: 10.1016/j.clinph.2013.12.095] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/08/2013] [Accepted: 12/11/2013] [Indexed: 11/22/2022]
|
33
|
Rossi Sebastiano D, Panzica F, Visani E, Rotondi F, Scaioli V, Leonardi M, Sattin D, D'Incerti L, Parati E, Ferini Strambi L, Franceschetti S. Significance of multiple neurophysiological measures in patients with chronic disorders of consciousness. Clin Neurophysiol 2014; 126:558-64. [PMID: 25082091 DOI: 10.1016/j.clinph.2014.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/20/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The aim of this study was to verify the value of multiple neurophysiological tests in classifying disorders of consciousness (DOCs) in patients in a chronic vegetative or minimal consciousness state categorised on the basis of the Coma Recovery Scale (CRS). METHODS The study included 142 patients, all of whom underwent long (18h) EEG-polygraphic recordings including one night. The EEG was scored using the Synek scale and sleep patterns using an arbitrary scale. Absolute total power and relative EEG power were evaluated in different frequency bands. Multimodal evoked potentials (EPs), including auditory event-related potentials, were also evaluated and scored. RESULTS The most information came from the combined multimodal EPs and sleep EEG scores. A two-step cluster analysis based on the collected information allowed a satisfactory evaluation of DOC severity. Spectral EEG properties seemed to be significantly related to DOC classes and CRS scores, but did not seem to make any significant additional contribution to DOC classification. CONCLUSIONS Multiple electrophysiological evaluations based on EEG, sleep polygraphic recordings and multimodal EPs are helpful in assessing DOC severity and residual functioning in patients with chronic DOCs. SIGNIFICANCE Simple electrophysiological measures that can be easily applied at patients' bedsides can significantly contribute to the recognition of DOC severity in chronic patients surviving a severe brain injury.
Collapse
Affiliation(s)
- Davide Rossi Sebastiano
- Department of Neurophysiology-Epilepsy Center, C. Besta Foundation Neurological Institute, Milan, Italy
| | - F Panzica
- Department of Neurophysiology-Epilepsy Center, C. Besta Foundation Neurological Institute, Milan, Italy
| | - E Visani
- Department of Neurophysiology-Epilepsy Center, C. Besta Foundation Neurological Institute, Milan, Italy
| | - F Rotondi
- Department of Neurophysiology-Epilepsy Center, C. Besta Foundation Neurological Institute, Milan, Italy; Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova, Italy
| | - V Scaioli
- Department of Neurophysiology-Epilepsy Center, C. Besta Foundation Neurological Institute, Milan, Italy
| | - M Leonardi
- Unit of Neurology, Public Health, Disability Unit, C. Besta Foundation Neurological Institute, Milan, Italy
| | - D Sattin
- Unit of Neurology, Public Health, Disability Unit, C. Besta Foundation Neurological Institute, Milan, Italy
| | - L D'Incerti
- Department of Neuroradiology, C. Besta Foundation Neurological Institute, Milan, Italy
| | - E Parati
- Department of Cerebrovascular Diseases, C. Besta Foundation Neurological Institute, Milan, Italy
| | | | - S Franceschetti
- Department of Neurophysiology-Epilepsy Center, C. Besta Foundation Neurological Institute, Milan, Italy.
| |
Collapse
|
34
|
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. Do we need a theory-based assessment of consciousness in the field of disorders of consciousness? Front Hum Neurosci 2014; 8:402. [PMID: 24926250 PMCID: PMC4044496 DOI: 10.3389/fnhum.2014.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/19/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Andrew A. Fingelkurts
- Research Department, BM-Science – Brain and Mind Technologies Research CentreEspoo, Finland
| | - Sergio Bagnato
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto “San Raffaele-G. Giglio,”Cefalù, Italy
- Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto “San Raffaele-G. Giglio,”Cefalù, Italy
| | - Cristina Boccagni
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto “San Raffaele-G. Giglio,”Cefalù, Italy
- Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto “San Raffaele-G. Giglio,”Cefalù, Italy
| | - Giuseppe Galardi
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto “San Raffaele-G. Giglio,”Cefalù, Italy
- Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto “San Raffaele-G. Giglio,”Cefalù, Italy
| |
Collapse
|
35
|
Patuzzo S, Manganotti P. Deep brain stimulation in persistent vegetative States: ethical issues governing decision making. Behav Neurol 2014; 2014:641213. [PMID: 24803730 PMCID: PMC4006619 DOI: 10.1155/2014/641213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022] Open
Abstract
The aim of the present paper was to investigate the fundamental ethical issues of Deep Brain Stimulation (DBS) on patients remaining in Persistent Vegetative State (PVS). First, the purpose of this analysis was to discuss the nature of this intervention in order to classify it such as an ordinary clinical practice, or otherwise as an extraordinary clinical practice or as experimental research. Second, ethical issues, criticisms, and methodological issues of this intervention, also in the future perspectives, are discussed, attempting to identify who could give informed consent for a patient in PVS.
Collapse
Affiliation(s)
- Sara Patuzzo
- Department of Public Health and Community Medicine, Unit of Forensic Medicine, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Paolo Manganotti
- Department of Neurologic and Movement Sciences, Unit of Neurology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| |
Collapse
|
36
|
Hayashi K, Mukai N, Sawa T. Simultaneous bicoherence analysis of occipital and frontal electroencephalograms in awake and anesthetized subjects. Clin Neurophysiol 2014; 125:194-201. [DOI: 10.1016/j.clinph.2013.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 06/19/2013] [Accepted: 06/22/2013] [Indexed: 11/15/2022]
|
37
|
Risetti M, Formisano R, Toppi J, Quitadamo LR, Bianchi L, Astolfi L, Cincotti F, Mattia D. On ERPs detection in disorders of consciousness rehabilitation. Front Hum Neurosci 2013; 7:775. [PMID: 24312041 PMCID: PMC3834290 DOI: 10.3389/fnhum.2013.00775] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022] Open
Abstract
Disorders of Consciousness (DOC) like Vegetative State (VS), and Minimally Conscious State (MCS) are clinical conditions characterized by the absence or intermittent behavioral responsiveness. A neurophysiological monitoring of parameters like Event-Related Potentials (ERPs) could be a first step to follow-up the clinical evolution of these patients during their rehabilitation phase. Eleven patients diagnosed as VS (n = 8) and MCS (n = 3) by means of the JFK Coma Recovery Scale Revised (CRS-R) underwent scalp EEG recordings during the delivery of a 3-stimuli auditory oddball paradigm, which included standard, deviant tones and the subject own name (SON) presented as a novel stimulus, administered under passive and active conditions. Four patients who showed a change in their clinical status as detected by means of the CRS-R (i.e., moved from VS to MCS), were subjected to a second EEG recording session. All patients, but one (anoxic etiology), showed ERP components such as mismatch negativity (MMN) and novelty P300 (nP3) under passive condition. When patients were asked to count the novel stimuli (active condition), the nP3 component displayed a significant increase in amplitude (p = 0.009) and a wider topographical distribution with respect to the passive listening, only in MCS. In 2 out of the 4 patients who underwent a second recording session consistently with their transition from VS to MCS, the nP3 component elicited by passive listening of SON stimuli revealed a significant amplitude increment (p < 0.05). Most relevant, the amplitude of the nP3 component in the active condition, acquired in each patient and in all recording sessions, displayed a significant positive correlation with the total scores (p = 0.004) and with the auditory sub-scores (p < 0.00001) of the CRS-R administered before each EEG recording. As such, the present findings corroborate the value of ERPs monitoring in DOC patients to investigate residual unconscious and conscious cognitive function.
Collapse
Affiliation(s)
- Monica Risetti
- Neuroelectrical Imaging and BCI Laboratory, Fondazione Santa Lucia Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Brain Excitability in Severely Brain-Injured Patients in Minimally Conscious or Vegetative State. Brain Stimul 2013; 6:913-21. [DOI: 10.1016/j.brs.2013.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/30/2013] [Accepted: 06/30/2013] [Indexed: 11/18/2022] Open
|
39
|
Abstract
The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.
Collapse
|
40
|
|
41
|
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. Dissociation of vegetative and minimally conscious patients based on brain operational architectonics: factor of etiology. Clin EEG Neurosci 2013; 44:209-20. [PMID: 23666956 DOI: 10.1177/1550059412474929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Discrimination between patients in vegetative (VS) and minimally conscious state (MCS) is currently based upon the behavioral gold standard. Behavioral assessment remains equivocal and difficult to interpret as evidence for the presence or absence of consciousness, resulting in possible clinical misdiagnosis in such patients. Application of an operational architectonics (OA) strategy to electroencephalogram (EEG) analysis reveals that absence of consciousness in patients in VS is paralleled by significant impairment in overall EEG operational architecture compared to patients in MCS: neuronal assemblies become smaller, their life span shortened, and they became highly unstable and functionally disconnected (desynchronized). However, in a previous study, patients with different brain damage etiologies were intermixed. Therefore, the goal of the present study was to investigate whether the application of OA methodology to EEG could reliably dissociate patients in VS and MCS independent of brain damage etiology. We conclude that the observed EEG OA structure impairment in patients in VS and partial preservation in patients in MCS is a marker of consciousness/unconsciousness rather than physiological damage. Results of this study may have neuroscientific, clinical, and ethical implications.
Collapse
|
42
|
Ragazzoni A, Pirulli C, Veniero D, Feurra M, Cincotta M, Giovannelli F, Chiaramonti R, Lino M, Rossi S, Miniussi C. Vegetative versus minimally conscious states: a study using TMS-EEG, sensory and event-related potentials. PLoS One 2013; 8:e57069. [PMID: 23460826 PMCID: PMC3584112 DOI: 10.1371/journal.pone.0057069] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
Differential diagnoses between vegetative and minimally conscious states (VS and MCS, respectively) are frequently incorrect. Hence, further research is necessary to improve the diagnostic accuracy at the bedside. The main neuropathological feature of VS is the diffuse damage of cortical and subcortical connections. Starting with this premise, we used electroencephalography (EEG) recordings to evaluate the cortical reactivity and effective connectivity during transcranial magnetic stimulation (TMS) in chronic VS or MCS patients. Moreover, the TMS-EEG data were compared with the results from standard somatosensory-evoked potentials (SEPs) and event-related potentials (ERPs). Thirteen patients with chronic consciousness disorders were examined at their bedsides. A group of healthy volunteers served as the control group. The amplitudes (reactivity) and scalp distributions (connectivity) of the cortical potentials evoked by TMS (TEPs) of the primary motor cortex were measured. Short-latency median nerve SEPs and auditory ERPs were also recorded. Reproducible TEPs were present in all control subjects in both the ipsilateral and the contralateral hemispheres relative to the site of the TMS. The amplitudes of the ipsilateral and contralateral TEPs were reduced in four of the five MCS patients, and the TEPs were bilaterally absent in one MCS patient. Among the VS patients, five did not manifest ipsilateral or contralateral TEPs, and three of the patients exhibited only ipsilateral TEPs with reduced amplitudes. The SEPs were altered in five VS and two MCS patients but did not correlate with the clinical diagnosis. The ERPs were impaired in all patients and did not correlate with the clinical diagnosis. These TEP results suggest that cortical reactivity and connectivity are severely impaired in all VS patients, whereas in most MCS patients, the TEPs are preserved but with abnormal features. Therefore, TEPs may add valuable information to the current clinical and neurophysiological assessment of chronic consciousness disorders.
Collapse
Affiliation(s)
- Aldo Ragazzoni
- Neurology Unit, Azienda Sanitaria di Firenze, San Giovanni di Dio Hospital, Florence, Italy
- * E-mail: (AR); (CM)
| | - Cornelia Pirulli
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Domenica Veniero
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Matteo Feurra
- Neurology and Clinical Neurophysiology Section, Department of Neurological and Neurosensorial Sciences, Azienda Ospedaliera-Universitaria, Siena, Italy
| | - Massimo Cincotta
- Neurology Unit, Azienda Sanitaria di Firenze, San Giovanni di Dio Hospital, Florence, Italy
| | - Fabio Giovannelli
- Neurology Unit, Azienda Sanitaria di Firenze, San Giovanni di Dio Hospital, Florence, Italy
| | - Roberta Chiaramonti
- Neurology Unit, Azienda Sanitaria di Firenze, San Giovanni di Dio Hospital, Florence, Italy
| | - Mario Lino
- Rehabilitation Centre Villa alle Terme, Florence, Italy
| | - Simone Rossi
- Neurology and Clinical Neurophysiology Section, Department of Neurological and Neurosensorial Sciences, Azienda Ospedaliera-Universitaria, Siena, Italy
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Clinical and Experimental Sciences, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- * E-mail: (AR); (CM)
| |
Collapse
|
43
|
Affiliation(s)
- Adrian M. Owen
- The Brain and Mind Institute, Department of Psychology, The University of Western Ontario, London, Ontario N6A 5B7, Canada;
| |
Collapse
|
44
|
Gantner IS, Bodart O, Laureys S, Demertzi A. Our rapidly changing understanding of acute and chronic disorders of consciousness: challenges for neurologists. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.12.77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A number of recent studies suggest that some ‘vegetative state’ patients have been misdiagnosed, judging by their ability to follow commands and in some cases even communicate through brain activity. Such studies highlight the difficulty in forming a diagnosis based only on behavioral assessments. We think that neuroimaging and electrophysiology methods will be used more frequently in clinical settings, integrated with existing behavioral assessments. Such efforts are expected to lead to a more accurate understanding of individual patients’ cognitive abilities or even provide prognostic indicators. In terms of treatment planning (i.e., pain management and end-of-life decision-making), patients with disorders of consciousness are now offered the possibility of expressing their preferences by means of brain–computer interfaces. What remains to be clarified is the degree to which such indirect responses can be considered reliable and of legal representation.
Collapse
Affiliation(s)
- Ithabi S Gantner
- Coma Science Group, Cyclotron Research Center & CHU Neurology Department, University of Liège, Allée du 6 Août no 8, Sart Tilman B30, 4000 Liège, Belgium
| | - Olivier Bodart
- Coma Science Group, Cyclotron Research Center & CHU Neurology Department, University of Liège, Allée du 6 Août no 8, Sart Tilman B30, 4000 Liège, Belgium
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Center & CHU Neurology Department, University of Liège, Allée du 6 Août no 8, Sart Tilman B30, 4000 Liège, Belgium
| | - Athena Demertzi
- Coma Science Group, Cyclotron Research Center & CHU Neurology Department, University of Liège, Allée du 6 Août no 8, Sart Tilman B30, 4000 Liège, Belgium
| |
Collapse
|
45
|
Mindsight: diagnostics in disorders of consciousness. Crit Care Res Pract 2012; 2012:624724. [PMID: 23213492 PMCID: PMC3505640 DOI: 10.1155/2012/624724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/30/2012] [Accepted: 07/08/2012] [Indexed: 12/20/2022] Open
Abstract
Diagnosis of patients with disorders of consciousness (comprising coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state) has long been dependent on unstandardized behavioral tests. The arrival of standardized behavioral tools, and especially the Coma Recovery Scale revised, uncovered a high rate of misdiagnosis. Ancillary techniques, such as brain imaging and electrophysiological examinations, are ever more often being deployed to aid in the search for remaining consciousness. They are used to look for brain activity patterns similar to those found in healthy controls. The development of portable and cheaper devices will make these techniques more widely available.
Collapse
|
46
|
Laureys S, Schiff ND. Coma and consciousness: Paradigms (re)framed by neuroimaging. Neuroimage 2012; 61:478-91. [PMID: 22227888 DOI: 10.1016/j.neuroimage.2011.12.041] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/15/2011] [Indexed: 01/18/2023] Open
Affiliation(s)
- Steven Laureys
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, 4000 Liège, Belgium.
| | | |
Collapse
|
47
|
Reply to “EEG in Anoxic Coma”. J Clin Neurophysiol 2012. [DOI: 10.1097/wnp.0b013e31824d94ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
48
|
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states. Conscious Cogn 2012; 21:149-69. [DOI: 10.1016/j.concog.2011.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 09/30/2011] [Accepted: 10/07/2011] [Indexed: 01/18/2023]
|
49
|
Usefulness of standard EEG in predicting the outcome of patients with disorders of consciousness after anoxic coma. J Clin Neurophysiol 2012; 28:489-92. [PMID: 21946372 DOI: 10.1097/wnp.0b013e318231c8c8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although standard EEG is performed routinely in patients with disorders of consciousness after coma, its prognostic value is still debated. The aim of the present study was to evaluate the role of standard EEG in predicting the recovery of cognitive functioning in patients affected by severe disturbances of consciousness after coma caused by cerebral anoxia. A standard EEG was recorded at admission to our Rehabilitation Department in 15 patients experiencing impaired consciousness because of cerebral anoxia. We quantified EEG abnormalities using the Synek scale (1988). Cognitive functioning was measured with the levels of cognitive functioning scale at the time of admission and after 3 months of recovery. EEG scores were significantly correlated with both levels of cognitive functioning scores at admission (P = 0.004) and change in levels of cognitive functioning score after 3 months (P < 0.001). The first correlation confirms the relationship between EEG and cognitive functioning, while the second correlation indicates the prognostic value of EEG in cognitive outcome. In conclusion, standard EEG is a simple and readily available tool with significant prognostic value in patients with disorders of consciousness after coma caused by cerebral anoxia.
Collapse
|
50
|
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. Life or death: prognostic value of a resting EEG with regards to survival in patients in vegetative and minimally conscious States. PLoS One 2011; 6:e25967. [PMID: 21998732 PMCID: PMC3187816 DOI: 10.1371/journal.pone.0025967] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/14/2011] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate the potentially prognostic value of a resting state electroencephalogram (EEG) with regards to the clinical outcome from vegetative and minimally conscious states (VS and MCS) in terms of survival six months after a brain injury. METHODS We quantified a dynamic repertoire of EEG oscillations in resting condition with eyes closed in patients in VS and MCS. The exact composition of EEG oscillations was assessed by analysing the probability-classification of short-term EEG spectral patterns. RESULTS Results demonstrated that (a) the diversity and the variability of EEG for Non-Survivors were significantly lower than for Survivors; and (b) a higher probability of mostly delta and slow-theta oscillations occurring either alone or in combination were found during the first assessment for patients with a bad outcome (i.e., those who died) within six months of an injury compared to patients who survived. At the same time, patients with a good outcome (i.e., those who survived) after six months post-injury had a higher probability of mostly fast-theta and alpha oscillations occurring either alone or in combination during the first assessment when compared to patients who died within six months of an injury. CONCLUSIONS Resting state EEGs properly analysed may have a potentially prognostic value with regards to the outcome from VS or MCS in terms of survival six months after a brain injury. SIGNIFICANCE This work may have implications for clinical care, rehabilitative programmes and medical-legal decisions for patients with impaired consciousness states after being in a coma due to acute brain injuries.
Collapse
|