1
|
Lenizky MW, Meehan SK. The effects of verbal and spatial working memory on short- and long-latency sensorimotor circuits in the motor cortex. PLoS One 2024; 19:e0302989. [PMID: 38753604 PMCID: PMC11098330 DOI: 10.1371/journal.pone.0302989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Multiple sensorimotor loops converge in the motor cortex to create an adaptable system capable of context-specific sensorimotor control. Afferent inhibition provides a non-invasive tool to investigate the substrates by which procedural and cognitive control processes interact to shape motor corticospinal projections. Varying the transcranial magnetic stimulation properties during afferent inhibition can probe specific sensorimotor circuits that contribute to short- and long-latency periods of inhibition in response to the peripheral stimulation. The current study used short- (SAI) and long-latency (LAI) afferent inhibition to probe the influence of verbal and spatial working memory load on the specific sensorimotor circuits recruited by posterior-anterior (PA) and anterior-posterior (AP) TMS-induced current. Participants completed two sessions where SAI and LAI were assessed during the short-term maintenance of two- or six-item sets of letters (verbal) or stimulus locations (spatial). The only difference between the sessions was the direction of the induced current. PA SAI decreased as the verbal working memory load increased. In contrast, AP SAI was not modulated by verbal working memory load. Visuospatial working memory load did not affect PA or AP SAI. Neither PA LAI nor AP LAI were sensitive to verbal or spatial working memory load. The dissociation of short-latency PA and AP sensorimotor circuits and short- and long-latency PA sensorimotor circuits with increasing verbal working memory load support multiple convergent sensorimotor loops that provide distinct functional information to facilitate context-specific supraspinal control.
Collapse
Affiliation(s)
- Markus W. Lenizky
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Sean K. Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Foglia SD, Adams FC, Ramdeo KR, Drapeau CC, Turco CV, Tarnopolsky M, Ma J, Nelson AJ. Investigating the effects of dopamine on short- and long-latency afferent inhibition. J Physiol 2024; 602:2253-2264. [PMID: 38638084 DOI: 10.1113/jp286126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.
Collapse
Affiliation(s)
- Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Faith C Adams
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Karishma R Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chloe C Drapeau
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Claudia V Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jinhui Ma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Bao S, Wang Y, Escalante YR, Li Y, Lei Y. Modulation of Motor Cortical Inhibition and Facilitation by Touch Sensation from the Glabrous Skin of the Human Hand. eNeuro 2024; 11:ENEURO.0410-23.2024. [PMID: 38443196 PMCID: PMC10915462 DOI: 10.1523/eneuro.0410-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Touch sensation from the glabrous skin of the hand is essential for precisely controlling dexterous movements, yet the neural mechanisms by which tactile inputs influence motor circuits remain largely unexplored. By pairing air-puff tactile stimulation on the hand's glabrous skin with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1), we examined the effects of tactile stimuli from single or multiple fingers on corticospinal excitability and M1's intracortical circuits. Our results showed that when we targeted the hand's first dorsal interosseous (FDI) muscle with TMS, homotopic (index finger) tactile stimulation, regardless of its point (fingertip or base), reduced corticospinal excitability. Conversely, heterotopic (ring finger) tactile stimulation had no such effect. Notably, stimulating all five fingers simultaneously led to a more pronounced decrease in corticospinal excitability than stimulating individual fingers. Furthermore, tactile stimulation significantly increased intracortical facilitation (ICF) and decreased long-interval intracortical inhibition (LICI) but did not affect short-interval intracortical inhibition (SICI). Considering the significant role of the primary somatosensory cortex (S1) in tactile processing, we also examined the effects of downregulating S1 excitability via continuous theta burst stimulation (cTBS) on tactile-motor interactions. Following cTBS, the inhibitory influence of tactile inputs on corticospinal excitability was diminished. Our findings highlight the spatial specificity of tactile inputs in influencing corticospinal excitability. Moreover, we suggest that tactile inputs distinctly modulate M1's excitatory and inhibitory pathways, with S1 being crucial in facilitating tactile-motor integration.
Collapse
Affiliation(s)
- Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas 77843
| | - Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas 77843
| | - Yori R Escalante
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas 77843
| | - Yue Li
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, College Station, Texas 77843
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
4
|
Ebrahimi S, Ostry DJ. The human somatosensory cortex contributes to the encoding of newly learned movements. Proc Natl Acad Sci U S A 2024; 121:e2316294121. [PMID: 38285945 PMCID: PMC10861869 DOI: 10.1073/pnas.2316294121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Recent studies have indicated somatosensory cortex involvement in motor learning and retention. However, the nature of its contribution is unknown. One possibility is that the somatosensory cortex is transiently engaged during movement. Alternatively, there may be durable learning-related changes which would indicate sensory participation in the encoding of learned movements. These possibilities are dissociated by disrupting the somatosensory cortex following learning, thus targeting learning-related changes which may have occurred. If changes to the somatosensory cortex contribute to retention, which, in effect, means aspects of newly learned movements are encoded there, disruption of this area once learning is complete should lead to an impairment. Participants were trained to make movements while receiving rotated visual feedback. The primary motor cortex (M1) and the primary somatosensory cortex (S1) were targeted for continuous theta-burst stimulation, while stimulation over the occipital cortex served as a control. Retention was assessed using active movement reproduction, or recognition testing, which involved passive movements produced by a robot. Disruption of the somatosensory cortex resulted in impaired motor memory in both tests. Suppression of the motor cortex had no impact on retention as indicated by comparable retention levels in control and motor cortex conditions. The effects were learning specific. When stimulation was applied to S1 following training with unrotated feedback, movement direction, the main dependent variable, was unaltered. Thus, the somatosensory cortex is part of a circuit that contributes to retention, consistent with the idea that aspects of newly learned movements, possibly learning-updated sensory states (new sensory targets) which serve to guide movement, may be encoded there.
Collapse
Affiliation(s)
- Shahryar Ebrahimi
- Department of Psychology, McGill University, Montreal, QC H3A1G1, Canada
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, QC H3A1G1, Canada
- Yale Child Study Center, Yale School of Medicine, New Haven, CT 06519
| |
Collapse
|
5
|
Wang Y, Huynh AT, Bao S, Buchanan JJ, Wright DL, Lei Y. Memory consolidation of sequence learning and dynamic adaptation during wakefulness. Cereb Cortex 2024; 34:bhad507. [PMID: 38185987 PMCID: PMC12083497 DOI: 10.1093/cercor/bhad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Collapse
Affiliation(s)
- Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Angelina T. Huynh
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - John J. Buchanan
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - David L. Wright
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
6
|
Altermatt M, Thomas FA, Wenderoth N. Movement predictability modulates sensorimotor processing. Front Hum Neurosci 2023; 17:1237407. [PMID: 38053650 PMCID: PMC10694232 DOI: 10.3389/fnhum.2023.1237407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction An important factor for optimal sensorimotor control is how well we are able to predict sensory feedback from internal and external sources during movement. If predictability decreases due to external disturbances, the brain is able to adjust muscle activation and the filtering of incoming sensory inputs. However, little is known about sensorimotor adjustments when predictability is increased by availability of additional internal feedback. In the present study we investigated how modifications of internal and external sensory feedback influence the control of muscle activation and gating of sensory input. Methods Co-activation of forearm muscles, somatosensory evoked potentials (SEP) and short afferent inhibition (SAI) were assessed during three object manipulation tasks designed to differ in the predictability of sensory feedback. These included manipulation of a shared object with both hands (predictable coupling), manipulation of two independent objects without (uncoupled) and with external interference on one of the objects (unpredictable coupling). Results We found a task-specific reduction in co-activation during the predictable coupling compared to the other tasks. Less sensory gating, reflected in larger subcortical SEP amplitudes, was observed in the unpredictable coupling task. SAI behavior was closely linked to the subcortical SEP component indicating an important function of subcortical sites in predictability related SEP gating and their direct influence on M1 inhibition. Discussion Together, these findings suggest that the unpredictable coupling task cannot only rely on predictive forward control and is compensated by enhancing co-activation and increasing the saliency for external stimuli by reducing sensory gating at subcortical level. This behavior might serve as a preparatory step to compensate for external disturbances and to enhance processing and integration of all incoming external stimuli to update the current sensorimotor state. In contrast, predictive forward control is accurate in the predictable coupling task due to the integrated sensory feedback from both hands where sensorimotor resources are economized by reducing muscular co-activation and increasing sensory gating.
Collapse
|
7
|
Harrington RM, Krishnamurthy LC, Ossowski A, Jeter M, Davis A, Bledniak E, Ware AL, Morris R, Arrington CN. Preliminary evidence of prolonged timing effects of theta-burst stimulation in the reading system. Front Hum Neurosci 2023; 17:1227194. [PMID: 37706172 PMCID: PMC10496289 DOI: 10.3389/fnhum.2023.1227194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Theta-burst stimulation (TBS) is a repetitive transcranial magnetic stimulation technique that can be used to upregulate or downregulate different brain regions. However, the timing of its effects and the differing effects of continuous TBS (cTBS) versus intermittent TBS (iTBS) in the reading system have not been explored. This study assessed how stimulation type and post-stimulation timing affected change in performance during a phonological discrimination and sight word recognition task after stimulation of supramarginal gyrus (SMG). Fourteen right-handed young adults (age 18-27 years; 44% male) were block-randomized to receive either iTBS or cTBS to the supramarginal gyrus. Participants then performed a pseudoword discrimination task and an orthographic awareness task (behavioral control) at four different time points and change in reaction time compared to baseline was measured from each time point. There was no effect of stimulation type on change in reaction time [t(16) = -0.2, p = 0.9], suggesting that both types of TBS caused similar effects. Percent change in reaction time decreased over time in the pseudoword task [t(50) = -5.9, p < 0.001], indicating faster pseudoword processing speed with better performance 60-70 min after stimulation. In contrast, no change was demonstrated over time for the behavioral control task [t(43) = -0.6, p = 0.6], suggesting that the change over time seen in the test condition was not a learning effect. These findings provide insight into the effects of TBS on the reading system and can guide future study designs.
Collapse
Affiliation(s)
- Rachael M. Harrington
- Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA, United States
- Department of Communication Sciences and Disorders, Georgia State University, Atlanta, GA, United States
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
| | - Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Alexandra Ossowski
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Mykayla Jeter
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
| | - Adriane Davis
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
| | - Ewelina Bledniak
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Ashley L. Ware
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Robin Morris
- Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA, United States
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - C. Nikki Arrington
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
8
|
Gundogdu Celebi L, Sirin NG, Elmali AD, Baykan B, Oge AE, Bebek N. Continuous theta-burst stimulation in patients with drug-resistant epilepsy: A single-blind placebo-controlled cross-over pilot study. Neurophysiol Clin 2023; 53:102896. [PMID: 37657363 DOI: 10.1016/j.neucli.2023.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES To evaluate the effect of continuous theta-burst stimulation (cTBS) in patients with drug-resistant epilepsy (DRE). METHODS Twelve patients with DRE (five with idiopathic generalized and seven with focal epilepsy) were included in this cross-over design study and randomized to either first sham or first active stimulation, each applied for 5 consecutive days. A round coil over the vertex was used in generalized epilepsy or a figure-of-8 coil over the "epileptogenic area" in focal epilepsy. Sham stimulation was given by placing the coil 90° perpendicular to the head. The number of seizures, electroencephalography findings, Quality of Life in Epilepsy Inventory (QOLIE-84), and Symptom Check List (SCL-90) scores evaluated during the 8-12 weeks before and after active and sham stimulations were compared statistically. RESULTS Eight patients could complete both active and sham stimulation periods of 5 days and two patients completed active stimulation sessions, without any significant adverse effects. The number of seizures significantly reduced after active cTBS, but not after sham stimulation, when compared with those recorded before the stimulation period. QOLIE scores were increased, but interictal epileptiform discharges and SCL-90 scores showed no difference after cTBS. Active stimulation was stopped in one patient after he experienced an aggravation of myoclonic seizures. CONCLUSIONS cTBS seemed to be relatively safe and gave promising results in reducing the frequency of seizures in patients with both generalized and focal DRE. This time-saving technique may ease the introduction of repetitive transcranial magnetic stimulation into the routine practice of busy epilepsy clinics.
Collapse
Affiliation(s)
- Lale Gundogdu Celebi
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nermin Gorkem Sirin
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Ayse Deniz Elmali
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Betul Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ali Emre Oge
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
9
|
Tactile sensorimotor training does not alter short- and long-latency afferent inhibition. Neuroreport 2023; 34:123-127. [PMID: 36719836 DOI: 10.1097/wnr.0000000000001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sensorimotor integration refers to the process of combining incoming sensory information with outgoing motor commands to control movement. Short-latency afferent inhibition (SAI), and long-latency afferent inhibition (LAI) are neurophysiological measures of sensorimotor integration collected using transcranial magnetic stimulation. No studies to date have investigated the influence of tactile discrimination training on these measures. This study aimed to determine whether SAI and LAI are modulated following training on a custom-designed tactile discrimination maze task. Participants performed a 'high difficulty' and 'low difficulty' maze training condition on separate visits. On an additional visit, no maze training was performed to serve as a control condition. Despite evidence of performance improvements during training, there were no significant changes in SAI or LAI following training in either condition. The total number of errors during maze training was significantly greater in the high-difficulty condition compared with the low-difficulty condition. These findings suggest that sensorimotor maze training for 30 min is insufficient to modify the magnitude of SAI and LAI.
Collapse
|
10
|
Motolese F, Rossi M, Capone F, Cruciani A, Musumeci G, Manzo M, Pilato F, Di Pino G, Di Lazzaro V. High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain. Clin Neurophysiol 2022; 144:135-141. [PMID: 36210268 DOI: 10.1016/j.clinph.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. METHODS The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. RESULTS Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. CONCLUSIONS Coupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response. SIGNIFICANCE Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
Collapse
Affiliation(s)
- Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Mariagrazia Rossi
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Cruciani
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gabriella Musumeci
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco Manzo
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
11
|
Bonnesen MT, Fuglsang SA, Siebner HR, Christiansen L. The recent history of afferent stimulation modulates corticospinal excitability. Neuroimage 2022; 258:119365. [PMID: 35690256 DOI: 10.1016/j.neuroimage.2022.119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/01/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is widely used to probe corticospinal excitability and fast sensorimotor integration in the primary motor hand area (M1-HAND). A conditioning electrical stimulus, applied to the contralateral hand, can suppress the motor evoked potential (MEP) elicited by TMS of M1-HAND when the afferent stimulus arrives in M1-HAND at the time of TMS. The magnitude of this short-latency afferent inhibition (SAI) is expressed as the ratio between the conditioned and unconditioned MEP amplitude. OBJECTIVE/HYPOTHESIS We hypothesized that corticospinal excitability and SAI are influenced by the recent history of peripheral electrical stimulation. METHODS In twenty healthy participants, we recorded MEPs from the right first dorsal interosseus muscle. MEPs were evoked by single-pulse TMS of the left M1-HAND alone (unconditioned TMS) or by TMS preceded by electrical stimulation of the right index finger ("homotopic" conditioning) or little finger ("heterotopic" conditioning). The three conditions were either pseudo-randomly intermixed or delivered in blocks in which a single condition was repeated five or ten times. MEP amplitudes and SAI magnitudes were compared using linear mixed-effect models and one-way ANOVAs. RESULTS All stimulation protocols consistently produced SAI, which was stronger after homotopic stimulation. Randomly intermingling the three stimulation conditions reduced the relative magnitude of homotopic and heterotopic SAI as opposed to blocked stimulation. The apparent attenuation of SAI was caused by a suppression of the unconditioned but not the conditioned MEP amplitude during the randomly intermixed pattern. CONCLUSION(S) The recent history of afferent stimulation modulates corticospinal excitability. This "history effect" impacts on the relative magnitude of SAI depending on how conditioned and unconditioned responses are intermixed and needs to be taken into consideration when probing afferent inhibition and corticospinal excitability.
Collapse
Affiliation(s)
- Marie Trolle Bonnesen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Søren Asp Fuglsang
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.
| |
Collapse
|
12
|
The distribution and reliability of TMS-evoked short- and long-latency afferent interactions. PLoS One 2021; 16:e0260663. [PMID: 34905543 PMCID: PMC8670708 DOI: 10.1371/journal.pone.0260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022] Open
Abstract
Short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) occur when the motor evoked potential (MEP) elicited by transcranial magnetic stimulation (TMS) is reduced by the delivery of a preceding peripheral nerve stimulus. The intra-individual variability in SAI and LAI is considerable, and the influence of sample demographics (e.g., age and biological sex) and testing context (e.g., time of day) is not clear. There are also no established normative values for these measures, and their reliability varies from study-to-study. To address these issues and facilitate the interpretation of SAI and LAI research, we pooled data from studies published by our lab between 2014 and 2020 and performed several retrospective analyses. Patterns in the depth of inhibition with respect to age, biological sex and time of testing were investigated, and the relative reliability of measurements from studies with repeated baseline SAI and LAI assessments was examined. Normative SAI and LAI values with respect to the mean and standard deviation were also calculated. Our data show no relationship between the depth of inhibition for SAI and LAI with either time of day or age. Further, there was no significant difference in SAI or LAI between males and females. Intra-class correlation coefficients (ICC) for repeated measurements of SAI and LAI ranged from moderate (ICC = 0.526) to strong (ICC = 0.881). The mean value of SAI was 0.71 ± 0.27 and the mean value of LAI was 0.61 ± 0.34. This retrospective study provides normative values, reliability estimates, and an exploration of demographic and testing influences on these measures as assessed in our lab. To further facilitate the interpretation of SAI and LAI data, similar studies should be performed by other labs that use these measures.
Collapse
|
13
|
Facilitation of Motor Evoked Potentials in Response to a Modified 30 Hz Intermittent Theta-Burst Stimulation Protocol in Healthy Adults. Brain Sci 2021; 11:brainsci11121640. [PMID: 34942942 PMCID: PMC8699605 DOI: 10.3390/brainsci11121640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
Theta-burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) developed to induce neuroplasticity. TBS usually consists of 50 Hz bursts at 5 Hz intervals. It can facilitate motor evoked potentials (MEPs) when applied intermittently, although this effect can vary between individuals. Here, we sought to determine whether a modified version of intermittent TBS (iTBS) consisting of 30 Hz bursts repeated at 6 Hz intervals would lead to lasting MEP facilitation. We also investigated whether recruitment of early and late indirect waves (I-waves) would predict individual responses to 30 Hz iTBS. Participants (n = 19) underwent single-pulse TMS to assess MEP amplitude at baseline and variations in MEP latency in response to anterior-posterior, posterior-anterior, and latero-medial stimulation. Then, 30 Hz iTBS was administered, and MEP amplitude was reassessed at 5-, 20- and 45-min. Post iTBS, most participants (13/19) exhibited MEP facilitation, with significant effects detected at 20- and 45-min. Contrary to previous evidence, recruitment of early I-waves predicted facilitation to 30 Hz iTBS. These observations suggest that 30 Hz/6 Hz iTBS is effective in inducing lasting facilitation in corticospinal excitability and may offer an alternative to the standard 50 Hz/5 Hz protocol.
Collapse
|
14
|
Davis M, Wang Y, Bao S, Buchanan JJ, Wright DL, Lei Y. The Interactions Between Primary Somatosensory and Motor Cortex during Human Grasping Behaviors. Neuroscience 2021; 485:1-11. [PMID: 34848261 DOI: 10.1016/j.neuroscience.2021.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Afferent inputs to the primary somatosensory cortex (S1) are differentially processed during precision and power grip in humans. However, it remains unclear how S1 interacts with the primary motor cortex (M1) during these two grasping behaviors. To address this question, we measured short-latency afferent inhibition (SAI), reflecting S1-M1 interactions via thalamo-cortical pathways, using paired-pulse transcranial magnetic stimulation (TMS) during precision and power grip. The TMS coil over the hand representation of M1 was oriented in the posterior-anterior (PA) and anterior-posterior (AP) direction to activate distinct sets of corticospinal neurons. We found that SAI increased during precision compared with power grip when AP, but not PA, currents were applied. Notably, SAI tested in the AP direction were similar during two-digit than five-digit precision grip. The M1 receives movement information from S1 through direct cortico-cortical pathways, so intra-hemispheric S1-M1 interactions using dual-site TMS were also evaluated. Stimulation of S1 attenuated M1 excitability (S1-M1 inhibition) during precision and power grip, while the S1-M1 inhibition ratio remained similar across tasks. Taken together,our findings suggest that distinct neural mechanisms for S1-M1 interactions mediate precision and power grip, presumably by modulating neural activity along thalamo-cortical pathways.
Collapse
Affiliation(s)
- Madison Davis
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Yiyu Wang
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
15
|
Hirano M, Kimoto Y, Furuya S. Specialized Somatosensory-Motor Integration Functions in Musicians. Cereb Cortex 2021; 30:1148-1158. [PMID: 31342056 DOI: 10.1093/cercor/bhz154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Somatosensory signals play roles in the fine control of dexterous movements through a somatosensory-motor integration mechanism. While skilled individuals are typically characterized by fine-tuned somatosensory functions and dexterous motor skills, it remains unknown whether and in what manner their bridging mechanism, the tactile-motor and proprioceptive-motor integration functions, plastically changes through extensive sensorimotor experiences. Here, we addressed this issue by comparing physiological indices of these functions between pianists and nonmusicians. Both tactile and proprioceptive stimuli to the right index finger inhibited corticospinal excitability measured by a transcranial magnetic stimulation method. However, the tactile and proprioceptive stimuli exerted weaker and stronger inhibitory effects, respectively, on corticospinal excitability in pianists than in nonmusicians. The results of the electroencephalogram measurements revealed no significant group difference in the amplitude of cortical responses to the somatosensory stimuli around the motor and somatosensory cortices, suggesting that the group difference in the inhibitory effects reflects neuroplastic adaptation of the somatosensory-motor integration functions in pianists. Penalized regression analyses further revealed an association between these integration functions and motor performance in the pianists, suggesting that extensive piano practice reorganizes somatosensory-motor integration functions so as to enable fine control of dexterous finger movements during piano performances.
Collapse
Affiliation(s)
- Masato Hirano
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Yudai Kimoto
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
16
|
Alaydin HC, Ataoglu EE, Caglayan HZB, Tokgoz N, Nazliel B, Cengiz B. Short-latency afferent inhibition remains intact without cortical somatosensory input: Evidence from a patient with isolated thalamic infarct. Brain Stimul 2021; 14:804-806. [PMID: 34004354 DOI: 10.1016/j.brs.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- H C Alaydin
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - E E Ataoglu
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - H Z B Caglayan
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - N Tokgoz
- Department of Radiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - B Nazliel
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - B Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Mirdamadi JL, Block HJ. Somatosensory versus cerebellar contributions to proprioceptive changes associated with motor skill learning: A theta burst stimulation study. Cortex 2021; 140:98-109. [PMID: 33962318 DOI: 10.1016/j.cortex.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well established that proprioception (position sense) is important for motor control, yet its role in motor learning and associated plasticity is not well understood. We previously demonstrated that motor skill learning is associated with enhanced proprioception and changes in sensorimotor neurophysiology. However, the neural substrates mediating these effects are unclear. OBJECTIVE To determine whether suppressing activity in the cerebellum and somatosensory cortex (S1) affects proprioceptive changes associated with motor skill learning. METHODS 54 healthy young adults practiced a skill involving visually-guided 2D reaching movements through an irregular-shaped track using a robotic manipulandum with their right hand. Proprioception was measured using a passive two-alternative choice task before and after motor practice. Continuous theta burst stimulation (cTBS) was delivered over S1 or the cerebellum (CB) at the end of training for two consecutive days. We compared group differences (S1, CB, Sham) in proprioception and motor skill, quantified by a speed-accuracy function, measured on a third consecutive day (retention). RESULTS As shown previously, the Sham group demonstrated enhanced proprioceptive sensitivity after training and at retention. The S1 group had impaired proprioceptive function at retention through online changes during practice, whereas the CB group demonstrated offline decrements in proprioceptive function. All groups demonstrated motor skill learning. However, the magnitude of learning differed between the CB and Sham groups, consistent with a role for the cerebellum in motor learning. CONCLUSION Overall, these findings suggest that the cerebellum and S1 are important for distinct aspects of proprioceptive changes during skill learning.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| | - Hannah J Block
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
18
|
Kojima S, Otsuru N, Miyaguchi S, Yokota H, Nagasaka K, Saito K, Inukai Y, Shirozu H, Onishi H. The intervention of mechanical tactile stimulation modulates somatosensory evoked magnetic fields and cortical oscillations. Eur J Neurosci 2021; 53:3433-3446. [PMID: 33772899 DOI: 10.1111/ejn.15209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
The different cortical activity evoked by a mechanical tactile stimulus depends on tactile stimulus patterns, which demonstrates that simple stimuli (i.e., global synchronous stimulation the stimulus area) activate the primary somatosensory cortex alone, whereas complex stimuli (i.e., stimulation while moving in the stimulus area) activate not only the primary somatosensory cortex but also the primary motor area. Here, we investigated whether the effects of a repetitive mechanical tactile stimulation (MS) on somatosensory evoked magnetic fields (SEFs) and cortical oscillations depend on MS patterns. This single-blinded study included 15 healthy participants. Two types interventions of MS lasting 20 min were used: a repetitive global tactile stimulation (RGS) was used to stimulate the finger by using 24 pins installed on a finger pad, whereas a sequential stepwise displacement tactile stimulation (SSDS) was used to stimulate the finger by moving a row of six pins between the left and right sides on the finger pad. Each parameter was measured pre- and post-intervention. The P50m amplitude of the SEF was increased by RGS and decreased by SSDS. The modulation of P50m was correlated with its amplitude before RGS and with the modulation of beta band oscillation at the resting state after SSDS. This study showed that the effects of a 20-min MS on SEFs and cortical oscillations depend on mechanical tactile stimulus patterns. Moreover, our results offer potential for the modulation of tactile functions and selection of stimulation patterns according to cortical states.
Collapse
Affiliation(s)
- Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| |
Collapse
|
19
|
Pilurzi G, Ginatempo F, Mercante B, Cattaneo L, Pavesi G, Rothwell JC, Deriu F. Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex. J Physiol 2020; 598:839-851. [PMID: 31876950 DOI: 10.1113/jp278877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Previous studies investigating the effects of somatosensory afferent inputs on cortical excitability and neural plasticity often used transcranial magnetic stimulation (TMS) of hand motor cortex (M1) as a model, but in this model it is difficult to separate out the relative contribution of cutaneous and muscle afferent input to each effect. In the face, cutaneous and muscle afferents are segregated in the trigeminal and facial nerves, respectively. We studied their relative contribution to corticobulbar excitability and neural plasticity in the depressor anguli oris M1. Stimulation of trigeminal afferents induced short-latency (SAI) but not long-latency (LAI) afferent inhibition of face M1, while facial nerve stimulation evoked LAI but not SAI. Plasticity induction was observed only after a paired associative stimulation protocol using the facial nerve. Physiological differences in effects of cutaneous and muscle afferent inputs on face M1 excitability suggest they play separate functional roles in behaviour. ABSTRACT The lack of conventional muscle spindles in face muscles raises the question of how sensory input from the face is used to control muscle activation. In 16 healthy volunteers, we probed sensorimotor interactions in face motor cortex (fM1) using short-afferent inhibition (SAI), long-afferent inhibition (LAI) and LTP-like plasticity following paired associative stimulation (PAS) in the depressor anguli oris muscle (DAO). Stimulation of low threshold afferents in the trigeminal nerve produced a clear SAI (P < 0.05) when the interval between trigeminal stimulation and transcranial magnetic stimulation (TMS) of fM1 was 15-30 ms. However, there was no evidence for LAI at longer intervals of 100-200 ms, nor was there any effect of PAS. In contrast, facial nerve stimulation produced significant LAI (P < 0.05) as well as significant facilitation 10-30 minutes after PAS (P < 0.05). Given that the facial nerve is a pure motor nerve, we presume that the afferent fibres responsible were those activated by the evoked muscle twitch. The F-wave in DAO was unaffected during both LAI and SAI, consistent with their presumed cortical origin. We hypothesize that, in fM1, SAI is evoked by activity in low threshold, presumably cutaneous afferents, whereas LAI and PAS require activity in (higher threshold) afferents activated by the muscle twitch evoked by electrical stimulation of the facial nerve. Cutaneous inputs may exert a paucisynaptic inhibitory effect on fM1, while proprioceptive information is likely to target inhibitory and excitatory polysynaptic circuits involved in LAI and PAS. Such information may be relevant to the physiopathology of several disorders involving the cranio-facial system.
Collapse
Affiliation(s)
- Giovanna Pilurzi
- Operative Unit of Neurology, Fidenza Hospital, AUSL Parma, Parma, Italy
| | | | - Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Luigi Cattaneo
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Giovanni Pavesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
20
|
Kaneko F, Shibata E, Okawada M, Nagamine T. Region-dependent bidirectional plasticity in M1 following quadripulse transcranial magnetic stimulation in the inferior parietal cortex. Brain Stimul 2019; 13:310-317. [PMID: 31711881 DOI: 10.1016/j.brs.2019.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/28/2019] [Accepted: 10/19/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The ability to manipulate the excitability of the network between the inferior parietal lobule (IPL) and primary motor cortex (M1) may have clinical value. OBJECTIVE To investigate the possibility of inducing long-lasting changes in M1 excitability by applying quadripulse transcranial magnetic stimulation (QPS) to the IPL, and to ascertain stimulus condition- and site-dependent differences in the effects. METHODS QPS was applied to M1, the primary somatosensory cortex (S1), the supramarginal gyrus (SMG) and angular gyrus (AG) IPL areas, with the inter-stimulus interval (ISI) in the train of pulses set to either 5 ms (QPS-5) or 50 ms (QPS-50). QPS was repeated at 0.2 Hz for 30 min, or not presented (sham condition). Excitability changes in the target site were examined by means of single-pulse transcranial magnetic stimulation (TMS). RESULTS QPS-5 and QPS-50 at M1 increased and decreased M1 excitability, respectively. QPS at S1 induced no obvious change in M1 excitability. However, QPS at the SMG induced mainly suppressive effects in M1 for at least 30 min, regardless of the ISI length. Both QPS ISIs at the AG yielded significantly different MEP compared to those at the SMG. Thus, the direction of the plastic effect of QPS differed depending on the site, even under the same stimulation conditions. CONCLUSIONS QPS at the IPL produced long-lasting changes in M1 excitability, which differed depending on the precise stimulation site within the IPL. These results raise the possibility of noninvasive induction of functional plasticity in M1 via input from the IPL.
Collapse
Affiliation(s)
- Fuminari Kaneko
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17, Chuo, Sapporo, Hokkaido, Japan; Department of Rehabilitation of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shjinjuku-ku, Tokyo, 160-8582, Japan.
| | - Eriko Shibata
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17, Chuo, Sapporo, Hokkaido, Japan
| | - Megumi Okawada
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17, Chuo, Sapporo, Hokkaido, Japan; Department of Rehabilitation of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shjinjuku-ku, Tokyo, 160-8582, Japan
| | - Takashi Nagamine
- Department of Systems Neuroscience, School of Medicine, Sapporo Medical University, S1 W17, Chuo, Sapporo, Hokkaido, Japan
| |
Collapse
|
21
|
Yamazaki Y, Sato D, Yamashiro K, Nakano S, Onishi H, Maruyama A. Acute Low-Intensity Aerobic Exercise Modulates Intracortical Inhibitory and Excitatory Circuits in an Exercised and a Non-exercised Muscle in the Primary Motor Cortex. Front Physiol 2019; 10:1361. [PMID: 31787901 PMCID: PMC6853900 DOI: 10.3389/fphys.2019.01361] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Recent studies have reported that acute aerobic exercise modulates intracortical excitability in the primary motor cortex (M1). However, whether acute low-intensity aerobic exercise can also modulate M1 intracortical excitability, particularly intracortical excitatory circuits, remains unclear. In addition, no previous studies have investigated the effect of acute aerobic exercise on short-latency afferent inhibition (SAI). The aim of this study was to investigate whether acute low-intensity aerobic exercise modulates intracortical circuits in the M1 hand and leg areas. Intracortical excitability of M1 (Experiments 1, 2) and spinal excitability (Experiment 3) were measured before and after acute low-intensity aerobic exercise. In Experiment 3, skin temperature was also measured throughout the experiment. Transcranial magnetic stimulation was applied over the M1 non-exercised hand and exercised leg areas in Experiments 1, 2, respectively. Participants performed 30 min of low-intensity pedaling exercise or rested while sitting on the ergometer. Short- and long-interval intracortical inhibition (SICI and LICI), and SAI were measured to assess M1 inhibitory circuits. Intracortical facilitation (ICF) and short-interval intracortical facilitation (SICF) were measured to assess M1 excitatory circuits. We found that acute low-intensity aerobic exercise decreased SICI and SAI in the M1 hand and leg areas. After exercise, ICF in the M1 hand area was lower than in the control experiment, but was not significantly different to baseline. The single motor-evoked potential, resting motor threshold, LICI, SICF, and spinal excitability did not change following exercise. In conclusion, acute low-intensity pedaling modulates M1 intracortical circuits of both exercised and non-exercised areas, without affecting corticospinal and spinal excitability.
Collapse
Affiliation(s)
- Yudai Yamazaki
- Major in Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Saki Nakano
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Field of Health and Sports, Major in Health and Science, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Atsuo Maruyama
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
22
|
Reliability of transcranial magnetic stimulation measures of afferent inhibition. Brain Res 2019; 1723:146394. [DOI: 10.1016/j.brainres.2019.146394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
|
23
|
Prestimulus cortical EEG oscillations can predict the excitability of the primary motor cortex. Brain Stimul 2019; 12:1508-1516. [DOI: 10.1016/j.brs.2019.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/02/2019] [Accepted: 06/08/2019] [Indexed: 11/23/2022] Open
|
24
|
Romero MC, Davare M, Armendariz M, Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun 2019; 10:2642. [PMID: 31201331 PMCID: PMC6572776 DOI: 10.1038/s41467-019-10638-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can non-invasively modulate neural activity in humans. Despite three decades of research, the spatial extent of the cortical area activated by TMS is still controversial. Moreover, how TMS interacts with task-related activity during motor behavior is unknown. Here, we applied single-pulse TMS over macaque parietal cortex while recording single-unit activity at various distances from the center of stimulation during grasping. The spatial extent of TMS-induced activation is remarkably restricted, affecting the spiking activity of single neurons in an area of cortex measuring less than 2 mm in diameter. In task-related neurons, TMS evokes a transient excitation followed by reduced activity, paralleled by a significantly longer grasping time. Furthermore, TMS-induced activity and task-related activity do not summate in single neurons. These results furnish crucial experimental evidence for the neural effects of TMS at the single-cell level and uncover the neural underpinnings of behavioral effects of TMS. Transcranial Magnetic Stimulation (TMS) can modulate human brain activity, but the extent of the cortical area activated by TMS is unclear. Here, the authors show that TMS affects monkey single neuron activity in an area less than 2 mm diameter, while TMS-induced activity and task-related activity do not summate.
Collapse
Affiliation(s)
- Maria C Romero
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium. .,Onderzoeksgroep Bewegingscontrole & Neuroplasticiteit, Katholieke Universiteit Leuven, Leuven, Belgium. .,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Marco Davare
- Onderzoeksgroep Bewegingscontrole & Neuroplasticiteit, Katholieke Universiteit Leuven, Leuven, Belgium. .,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Marcelo Armendariz
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Chen YJ, Huang YZ, Chen CY, Chen CL, Chen HC, Wu CY, Lin KC, Chang TL. Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: a pilot randomized controlled trial. BMC Neurol 2019; 19:69. [PMID: 31023258 PMCID: PMC6485156 DOI: 10.1186/s12883-019-1302-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/11/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a form of repetitive transcranial stimulation that has been used to enhance upper limb (UL) motor recovery. However, only limited studies have examined its efficacy in patients with chronic stroke and therefore it remains controversial. METHODS This was a randomized controlled trial that enrolled patients from a rehabilitation department. Twenty-two patients with first-ever chronic and unilateral cerebral stroke, aged 30-70 years, were randomly assigned to the iTBS or control group. All patients received 1 session per day for 10 days of either iTBS or sham stimulation over the ipsilesional primary motor cortex in addition to conventional neurorehabilitation. Outcome measures were assessed before and immediately after the intervention period: Modified Ashworth Scale (MAS), Fugl-Meyer Assessment Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), Box and Block test (BBT), and Motor Activity Log (MAL). Analysis of covariance was adopted to compare the treatment effects between groups. RESULTS The iTBS group had greater improvement in the MAS and FMA than the control group (η2 = 0.151-0.233; p < 0.05), as well as in the ARAT and BBT (η2 = 0.161-0.460; p < 0.05) with large effect size. Both groups showed an improvement in the BBT, and there were no significant between-group differences in MAL changes. CONCLUSIONS The iTBS induced greater gains in spasticity decrease and UL function improvement, especially in fine motor function, than sham TBS. This is a promising finding because patients with chronic stroke have a relatively low potential for fine motor function recovery. Overall, iTBS may be a beneficial adjunct therapy to neurorehabilitation for enhancing UL function. Further larger-scale study is warranted to confirm the findings and its long-term effect. TRIAL REGISTRATION This trial was registered under ClinicalTrials.gov ID No. NCT01947413 on September 20, 2013.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 5, Fushing Street, Kuei-Shan District, Taoyuan City, 33305, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.,Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Yao Chen
- Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 5, Fushing Street, Kuei-Shan District, Taoyuan City, 33305, Taiwan. .,Graduate Institute of Early Intervention, Chang Gung University, Taoyuan, Taiwan.
| | - Hsieh-Ching Chen
- Department of Industrial and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Yi Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 5, Fushing Street, Kuei-Shan District, Taoyuan City, 33305, Taiwan.,Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Ling Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 5, Fushing Street, Kuei-Shan District, Taoyuan City, 33305, Taiwan
| |
Collapse
|
26
|
Dubbioso R, Manganelli F, Siebner HR, Di Lazzaro V. Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease. Front Hum Neurosci 2019; 13:111. [PMID: 31024277 PMCID: PMC6463734 DOI: 10.3389/fnhum.2019.00111] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's Disease (PD) is a prototypical basal ganglia disorder. Nigrostriatal dopaminergic denervation leads to progressive dysfunction of the cortico-basal ganglia-thalamo-cortical sensorimotor loops, causing the classical motor symptoms. Although the basal ganglia do not receive direct sensory input, they are important for sensorimotor integration. Therefore, the basal ganglia dysfunction in PD may profoundly affect sensory-motor interaction in the cortex. Cortical sensorimotor integration can be probed with transcranial magnetic stimulation (TMS) using a well-established conditioning-test paradigm, called short-latency afferent inhibition (SAI). SAI probes the fast-inhibitory effect of a conditioning peripheral electrical stimulus on the motor response evoked by a TMS test pulse given to the contralateral primary motor cortex (M1). Since SAI occurs at latencies that match the peaks of early cortical somatosensory potentials, the cortical circuitry generating SAI may play an important role in rapid online adjustments of cortical motor output to changes in somatosensory inputs. Here we review the existing studies that have used SAI to examine how PD affects fast cortical sensory-motor integration. Studies of SAI in PD have yielded variable results, showing reduced, normal or even enhanced levels of SAI. This variability may be attributed to the fact that the strength of SAI is influenced by several factors, such as differences in dopaminergic treatment or the clinical phenotype of PD. Inter-individual differences in the expression of SAI has been shown to scale with individual motor impairment as revealed by UPDRS motor score and thus, may reflect the magnitude of dopaminergic neurodegeneration. The magnitude of SAI has also been linked to cognitive dysfunction, and it has been suggested that SAI also reflects cholinergic denervation at the cortical level. Together, the results indicate that SAI is a useful marker of disease-related alterations in fast cortical sensory-motor integration driven by subcortical changes in the dopaminergic and cholinergic system. Since a multitude of neurobiological factors contribute to the magnitude of inhibition, any mechanistic interpretation of SAI changes in PD needs to consider the group characteristics in terms of phenotypical spectrum, disease stage, and medication.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
27
|
Onishi H. Cortical excitability following passive movement. Phys Ther Res 2018; 21:23-32. [PMID: 30697506 DOI: 10.1298/ptr.r0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
In brain injury rehabilitation, passive movement exercises are frequently used to maintain or improve mobility and range of motion. They can also induce beneficial and sustained neuroplastic changes. Neuroimaging studies have revealed that passive movements without motor commands activate not only the primary somatosensory cortex but also the primary motor cortex, supplementary motor area, and posterior parietal cortex as well as the secondary somatosensory cortex (S2) in healthy subjects. Repetitive passive movement has also been reported to induce increases or decreases in cortical excitability. In this review, we focused on the following: cortical activity following passive movement; cortical excitability during passive movement; and changes in cortical excitability after repetitive passive movement.
Collapse
Affiliation(s)
- Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare.,Department of Physical Therapy, Niigata University of Health and Welfare
| |
Collapse
|
28
|
Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, Saito K, Inukai Y, Otsuru N, Onishi H. Repetitive Passive Finger Movement Modulates Primary Somatosensory Cortex Excitability. Front Hum Neurosci 2018; 12:332. [PMID: 30177877 PMCID: PMC6109762 DOI: 10.3389/fnhum.2018.00332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Somatosensory inputs induced by repetitive passive movement (RPM) modulate primary motor cortex (M1) excitability; however, it is unclear whether RPM affects primary somatosensory cortex (S1) excitability. In this study, we investigated whether RPM affects somatosensory evoked potentials (SEPs) and resting state brain oscillation, including alpha and beta bands, depend on RPM frequency. Nineteen healthy subjects participated in this study, and SEPs elicited by peripheral nerve electrical stimulation were recorded from the C3’ area in order to assess S1 excitability (Exp. 1: n = 15). We focused on prominent SEP components such as N20, P25 and P45-reflecting S1 activities. In addition, resting electroencephalograms (EEGs) were recorded from C3’ area to assess the internal state of the brain network at rest (Exp. 2: n = 15). Passive abduction/adduction of the right index finger was applied for 10 min at frequencies of 0.5, 1.0, 3.0, and 5.0 Hz in Exp. 1, and 1.0, 3.0, and 5.0 Hz in Exp. 2. No changes in N20 or P25 components were observed following RPM. The 3.0 Hz-RPM decreased the P45 component for 20 min (p < 0.05), but otherwise did not affect the P45 component. There was no difference in the alpha and beta bands before and after any RPM; however, a negative correlation was observed between the rate of change of beta power and P45 component at 3.0 Hz-RPM. Our findings indicated that the P45 component changes depending on the RPM frequency, suggesting that somatosensory inputs induced by RPM influences S1 excitability. Additionally, beta power enhancement appears to contribute to the P45 component depression in 3.0 Hz-RPM.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Tsuiki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
29
|
Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability. Neuroscience 2018; 386:240-255. [DOI: 10.1016/j.neuroscience.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
|
30
|
Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation. Neural Plast 2018; 2018:5383514. [PMID: 29849557 PMCID: PMC5903327 DOI: 10.1155/2018/5383514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/25/2017] [Accepted: 01/22/2018] [Indexed: 11/26/2022] Open
Abstract
We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5–20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.
Collapse
|
31
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [PMID: 28964754 DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
32
|
Matur Z, Öge AE. Sensorimotor Integration During Motor Learning: Transcranial Magnetic Stimulation Studies. ACTA ACUST UNITED AC 2017; 54:358-363. [PMID: 29321712 DOI: 10.5152/npa.2016.18056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of sensory signals coming from skin and muscle afferents on the sensorimotor cortical networks is entitled as sensory-motor integration (SMI). SMI can be studied electrophysiologically by the motor cortex excitability changes in response to peripheral sensory stimulation. These changes include the periods of short afferent inhibition (SAI), afferent facilitation (AF), and late afferent inhibition (LAI). During the early period of motor skill acquisition, motor cortex excitability increases and changes occur in the area covered by the relevant zone of the motor cortex. In the late period, these give place to the morphological changes, such as synaptogenesis. SAI decreases during learning the motor skills, while LAI increases during motor activity. In this review, the role of SMI in the process of motor learning and transcranial magnetic stimulation techniques performed for studying SMI is summarized.
Collapse
Affiliation(s)
- Zeliha Matur
- Department of Neurology, İstanbul Bilim University School of Medicine, İstanbul, Turkey
| | - A Emre Öge
- Department of Neurology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| |
Collapse
|
33
|
Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude. Neuroreport 2017; 28:1202-1207. [DOI: 10.1097/wnr.0000000000000896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Chung SW, Rogasch NC, Hoy KE, Sullivan CM, Cash RFH, Fitzgerald PB. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum Brain Mapp 2017; 39:783-802. [PMID: 29124791 DOI: 10.1002/hbm.23882] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS) is a noninvasive brain stimulation technique capable of increasing cortical excitability beyond the stimulation period. Due to the rapid induction of modulatory effects, prefrontal application of iTBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression. In an attempt to increase efficacy, higher than conventional intensities are currently being applied. The assumption that this increases neuromodulatory may be mechanistically false for iTBS. This study examined the influence of intensity on the neurophysiological and behavioural effects of iTBS in the prefrontal cortex. Sixteen healthy participants received iTBS over prefrontal cortex at either 50, 75 or 100% resting motor threshold in separate sessions. Single-pulse TMS and concurrent electroencephalography (EEG) was used to assess changes in cortical reactivity measured as TMS-evoked potentials and oscillations. The n-back task was used to assess changes in working memory performance. The data can be summarised as an inverse U-shape relationship between intensity and iTBS plastic effects, where 75% iTBS yielded the largest neurophysiological changes. Improvement in reaction time in the 3-back task was supported by the change in alpha power, however, comparison between conditions revealed no significant differences. The assumption that higher intensity results in greater neuromodulatory effects may be false, at least in healthy individuals, and should be carefully considered for clinical populations. Neurophysiological changes associated with working memory following iTBS suggest functional relevance. However, the effects of different intensities on behavioural performance remain elusive in the present healthy sample.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Camberwell, VIC, Australia
| |
Collapse
|
35
|
Miyaguchi S, Kojima S, Sasaki R, Kotan S, Kirimoto H, Tamaki H, Onishi H. Decrease in short-latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement. Brain Behav 2017; 7:e00744. [PMID: 28729946 PMCID: PMC5516614 DOI: 10.1002/brb3.744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION This study aimed to clarify cortical circuit mechanisms contributing to corticomotor excitability during postexercise depression (PED) following repetitive nonfatiguing movement. We investigated changes in short-latency afferent inhibition (SAI) and short-interval intracortical inhibition (SICI) by paired-pulse transcranial magnetic stimulation (TMS) during PED. METHODS A total of 16 healthy subjects performed repetitive abduction movements of the right index finger at 2.0 Hz for 6 min at 10% maximum voluntary contraction. We measured SAI evoked by pairing ulnar nerve stimulation with TMS (interstimulus interval, 22 ms) before and during PED (n = 10, experiment 1). We also measured SICI evoked by paired TMS (interstimulus interval, 2 ms) at 80% resting motor threshold (n = 10, experiment 2), and at 80% active motor threshold (n = 8, experiment 3) before and during PED. RESULTS Single motor evoked potential amplitude significantly decreased 1-2 min after the movement task in all experiments, indicating reliable PED induction. In experiment 1, SAI significantly decreased (disinhibited) 1-2 min during PED, whereas in experiments 2 and 3, SICI showed no significant change during PED. CONCLUSION This study suggests that cholinergic inhibitory circuit activity decreases during PED following repetitive nonfatiguing movement, whereas GABAA circuit activity remains stable.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Ryoki Sasaki
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Shinichi Kotan
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Hikari Kirimoto
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| |
Collapse
|
36
|
Soutschek A, Ruff CC, Strombach T, Kalenscher T, Tobler PN. Brain stimulation reveals crucial role of overcoming self-centeredness in self-control. SCIENCE ADVANCES 2016; 2:e1600992. [PMID: 27774513 PMCID: PMC5072183 DOI: 10.1126/sciadv.1600992] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Neurobiological models of self-control predominantly focus on the role of prefrontal brain mechanisms involved in emotion regulation and impulse control. We provide evidence for an entirely different neural mechanism that promotes self-control by overcoming bias for the present self, a mechanism previously thought to be mainly important for interpersonal decision-making. In two separate studies, we show that disruptive transcranial magnetic stimulation (TMS) of the temporo-parietal junction-a brain region involved in overcoming one's self-centered perspective-increases the discounting of delayed and prosocial rewards. This effect of TMS on temporal and social discounting is accompanied by deficits in perspective-taking and does not reflect altered spatial reorienting and number recognition. Our findings substantiate a fundamental commonality between the domains of self-control and social decision-making and highlight a novel aspect of the neurocognitive processes involved in self-control.
Collapse
Affiliation(s)
- Alexander Soutschek
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Christian C. Ruff
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Tina Strombach
- Department of Economics, Heinreich Heine University, Düsseldorf, Germany
| | - Tobias Kalenscher
- Department of Psychology, Heinreich Heine University, Düsseldorf, Germany
| | - Philippe N. Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Bailey AZ, Asmussen MJ, Nelson AJ. Short-latency afferent inhibition determined by the sensory afferent volley. J Neurophysiol 2016; 116:637-44. [PMID: 27226451 DOI: 10.1152/jn.00276.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/25/2016] [Indexed: 01/07/2023] Open
Abstract
Short-latency afferent inhibition (SAI) is characterized by the suppression of the transcranial magnetic stimulation motor evoked potential (MEP) by the cortical arrival of a somatosensory afferent volley. It remains unknown whether the magnitude of SAI reflects changes in the sensory afferent volley, similar to that observed for somatosensory evoked potentials (SEPs). The present study investigated stimulus-response relationships between sensory nerve action potentials (SNAPs), SAI, and SEPs and their interrelatedness. Experiment 1 (n = 23, age 23 ± 1.5 yr) investigated the stimulus-response profile for SEPs and SAI in the flexor carpi radialis muscle after stimulation of the mixed median nerve at the wrist using ∼25%, 50%, 75%, and 100% of the maximum SNAP and at 1.2× and 2.4× motor threshold (the latter equated to 100% of the maximum SNAP). Experiment 2 (n = 20, age 23.1 ± 2 yr) probed SEPs and SAI stimulus-response relationships after stimulation of the cutaneous digital nerve at ∼25%, 50%, 75%, and 100% of the maximum SNAP recorded at the elbow. Results indicate that, for both nerve types, SAI magnitude is dependent on the volume of the sensory afferent volley and ceases to increase once all afferent fibers within the nerve are recruited. Furthermore, for both nerve types, the magnitudes of SAI and SEPs are related such that an increase in excitation within somatosensory cortex is associated with an increase in the magnitude of afferent-induced MEP inhibition.
Collapse
Affiliation(s)
- Aaron Z Bailey
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael J Asmussen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
|
39
|
Jones CB, Lulic T, Bailey AZ, Mackenzie TN, Mi YQ, Tommerdahl M, Nelson AJ. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception. J Neurophysiol 2016; 115:2681-91. [PMID: 26984422 DOI: 10.1152/jn.00630.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/11/2016] [Indexed: 11/22/2022] Open
Abstract
Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively.
Collapse
Affiliation(s)
- Christina B Jones
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Tea Lulic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Aaron Z Bailey
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Tanner N Mackenzie
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Yi Qun Mi
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Mark Tommerdahl
- Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
40
|
Effects of cathodal transcranial direct current stimulation to primary somatosensory cortex on short-latency afferent inhibition. Neuroreport 2016; 26:634-7. [PMID: 26103117 DOI: 10.1097/wnr.0000000000000402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the effects of cathodal transcranial direct current stimulation (tDCS) applied over the primary somatosensory cortex (S1) on short-interval afferent inhibition (SAI). Thirteen healthy individuals participated in this study. Cathodal tDCS was applied for 15 min at 1 mA over the left S1. Motor-evoked potentials (MEPs) were measured from the right first dorsal interosseous muscle in response to transcranial magnetic stimulation (TMS) of the left motor cortex before tDCS (pre), immediately after tDCS (immediately), and 15 min after tDCS (post-15 min). SAI was evaluated by measuring MEPs in response to TMS pulses applied 40 ms after peripheral electrical stimulation of the index finger. For each measurement period (pre, immediately, and post-15 min), MEP amplitude was significantly smaller when TMS followed index finger stimulation (SAI condition) than when TMS was delivered alone (single TMS) (P<0.01), indicating expression of SAI. The MEP ratio (MEP of SAI/MEP of single TMS) at post-15 min was significantly larger than that of pre (P<0.05), indicating suppression of SAI. However, no significant difference was observed between pre and immediately, and immediately and post-15 min. These results suggest that cathodal tDCS applied over the S1 causes a decrease in S1 excitability following peripheral electrical stimulation and cathodal tDCS applied over the S1 decreased the inhibitory effects of SAI.
Collapse
|
41
|
Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta-analysis. Neurosci Biobehav Rev 2016; 63:43-64. [PMID: 26850210 DOI: 10.1016/j.neubiorev.2016.01.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/30/2015] [Accepted: 01/26/2016] [Indexed: 12/13/2022]
Abstract
Noninvasive brain stimulation has been demonstrated to modulate cortical activity in humans. In particular, theta burst stimulation (TBS) has gained notable attention due to its ability to induce lasting physiological changes after short stimulation durations. The present study aimed to provide a comprehensive meta-analytic review of the efficacy of two TBS paradigms; intermittent (iTBS) and continuous (cTBS), on corticospinal excitability in healthy individuals. Literature searches yielded a total of 87 studies adhering to the inclusion criteria. iTBS yielded moderately large MEP increases lasting up to 30 min with a pooled SMD of 0.71 (p<0.00001). cTBS produced a reduction in MEP amplitudes lasting up to 60 min, with the largest effect size seen at 5 min post stimulation (SMD=-0.9, P<0.00001). The collected studies were of heterogeneous nature, and a series of tests conducted indicated a degree of publication bias. No significant change in SICI and ICF was observed, with exception to decrease in SICI with cTBS at the early time point (SMD=0.42, P=0.00036). The results also highlight several factors contributing to TBS efficacy, including the number of pulses, frequency of stimulation and BDNF polymorphisms. Further research investigating optimal TBS stimulation parameters, particularly for iTBS, is needed in order for these paradigms to be successfully translated into clinical settings.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia.
| | - Aron T Hill
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| |
Collapse
|
42
|
Saito K, Onishi H, Miyaguchi S, Kotan S, Fujimoto S. Effect of Paired-Pulse Electrical Stimulation on the Activity of Cortical Circuits. Front Hum Neurosci 2016; 9:671. [PMID: 26733847 PMCID: PMC4687412 DOI: 10.3389/fnhum.2015.00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We investigated the transient effect of short-duration paired-pulse electrical stimulation (ppES) on corticospinal excitability and the after-effect of long-duration ppES on excitability, short-latency afferent inhibition (SAI), and afferent facilitation (AF). METHODS A total of 28 healthy subjects participated in two different experiments. In Experiment 1, motor-evoked potentials (MEPs) were measured in the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles before and immediately after short-duration ppES (5 s) at various inter-pulse intervals (2, 3, 4, 5, 6, 7, 10, 15, 20, and 30 ms). In Experiment 2, MEPs, SAI, and AF were measured before, immediately, and 20 and 40 min after long-duration ppES (20 min, inter-pulse interval of 5 and 15 ms) and peripheral electrical stimulation (20 min, 10 and 20 Hz). RESULTS Short-duration ppES with inter-pulse intervals of 5 and 20 ms significantly increased MEP measured in APB but not in ADM. Long-duration ppES with an inter-pulse interval of 5 ms significantly decreased SAI but not MEPs in APB. In contrast, long-duration ppES did not affect ADM. CONCLUSION The afferent inputs induced by ppES-5 ms were effective for transiently increasing MEP and sustaining SAI reduction.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and WelfareNiigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and WelfareNiigata, Japan
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and WelfareNiigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and WelfareNiigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare Niigata, Japan
| | - Shinichi Kotan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare Niigata, Japan
| | | |
Collapse
|
43
|
Painter DR, Dux PE, Mattingley JB. Causal involvement of visual area MT in global feature-based enhancement but not contingent attentional capture. Neuroimage 2015; 118:90-102. [DOI: 10.1016/j.neuroimage.2015.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/25/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
|
44
|
Bradnam L, Shanahan EM, Hendy K, Reed A, Skipworth T, Visser A, Lennon S. Afferent inhibition and cortical silent periods in shoulder primary motor cortex and effect of a suprascapular nerve block in people experiencing chronic shoulder pain. Clin Neurophysiol 2015; 127:769-778. [PMID: 25900020 DOI: 10.1016/j.clinph.2015.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To characterise short afferent inhibition (SAI) and the cortical silent period (CSP) in the primary motor cortex representations of the infraspinatus muscle in healthy adults and people experiencing chronic shoulder pain, to determine the impact of a suprascapular nerve block (SSNB). METHODS Neurophysiological measures were obtained in 18 controls and 8 patients with chronic shoulder pain, pre and post SSNB and 1 week later. Pain intensity was assessed by a visual analogue scale. RESULTS SAI was apparent in controls (all P<0.03) and a CSP was observed which reduced in the presence of SAI (all P<0.0001). Compared to controls, shoulder pain patients demonstrated higher active motor threshold (P=0.046), less SAI (P=0.044), a longer CSP (P=0.048) and less modulation of the CSP by SAI (P=0.045). Higher motor thresholds were related to higher pain scores (P=0.009). The SSNB immediately restored SAI (P=0.013), with a positive relationship between increased SAI and reduced pain (P=0.031). The SSNB further reduced modulation of CSP by SAI at 1 week post injection (P=0.006). CONCLUSIONS SAI and the CSP were present and demonstrated robust interaction in controls, which was aberrant in patients. The SSNB transiently restored SAI but had no effect on the CSP; however CSP modulation by SAI was further attenuated 1 week post injection. SIGNIFICANCE The current findings improve understanding of the neurophysiology of the shoulder motor cortex and its modulation by chronic pain. The effect of SSNB in shoulder pain patients should be interpreted with caution until proven in a larger population. Interventions that target intracortical inhibition might increase efficacy in people with chronic shoulder pain.
Collapse
Affiliation(s)
- Lynley Bradnam
- Discipline of Physiotherapy, School of Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Flinders University, South Australia, Australia; Applied Brain Research Laboratory, Centre for Neuroscience, School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Flinders University, South Australia, Australia.
| | - E Michael Shanahan
- Department of Rheumatology, Repatriation General Hospital, Adelaide, South Australia, Australia; School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Flinders University, South Australia, Australia
| | - Kirsty Hendy
- Discipline of Physiotherapy, School of Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Flinders University, South Australia, Australia
| | - Amalia Reed
- Discipline of Physiotherapy, School of Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Flinders University, South Australia, Australia
| | - Tegan Skipworth
- Discipline of Physiotherapy, School of Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Flinders University, South Australia, Australia
| | - Anri Visser
- Discipline of Physiotherapy, School of Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Flinders University, South Australia, Australia
| | - Sheila Lennon
- Discipline of Physiotherapy, School of Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Flinders University, South Australia, Australia
| |
Collapse
|
45
|
Tsang P, Bailey AZ, Nelson AJ. Rapid-rate paired associative stimulation over the primary somatosensory cortex. PLoS One 2015; 10:e0120731. [PMID: 25799422 PMCID: PMC4370473 DOI: 10.1371/journal.pone.0120731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/26/2015] [Indexed: 11/24/2022] Open
Abstract
Rapid-rate paired associative stimulation (rPAS) involves repeat pairing of peripheral nerve stimulation and Transcranial magnetic stimulation (TMS) pulses at a 5 Hz frequency. RPAS over primary motor cortex (M1) operates with spike-timing dependent plasticity such that increases in corticospinal excitability occur when the nerve and TMS pulse temporally coincide in cortex. The present study investigates the effects of rPAS over primary somatosensory cortex (SI) which has not been performed to date. In a series of experiments, rPAS was delivered over SI and M1 at varying timing intervals between the nerve and TMS pulse based on the latency of the N20 somatosensory evoked potential (SEP) component within each participant (intervals for SI-rPAS: N20, N20-2.5 ms, N20 + 2.5 ms, intervals for M1-rPAS: N20, N20+5 ms). Changes in SI physiology were measured via SEPs (N20, P25, N20-P25) and SEP paired-pulse inhibition, and changes in M1 physiology were measured with motor evoked potentials and short-latency afferent inhibition. Measures were obtained before rPAS and at 5, 25 and 45 minutes following stimulation. Results indicate that paired-pulse inhibition and short-latency afferent inhibition were reduced only when the SI-rPAS nerve-TMS timing interval was set to N20-2.5 ms. SI-rPAS over SI also led to remote effects on motor physiology over a wider range of nerve-TMS intervals (N20-2.5 ms – N20+2.5 ms) during which motor evoked potentials were increased. M1-rPAS increased motor evoked potentials and reduced short-latency afferent inhibition as previously reported. These data provide evidence that, similar to M1, rPAS over SI is spike-timing dependent and is capable of exerting changes in SI and M1 physiology.
Collapse
Affiliation(s)
- Philemon Tsang
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Aaron Z. Bailey
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
46
|
Udupa K, Chen R. Theta burst stimulation to explore the sensory-motor integration of cortical circuits. Clin Neurophysiol 2014; 125:2146. [PMID: 24775921 DOI: 10.1016/j.clinph.2014.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Kaviraja Udupa
- Division of Neurology and Toronto Western Research Institute, Division of Brain, Imaging and Behaviour - Systems Neuroscience, University of Toronto, Toronto, Ont., Canada.
| | - Robert Chen
- Division of Neurology and Toronto Western Research Institute, Division of Brain, Imaging and Behaviour - Systems Neuroscience, University of Toronto, Toronto, Ont., Canada
| |
Collapse
|