1
|
Yang B, Luo W, Zhao B, Zhang C, Wang X, Mo J, Zheng Z, Shao X, Zhang J, Zhang K, Hu W. Anatomical categorization of insulo-opercular focal cortical dysplasia and the spatial patterns of stereoelectroencephalography. Epilepsia 2025; 66:847-858. [PMID: 39655559 DOI: 10.1111/epi.18223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 03/15/2025]
Abstract
OBJECTIVE This study was undertaken to anatomically categorize insulo-opercular focal cortical dysplasia (FCD) lesions according to their location and extent, and to summarize corresponding stereoelectroencephalographic (SEEG) patterns to guide preoperative evaluation and surgical planning. METHODS Patients who underwent epilepsy surgery for insulo-opercular FCD between 2015 and 2022 were enrolled. FCD lesions were categorized into insular, peri-insular, opercular, and complex types based on their location and extent, as ascertained from electroclinical and neuroimaging data. SEEG signals from the seizure onset electrodes were collected for quantitative analysis. The normalized interictal spike counts, high-frequency oscillation (HFO) counts, and ictal epileptogenicity index (EI) values of the insular and opercular channels were calculated. The spatial patterns of the spike counts, HFO counts, and EI values were analyzed. Cluster analyses utilizing spike counts, HFO counts, and EI values were performed for automatic categorization, and the results were compared with the manual categorization from the preoperative evaluations. RESULTS A total of 53 patients were included, comprising 10 insular, 17 peri-insular, 24 opercular, and two complex cases. Thirty-eight patients were included in the quantitative SEEG analysis. Spike, HFO, and EI analyses indicated that in insular FCDs, the values of the three parameters were higher in insular channels than in opercular channels. In peri-insular FCDs, the values in insular and opercular channels were comparable, whereas in opercular FCDs, the values were higher in opercular channels than in insular channels. The accuracies of the cluster analysis based on the spike counts, HFO counts, and EI values were 71.05% (27/38), 76.32% (29/38), and 86.84% (33/38), respectively. Surgical strategies were proposed according to the anatomical categorization, achieving a favorable postoperative seizure-free rate of 84.91%. SIGNIFICANCE Insulo-opercular FCDs can be categorized into insular, peri-insular, opercular, and complex types. SEEG patterns can facilitate the automatic categorization of insulo-opercular FCDs, thereby enhancing preoperative planning and surgical outcomes.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiyuan Luo
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhong Zheng
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Yang B, Zhang C, Wang X, Zhao B, Mo J, Luo W, Shao X, Zhang J, Zhang K, Hu W. Laser interstitial thermal therapy in the management of bottom-of-sulcus dysplasia-related epilepsy. Ann Clin Transl Neurol 2025; 12:110-120. [PMID: 39625862 PMCID: PMC11752102 DOI: 10.1002/acn3.52258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE This study assessed the efficacy and safety of magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) versus open surgery (OS) for the treatment of patients with bottom-of-sulcus dysplasia (BOSD)-related epilepsy. METHODS Twenty-two patients underwent MRgLITT, while 39 underwent OS. Postoperative seizure-free rates were analyzed using Kaplan-Meier curves. The removal ratio, which represents the extent of damage, was calculated based on preoperative lesion volume and postoperative removal volume. Other outcomes, including adverse events, operative time, and hospital stay, were also compared. RESULTS Kaplan-Meier curves indicated the seizure-free rates were comparable between the MRgLITT group (90.9%, 26.5 [23.0, 35.1] months) and OS group (89.7%, 25.2 [16.2, 34.6] months) at the final follow-up (p = 0.901, log-rank test). The removal ratio of MRgLITT (1.3 [1.1, 1.7]) was significantly lower (p = 0.007) than that of OS (5.8 [3.6, 8.5]). A comparison of postoperative neurological deficits, infection rates, and fever rates revealed no significant differences between MRgLITT and OS groups. The operative time (hours) of MRgLITT (3.0, [2.1, 4.9]) was significantly shorter (p = 0.007) than that of OS (3.5 [3.0, 4.5]). The hospital stay (days) after MRgLITT (6 [5.0, 7.5]) was significantly shorter (p < 0.001) than that of OS (11.0 [9.0, 13.5]). INTERPRETATION MRgLITT has advantages over OS, including comparable seizure control and adverse event profiles, along with reduced removal ratios, shorter operative time, and shorter hospital stays.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Weiyuan Luo
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Zhao XM, Wan HJ, Shao XQ, Zhang JG, Meng FG, Hu WH, Zhang C, Wang X, Mo JJ, Tao XR, Zhang K, Qiao H. Associated factors with stimulation induced seizures and the relevance with surgical outcomes. Clin Neurol Neurosurg 2023; 232:107865. [PMID: 37480785 DOI: 10.1016/j.clineuro.2023.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/11/2023] [Accepted: 06/25/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE To analyze the associated factors with stimulation-induced seizures (SIS) and the relevant factors in predicting surgical outcomes. METHODS We analyzed 80 consecutive epilepsy patients explored by stereo-electroencephalography with routine electrical stimulation mapping (ESM). If seizures induced by ESM, patients were classified as SIS-positive (SIS-P); otherwise, SIS-negative (SIS-N). Patients received radical surgery were further classified as favorable (Engel I) and unfavorable (Engel II-IV) groups. RESULTS Of the 80 patients included, we identified 44 (55.0%) and 36(45.0%) patients in the SIS-P and SIS-N groups, respectively. Multivariate analysis revealed that the seizure onset pattern (SOP) of preceding repetitive epileptiform discharges following LVFA (PRED→LVFA) (OR 3.319, 95% CI 1.200-9.183, P = 0.021) and pathology of focal cortical dysplasia (FCD) type II (OR 3.943, 95% CI 1.093-14.226, P = 0.036) were independent factors influencing whether the electrical stimulation can induce a seizure. Among the patients received radical surgery, there were 55 and 15 patients in the favorable and unfavorable groups separately. Multivariate analysis revealed that the SOP of PRED→LVFA induced seizures by stimulation (OR 11.409, 95% CI 1.182-110.161, P = 0.035) and bilateral implantation (OR 0.048, 95% CI 0.005-0.497, P = 0.011) were independent factors affecting surgical outcomes. The previous epilepsy surgery had a trend to be a negative factor with SIS (OR 0.156, 95% CI 0.028-0.880, P = 0.035) and surgical outcomes (OR 0.253, 95% CI 0.053-1.219, P = 0.087). CONCLUSION ESM is a highly valuable method for localizing the seizure onset zone. The SOP of PRED→LVFA and FCD type II were associated with elicitation of SIS by ESM, whereas a previous epilepsy surgery showed a negative association. Furthermore, the SOP of PRED→LVFA together with SIS in the same patient predicted favorable surgical outcomes, whereas bilateral electrode implantation predicted unfavorable outcomes.
Collapse
Affiliation(s)
- Xue-Min Zhao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hui-Juan Wan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Han Hu
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia-Jie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Rong Tao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Hui Qiao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Joshi S, Stephens E, Bleasel A, Bartley M, Wijayath M, Rahman Z, Varikatt W, Dexter M, Wong C. Successful stereoelectroencephalography re-evaluation in epilepsy patients after failed initial subdural grid evaluation. Epileptic Disord 2023; 25:534-544. [PMID: 37265017 DOI: 10.1002/epd2.20084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Epilepsy surgery success is dependent on accurate localization of the epileptogenic zone. Despite the use of invasive EEG using subdural grids and strips, surgical failures can occur. In this series, we explore the utility of a second evaluation with stereoelectroencephalography in patients whose initial invasive evaluation with subdural grid electrodes was unsuccessful in localizing seizure origin. METHODS We conducted a retrospective review of patients who underwent subdural grid evaluation (SDE) at our center and identified patients who underwent a re-evaluation with stereoelectroencephalography (SEEG). RESULTS We identified three patients who had both subdural and SEEG electrodes in the region of the identified epileptogenic zone in whom the initial SDE evaluation failed to make the patients seizure-free. Two of these patients underwent a second resection and became seizure-free. SIGNIFICANCE Stereoelectroencephalography can be useful in the re-evaluation and re-operation of patients who previously had surgical failure using SDE.
Collapse
Affiliation(s)
- Stuti Joshi
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eleanor Stephens
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Andrew Bleasel
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Melissa Bartley
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Manori Wijayath
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Zebunnessa Rahman
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Winny Varikatt
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Anatomical Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Mark Dexter
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chong Wong
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Macdonald‐Laurs E, Warren AEL, Lee WS, Yang JY, MacGregor D, Lockhart PJ, Leventer RJ, Neal A, Harvey AS. Intrinsic and secondary epileptogenicity in focal cortical dysplasia type II. Epilepsia 2023; 64:348-363. [PMID: 36527426 PMCID: PMC10952144 DOI: 10.1111/epi.17495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Favorable seizure outcome is reported following resection of bottom-of-sulcus dysplasia (BOSD). We assessed the distribution of epileptogenicity and dysplasia in and around BOSD to better understand this clinical outcome and the optimal surgical approach. METHODS We studied 27 children and adolescents with magnetic resonance imaging (MRI)-positive BOSD who underwent epilepsy surgery; 85% became seizure-free postresection (median = 5.0 years follow-up). All patients had resection of the dysplastic sulcus, and 11 had additional resection of the gyral crown (GC) or adjacent gyri (AG). Markers of epileptogenicity were relative cortical hypometabolism on preoperative 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET), and spiking, ripples, fast ripples, spike-high-frequency oscillation cross-rate, and phase amplitude coupling (PAC) on preresection and postresection electrocorticography (ECoG), all analyzed at the bottom-of-sulcus (BOS), top-of-sulcus (TOS), GC, and AG. Markers of dysplasia were increased cortical thickness on preoperative MRI, and dysmorphic neuron density and variant allele frequency of somatic MTOR mutations in resected tissue, analyzed at similar locations. RESULTS Relative cortical metabolism was significantly reduced and ECoG markers were significantly increased at the BOS compared to other regions. Apart from spiking and PAC, which were greater at the TOS compared to the GC, there were no significant differences in PET and other ECoG markers between the TOS, GC, and AG, suggesting a cutoff of epileptogenicity at the TOS rather than a tapering gradient on the cortical surface. MRI and tissue markers of dysplasia were all maximal in the BOS, reduced in the TOS, and mostly absent in the GC. Spiking and PAC reduced significantly over the GC after resection of the dysplastic sulcus. SIGNIFICANCE These findings support the concept that dysplasia and intrinsic epileptogenicity are mostly limited to the dysplastic sulcus in BOSD and support resection or ablation confined to the MRI-visible lesion as a first-line surgical approach. 18 F-FDG PET and ECoG abnormalities in surrounding cortex seem to be secondary phenomena.
Collapse
Affiliation(s)
- Emma Macdonald‐Laurs
- Department of NeurologyRoyal Children's HospitalParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Aaron E. L. Warren
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of MedicineUniversity of MelbourneParkvilleVictoriaAustralia
| | - Wei Shern Lee
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Joseph Yuan‐Mou Yang
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of NeurosurgeryRoyal Children's HospitalParkvilleVictoriaAustralia
| | - Duncan MacGregor
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PathologyRoyal Children's HospitalParkvilleVictoriaAustralia
| | - Paul J. Lockhart
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Richard J. Leventer
- Department of NeurologyRoyal Children's HospitalParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Andrew Neal
- Department of Neuroscience, Faculty of Medicine, Nursing, and Health Sciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - A. Simon Harvey
- Department of NeurologyRoyal Children's HospitalParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
6
|
Straumann S, Schaft E, Noordmans HJ, Dankbaar JW, Otte WM, van Steenis J, Smits P, Zweiphenning W, van Eijsden P, Gebbink T, Mariani L, van’t Klooster MA, Zijlmans M. The spatial relationship between the MRI lesion and intraoperative electrocorticography in focal epilepsy surgery. Brain Commun 2022; 4:fcac302. [PMID: 36519154 PMCID: PMC9732864 DOI: 10.1093/braincomms/fcac302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 10/19/2024] Open
Abstract
MRI and intraoperative electrocorticography are often used in tandem to delineate epileptogenic tissue in resective surgery for focal epilepsy. Both the resection of the MRI lesion and tissue with high rates of electrographic discharges on electrocorticography, e.g. spikes and high-frequency oscillations (80-500 Hz), lead to a better surgical outcome. How MRI and electrographic markers are related, however, is currently unknown. The aim of this study was to find the spatial relationship between MRI lesions and spikes/high-frequency oscillations. We retrospectively included 33 paediatric and adult patients with lesional neocortical epilepsy who underwent electrocorticography-tailored surgery (14 females, median age = 13.4 years, range = 0.6-47.0 years). Mesiotemporal lesions were excluded. We used univariable linear regression to find correlations between pre-resection spike/high-frequency oscillation rates on an electrode and its distance to the MRI lesion. We tested straight lines to the centre and the edge of the MRI lesion, and the distance along the cortical surface to determine which of these distances best reflects the occurrence of spikes/high-frequency oscillations. We conducted a moderator analysis to investigate the influence of the underlying pathology type and lesion volume on our results. We found spike and high-frequency oscillation rates to be spatially linked to the edge of the MRI lesion. The underlying pathology type influenced the spatial relationship between spike/high-frequency oscillation rates and the MRI lesion (P spikes < 0.0001, P ripples < 0.0001), while the lesion volume did not (P spikes = 0.64, P ripples = 0.89). A higher spike rate was associated with a shorter distance to the edge of the lesion for cavernomas [F(1,64) = -1.37, P < 0.0001, η 2 = 0.22], focal cortical dysplasias [F(1,570) = -0.25, P < 0.0001, η 2 = 0.05] and pleomorphic xanthoastrocytomas [F(1,66) = -0.18, P = 0.01, η 2 = 0.09]. In focal cortical dysplasias, a higher ripple rate was associated with a shorter distance [F(1,570) = -0.35, P < 0.0001, η 2 = 0.05]. Conversely, low-grade gliomas showed a positive correlation; the further an electrode was away from the lesion, the higher the rate of spikes [F(1,75) = 0.65, P < 0.0001, η 2 = 0.37] and ripples [F(1,75) = 2.67, P < 0.0001, η 2 = 0.22]. Pathophysiological processes specific to certain pathology types determine the spatial relationship between the MRI lesion and electrocorticography results. In our analyses, non-tumourous lesions (focal cortical dysplasias and cavernomas) seemed to intrinsically generate spikes and high-frequency oscillations, particularly at the border of the lesion. This advocates for a resection of this tissue. Low-grade gliomas caused epileptogenicity in the peritumoural tissue. Whether a resection of this tissue leads to a better outcome is unclear. Our results suggest that the underlying pathology type should be considered when intraoperative electrocorticography is interpreted.
Collapse
Affiliation(s)
- Sven Straumann
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Neurosurgery, University Hospital Basel, 4051 Basel, Switzerland
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, 3010 Bern, Switzerland
| | - Eline Schaft
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Herke Jan Noordmans
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jan Willem Dankbaar
- Department of Radiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Willem M Otte
- Department of Child Neurology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Josee van Steenis
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Paul Smits
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Willemiek Zweiphenning
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Tineke Gebbink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Luigi Mariani
- Department of Neurosurgery, University Hospital Basel, 4051 Basel, Switzerland
| | - Maryse A van’t Klooster
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
| |
Collapse
|
7
|
Hu WH, Mo JJ, Yang BW, Liu HG, Zhang C, Wang X, Qiu JJ, Zhao BT, Shao XQ, Zhang JG, Zhang K. Voxel-Based Morphometric MRI Postprocessing-Assisted Laser Interstitial Thermal Therapy for Focal Cortical Dysplasia-Suspected Lesions: Technique and Outcomes. Oper Neurosurg (Hagerstown) 2022; 23:334-341. [PMID: 36001745 DOI: 10.1227/ons.0000000000000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MRI-guided laser interstitial thermal therapy (MRgLITT) is a novel treatment modality for focal cortical dysplasia (FCD). However, identifying the location and extent of subtle FCD by visual analysis during MRgLITT remains challenging. OBJECTIVE To introduce voxel-based morphometric MRI postprocessing into the procedure of MRgLITT for FCD-suspected lesions and assess the complementary value of the MRI postprocessing technique for the trajectory design and thermal parameter setting of MRgLITT. METHODS Junction and normalized fluid-attenuated inversion recovery signal intensity images were used to detect the gray-white matter junction blurring and cortical fluid-attenuated inversion recovery hyperintensity, respectively. According to the 2 postprocessing images, the region of interest (ROI) for ablation was drawn. The main principle of presurgical planning is that the trajectory of the laser fiber was designed as far as possible along the long axis of the ROI while the extent of planned ablation covered the entire ROI. The subsequent intraoperative procedure was performed under the guidance of the presurgical plan. RESULTS Nine patients with epilepsy with FCD-suspected lesions underwent MRgLITT with the assistance of MRI postprocessing images. Among them, 4 patients were junction positive, 2 patients were normalized fluid-attenuated inversion recovery signal intensity positive, and the remaining 3 patients were positive for both. Postsurgical MRI demonstrated that the ROIs were ablated entirely in 7 patients. Engel Ia, Ib, and IV scores were obtained at 1-year follow-up for 6, 1, and 2 patients, respectively. CONCLUSION MRI postprocessing provides complementary information for designing the laser fiber trajectory and subsequent ablation for FCDs.
Collapse
Affiliation(s)
- Wen-Han Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jia-Jie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo-Wen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan-Guang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia-Ji Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bao-Tian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Mo J, Zhang J, Hu W, Sang L, Zheng Z, Zhou W, Wang H, Zhu J, Zhang C, Wang X, Zhang K. Automated Detection and Surgical Planning for Focal Cortical Dysplasia with Multicenter Validation. Neurosurgery 2022; 91:799-807. [PMID: 36135782 DOI: 10.1227/neu.0000000000002113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In patients with surgically amenable focal cortical dysplasia (FCD), subtle neuroimaging representation and the risk of open surgery lead to gaps in surgical treatment and delays in surgery. OBJECTIVE To construct an integrated platform that can accurately detect FCD and automatically establish trajectory planning for magnetic resonance-guided laser interstitial thermal therapy. METHODS This multicenter study included retrospective patients to train the automated detection model, prospective patients for model evaluation, and an additional cohort for construction of the automated trajectory planning algorithm. For automated detection, we evaluated the performance and generalization of the conventional neural network in different multicenter cohorts. For automated trajectory planning, feasibility/noninferiority and safety score were calculated to evaluate the clinical value. RESULTS Of the 260 patients screened for eligibility, 202 were finally included. Eighty-eight patients were selected for conventional neural network training, 88 for generalizability testing, and 26 for the establishment of an automated trajectory planning algorithm. The model trained using preprocessed and multimodal neuroimaging displayed the best performance in diagnosing FCD (figure of merit = 0.827 and accuracy range = 75.0%-91.7% across centers). None of the clinical variables had a significant effect on prediction performance. Moreover, the automated trajectory was feasible and noninferior to the manual trajectory (χ2 = 3.540, P = .060) and significantly safer (overall: test statistic = 30.423, P < .001). CONCLUSION The integrated platform validated based on multicenter, prospective cohorts exhibited advantages of easy implementation, high performance, and generalizability, thereby indicating its potential in the diagnosis and minimally invasive treatment of FCD.
Collapse
Affiliation(s)
- Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Zhong Zheng
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Wenjing Zhou
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Haixiang Wang
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Junming Zhu
- Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Cohen NT, You X, Krishnamurthy M, Sepeta LN, Zhang A, Oluigbo C, Whitehead MT, Gholipour T, Baldeweg T, Wagstyl K, Adler S, Gaillard WD. Networks Underlie Temporal Onset of Dysplasia-Related Epilepsy: A MELD Study. Ann Neurol 2022; 92:503-511. [PMID: 35726354 PMCID: PMC10410674 DOI: 10.1002/ana.26442] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate if focal cortical dysplasia (FCD) co-localization to cortical functional networks is associated with the temporal distribution of epilepsy onset in FCD. METHODS International (20 center), retrospective cohort from the Multi-Centre Epilepsy Lesion Detection (MELD) project. Patients included if >3 years old, had 3D pre-operative T1 magnetic resonance imaging (MRI; 1.5 or 3 T) with radiologic or histopathologic FCD after surgery. Images processed using the MELD protocol, masked with 3D regions-of-interest (ROI), and co-registered to fsaverage_sym (symmetric template). FCDs were then co-localized to 1 of 7 distributed functional cortical networks. Negative binomial regression evaluated effect of FCD size, network, histology, and sulcal depth on age of epilepsy onset. From this model, predictive age of epilepsy onset was calculated for each network. RESULTS Three hundred eighty-eight patients had median age seizure onset 5 years (interquartile range [IQR] = 3-11 years), median age at pre-operative scan 18 years (IQR = 11-28 years). FCDs co-localized to the following networks: limbic (90), default mode (87), somatomotor (65), front parietal control (52), ventral attention (32), dorsal attention (31), and visual (31). Larger lesions were associated with younger age of onset (p = 0.01); age of epilepsy onset was associated with dominant network (p = 0.04) but not sulcal depth or histology. Sensorimotor networks had youngest onset; the limbic network had oldest age of onset (p values <0.05). INTERPRETATION FCD co-localization to distributed functional cortical networks is associated with age of epilepsy onset: sensory neural networks (somatomotor and visual) with earlier onset, and limbic latest onset. These variations may reflect developmental differences in synaptic/white matter maturation or network activation and may provide a biological basis for age-dependent epilepsy onset expression. ANN NEUROL 2022;92:503-511.
Collapse
Affiliation(s)
- Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Xiaozhen You
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Manu Krishnamurthy
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Leigh N Sepeta
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Anqing Zhang
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC
| | - Chima Oluigbo
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Department of Neurosurgery, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Matthew T Whitehead
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Department of Neuroradiology, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Taha Gholipour
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- George Washington University Epilepsy Center, The George Washington University School of Medicine, Washington, DC
| | - Torsten Baldeweg
- Great Ormond Street Institute for Child Health, University College of London, London, UK
| | | | - Sophie Adler
- Great Ormond Street Institute for Child Health, University College of London, London, UK
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| |
Collapse
|
10
|
Tang Y, Blümcke I, Su TY, Choi JY, Krishnan B, Murakami H, Alexopoulos AV, Najm IM, Jones SE, Wang ZI. Black Line Sign in Focal Cortical Dysplasia IIB: A 7T MRI and Electroclinicopathologic Study. Neurology 2022; 99:e616-e626. [PMID: 35940890 PMCID: PMC9442623 DOI: 10.1212/wnl.0000000000200702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES We aim to provide detailed imaging-electroclinicopathologic characterization of the black line sign, a novel MRI marker for focal cortical dysplasia (FCD) IIB. METHODS 7T T2*-weighted gradient-echo (T2*w-GRE) images were retrospectively reviewed in a consecutive cohort of patients with medically intractable epilepsy with pathology-proven FCD II, for the occurrence of the black line sign. We examined the overlap between the black line region and the seizure-onset zone (SOZ) defined by intracranial EEG (ICEEG) and additionally assessed whether complete inclusion of the black line region in the surgical resection was associated with postoperative seizure freedom. The histopathologic specimen was aligned with the MRI to investigate the pathologic underpinning of the black line sign. Region-of-interest-based quantitative MRI (qMRI) analysis on the 7T T1 map was performed in the black line region, entire lesional gray matter (GM), and contralateral/ipsilateral normal gray and white matter (WM). RESULTS We included 20 patients with FCD II (14 IIB and 6 IIA). The black line sign was identified in 12/14 (85.7%) of FCD IIB and 0/6 of FCD IIA on 7T T2*w-GRE. The black line region was highly concordant with the ICEEG-defined SOZ (5/7 complete and 2/7 partial overlap). Seizure freedom was seen in 8/8 patients whose black line region was completely included in the surgical resection; in the 2 patients whose resection did not completely include the black line region, both had recurring seizures. Inclusion of the black line region in the surgical resection was significantly associated with seizure freedom (p = 0.02). QMRI analyses showed that the T1 mean value of the black line region was significantly different from the WM (p < 0.001), but similar to the GM. Well-matched histopathologic slices in one case revealed accumulated dysmorphic neurons and balloon cells in the black line region. DISCUSSION The black line sign may serve as a noninvasive marker for FCD IIB. Both MRI-pathology and qMRI analyses suggest that the black line region was an abnormal GM component within the FCD. Being highly concordant with ICEEG-defined SOZ and significantly associated with seizure freedom when included in resection, the black line sign may contribute to the planning of ICEEG/surgery of patients with medically intractable epilepsy with FCD IIB. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in individuals with intractable focal epilepsy undergoing resection who have a 7T MRI with adequate image quality, the presence of the black line sign may suggest FCD IIB, be concordant with SOZ from ICEEG, and be associated with more seizure freedom if fully included in resection.
Collapse
Affiliation(s)
- Yingying Tang
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Ingmar Blümcke
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Ting-Yu Su
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Joon Yul Choi
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Balu Krishnan
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Hiroatsu Murakami
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Andreas V Alexopoulos
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Imad M Najm
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Stephen E Jones
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Zhong Irene Wang
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH.
| |
Collapse
|
11
|
Iimura Y, Mitsuhashi T, Suzuki H, Ueda T, Nishioka K, Otsubo H, Sugano H. Delineation of the epileptogenic zone by Phase-amplitude coupling in patients with Bottom of Sulcus Dysplasia. Seizure 2021; 94:23-25. [PMID: 34837729 DOI: 10.1016/j.seizure.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The removal of the bottom of sulcus dysplasia (BOSD) often includes the gyral crown; however, this method has been controversial. We hypothesized that the epileptogenic zone of the BOSD does not include the gyral crown. To reveal the depth and extent of the epileptogenic zone of the BOSD, we applied the two electrophysiological modalities: (1) the occurrence rate (OR) of high-frequency oscillations (HFOs) and (2) modulation index (MI), reflecting the strength of phase-amplitude coupling between HFOs and slow oscillations. METHODS We investigated the ripples [80-200 Hz] and fast ripples [200-300 Hz]) in HFOs and MI (HFOs [80-300 Hz] and slow oscillations [3-4 Hz]). We opened the sulcus at the BOSD and implanted the subdural electrodes directly over the MRI visible lesion. All patients (n = 3) underwent lesionectomy and the gyral crown was preserved. RESULTS Pathological findings demonstrated focal cortical dysplasia type IIb and seizure freedom was achieved. The OR of the HFOs was not significantly different between the BOSD and the gyral crown. In contrast, the MI between HFOs and slow oscillations in the BOSD was significantly higher than that in the gyral crown. CONCLUSION High MI values distinguished the epileptogenic BOSD from the non-epileptogenic gyral crowns. MI could be a more informative biomarker of epileptogenicity than the OR of HFOs in a subset of patients with the BOSD.
Collapse
Affiliation(s)
- Yasushi Iimura
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Tetsuya Ueda
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Kazuki Nishioka
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Hiroshi Otsubo
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan; Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Hidenori Sugano
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| |
Collapse
|
12
|
Radiofrequency thermocoagulation of the sulcus bottom in type II focal cortical dysplasia-related epilepsy with tapered implantation of electrodes: a case report. Acta Neurochir (Wien) 2021; 163:3045-3050. [PMID: 34499250 DOI: 10.1007/s00701-021-04998-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
We report a 15-year-old male patient with recurrent epileptic seizures for 12 years. Oral multiple drugs do not work well to his condition. MRI FLAIR scans revealed focal cortical dysplasia type II in the right parietal lobe. The diagnosis of the patient was drug-refractory epilepsy, FCD-related secondary epilepsy. According to the shape of the FCD lesion, electrodes were implanted in a tapered pattern along the bottom of the sulcus to completely destroy the focus. Magnetic resonance imaging at 6 months after surgery revealed that the FCD at the sulcus bottom was completely destroyed. After 26 months of follow-up, the patient had undergone no epileptic seizures, reaching Engel class I. For FCD that are located deep in the brain and adjacent to functional areas, craniotomy has a high risk. And stereoelectroencephalography-guided radiofrequency thermocoagulation may be a preferred treatment.
Collapse
|
13
|
Zhao B, Zhang C, Wang X, Wang Y, Liu C, Mo J, Zheng Z, Zhang K, Shao XQ, Hu W, Zhang J. Sulcus-centered resection for focal cortical dysplasia type II: surgical techniques and outcomes. J Neurosurg 2021; 135:266-272. [PMID: 32764170 DOI: 10.3171/2020.5.jns20751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022]
Abstract
Focal cortical dysplasia type II (FCD II) is a common histopathological substrate of epilepsy surgery. Here, the authors propose a sulcus-centered resection strategy for this malformation, provide technical details, and assess the efficacy and safety of this technique. The main purpose of the sulcus-centered resection is to remove the folded gray matter surrounding a dysplastic sulcus, particularly that at the bottom of the sulcus. The authors also retrospectively reviewed the records of 88 consecutive patients with FCD II treated with resective surgery between January 2015 and December 2018. The demographics, clinical characteristics, electrophysiological recordings, neuroimaging studies, histopathological findings, surgical outcomes, and complications were collected. After the exclusion of diffusely distributed and gyrus-based lesions, 71 patients (30 females, 41 males) who had undergone sulcus-centered resection were included in this study. The mean (± standard deviation) age of the cohort was 17.78 ± 10.54 years (38 pediatric patients, 33 adults). Thirty-five lesions (49%) were demonstrated on MRI; 42 patients (59%) underwent stereo-EEG monitoring before resective surgery; and 37 (52%) and 34 (48%) lesions were histopathologically proven to be FCD IIa and IIb, respectively. At a mean follow-up of 3.34 ± 1.17 years, 64 patients (90%) remained seizure free, and 7 (10%) had permanent neurological deficits including motor weakness, sensory deficits, and visual field deficits. The study findings showed that in carefully selected FCD II cases, sulcus-centered resection is an effective and safe surgical strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhong Zheng
- 4Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, People's Republic of China
| | - Kai Zhang
- Departments of1Neurosurgery and
- 2Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University
- 3Beijing Key Laboratory of Neurostimulation; and
| | - Xiao-Qiu Shao
- 5Neurology, Beijing Tiantan Hospital, Capital Medical University
| | - Wenhan Hu
- Departments of1Neurosurgery and
- 2Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University
- 3Beijing Key Laboratory of Neurostimulation; and
| | - Jianguo Zhang
- Departments of1Neurosurgery and
- 2Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University
- 3Beijing Key Laboratory of Neurostimulation; and
| |
Collapse
|
14
|
Macdonald-Laurs E, Maixner WJ, Bailey CA, Barton SM, Mandelstam SA, Yuan-Mou Yang J, Warren AEL, Kean MJ, Francis P, MacGregor D, D'Arcy C, Wrennall JA, Davidson A, Pope K, Leventer RJ, Freeman JL, Wray A, Jackson GD, Harvey AS. One-Stage, Limited-Resection Epilepsy Surgery for Bottom-of-Sulcus Dysplasia. Neurology 2021; 97:e178-e190. [PMID: 33947776 DOI: 10.1212/wnl.0000000000012147] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/31/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether 1-stage, limited corticectomy controls seizures in patients with MRI-positive, bottom-of-sulcus dysplasia (BOSD). METHODS We reviewed clinical, neuroimaging, electrocorticography (ECoG), operative, and histopathology findings in consecutively operated patients with drug-resistant focal epilepsy and MRI-positive BOSD, all of whom underwent corticectomy guided by MRI and ECoG. RESULTS Thirty-eight patients with a median age at surgery of 10.2 (interquartile range [IQR] 6.0-14.1) years were included. BOSDs involved eloquent cortex in 15 patients. Eighty-seven percent of patients had rhythmic spiking on preresection ECoG. Rhythmic spiking was present in 22 of 24 patients studied with combined depth and surface electrodes, being limited to the dysplastic sulcus in 7 and involving the dysplastic sulcus and gyral crown in 15. Sixty-eight percent of resections were limited to the dysplastic sulcus, leaving the gyral crown. Histopathology was focal cortical dysplasia (FCD) type IIb in 29 patients and FCDIIa in 9. Dysmorphic neurons were present in the bottom of the sulcus but not the top or the gyral crown in 17 of 22 patients. Six (16%) patients required reoperation for postoperative seizures and residual dysplasia; reoperation was not correlated with ECoG, neuroimaging, or histologic abnormalities in the gyral crown. At a median 6.3 (IQR 4.8-9.9) years of follow-up, 33 (87%) patients are seizure-free, 31 off antiseizure medication. CONCLUSION BOSD can be safely and effectively resected with MRI and ECoG guidance, corticectomy potentially being limited to the dysplastic sulcus, without need for intracranial EEG monitoring and functional mapping. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that 1-stage, limited corticectomy for BOSD is safe and effective for control of seizures.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Wirginia J Maixner
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Catherine A Bailey
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Sarah M Barton
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Simone A Mandelstam
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Joseph Yuan-Mou Yang
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Aaron E L Warren
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Michael J Kean
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Peter Francis
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Duncan MacGregor
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Colleen D'Arcy
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Jacquie A Wrennall
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Andrew Davidson
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Kate Pope
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Richard J Leventer
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Jeremy L Freeman
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Alison Wray
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Graeme D Jackson
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - A Simon Harvey
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|