1
|
Miraglia F, Cacciotti A, Vecchio F, Scarpelli S, Gorgoni M, De Gennaro L, Rossini PM. EEG brain networks modulation during sleep onset: the effects of aging. GeroScience 2024:10.1007/s11357-024-01473-w. [PMID: 39714568 DOI: 10.1007/s11357-024-01473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
The aim of the present study is to investigate differences in brain networks modulation during the pre- and post-sleep onset period, both within and between two groups of young and older individuals. Thirty-six healthy elderly and 40 young subjects participated. EEG signals were recorded during pre- and post-sleep onset periods and functional connectivity analysis, specifically focusing on the small world (SW) index, applied to EEG data (i.e., frequency bands) was examined. Significant differences in SW values were found between the pre-sleep and post-sleep onset phases in both young and older groups, with a reduction in the SW index in the theta band common to both groups. Additionally, an increase in the SW index in the beta band was exclusive to the elderly group during the post-sleep onset period, while an increase in the sigma band was exclusive to the young group. Furthermore, differences between the young and elderly groups were found during both phases, including a decrease in the SW index within the delta band, an increment in the sigma and beta bands in the elderly compared to the young group during the pre-sleep onset period, and a notable absence of sigma band modulation in the elderly group during the post-sleep onset condition. These findings provide insights into age-related changes in sleep-related brain network dynamics and their potential impact on sleep quality and cognitive functions, prompting interventions aimed at supporting healthy aging and addressing age-related cognitive decline.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | | | | | | | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| |
Collapse
|
2
|
Junges L, Galvis D, Winsor A, Treadwell G, Richards C, Seri S, Johnson S, Terry JR, Bagshaw AP. The impact of paediatric epilepsy and co-occurring neurodevelopmental disorders on functional brain networks in wake and sleep. PLoS One 2024; 19:e0309243. [PMID: 39186749 PMCID: PMC11346934 DOI: 10.1371/journal.pone.0309243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Epilepsy is one of the most common neurological disorders in children. Diagnosing epilepsy in children can be very challenging, especially as it often coexists with neurodevelopmental conditions like autism and ADHD. Functional brain networks obtained from neuroimaging and electrophysiological data in wakefulness and sleep have been shown to contain signatures of neurological disorders, and can potentially support the diagnosis and management of co-occurring neurodevelopmental conditions. In this work, we use electroencephalography (EEG) recordings from children, in restful wakefulness and sleep, to extract functional connectivity networks in different frequency bands. We explore the relationship of these networks with epilepsy diagnosis and with measures of neurodevelopmental traits, obtained from questionnaires used as screening tools for autism and ADHD. We explore differences in network markers between children with and without epilepsy in wake and sleep, and quantify the correlation between such markers and measures of neurodevelopmental traits. Our findings highlight the importance of considering the interplay between epilepsy and neurodevelopmental traits when exploring network markers of epilepsy.
Collapse
Affiliation(s)
- Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Galvis
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Alice Winsor
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Grace Treadwell
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, Keele University, Staffordshire, United Kingdom
| | - Caroline Richards
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Developmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stefano Seri
- Aston Institute of Health and Neurodevelopment, Aston University, Birmingham, United Kingdom
- Department of Clinical Neurophysiology, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | - Samuel Johnson
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Andrew P. Bagshaw
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Annarumma L, Reda F, Scarpelli S, D'Atri A, Alfonsi V, Salfi F, Viselli L, Pazzaglia M, De Gennaro L, Gorgoni M. Spatiotemporal EEG dynamics of the sleep onset process in preadolescence. Sleep Med 2024; 119:438-450. [PMID: 38781667 DOI: 10.1016/j.sleep.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND During preadolescence the sleep electroencephalography undergoes massive qualitative and quantitative modifications. Despite these relevant age-related peculiarities, the specific EEG pattern of the wake-sleep transition in preadolescence has not been exhaustively described. METHODS The aim of the present study is to characterize regional and temporal electrophysiological features of the sleep onset (SO) process in a group of 23 preadolescents (9-14 years) and to compare the topographical pattern of slow wave activity and delta/beta ratio of preadolescents with the EEG pattern of young adults. RESULTS Results showed in preadolescence the same dynamics known for adults, but with peculiarities in the delta and beta activity, likely associated with developmental cerebral modifications: the delta power showed a widespread increase during the SO with central maxima, and the lower bins of the beta activity showed a power increase after SO. Compared to adults, preadolescents during the SO exhibited higher delta power only in the slowest bins of the band: before SO slow delta activity was higher in prefrontal, frontal and occipital areas in preadolescents, and, after SO the younger group had higher slow delta activity in occipital areas. In preadolescents delta/beta ratio was higher in more posterior areas both before and after the wake-sleep transition and, after SO, preadolescents showed also a lower delta/beta ratio in frontal areas, compared to adults. CONCLUSION Results point to a general higher homeostatic drive for the developing areas, consistently with plastic-related maturational modifications, that physiologically occur during preadolescence.
Collapse
Affiliation(s)
- Ludovica Annarumma
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Flaminia Reda
- SIPRE, Società Italiana di psicoanalisi Della Relazione, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Lorenzo Viselli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Mariella Pazzaglia
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Maurizio Gorgoni
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
4
|
Lian J, Xu L, Song T, Peng Z, Zhang Z, An X, Chen S, Zhong X, Shao Y. Reduced Resting-State EEG Power Spectra and Functional Connectivity after 24 and 36 Hours of Sleep Deprivation. Brain Sci 2023; 13:949. [PMID: 37371427 DOI: 10.3390/brainsci13060949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Total sleep deprivation (TSD) leads to cognitive decline; however, the neurophysiological mechanisms underlying resting-state electroencephalogram (EEG) changes after TSD remain unclear. In this study, 42 healthy adult participants were subjected to 36 h of sleep deprivation (36 h TSD), and resting-state EEG data were recorded at baseline, after 24 h of sleep deprivation (24 h TSD), and after 36 h TSD. The analysis of resting-state EEG at baseline, after 24 h TSD, and after 36 h TSD using source localization analysis, power spectrum analysis, and functional connectivity analysis revealed a decrease in alpha-band power and a significant increase in delta-band power after TSD and impaired functional connectivity in the default mode network, precuneus, and inferior parietal lobule. The cortical activities of the precuneus, inferior parietal lobule, and superior parietal lobule were significantly reduced, but no difference was found between the 24 h and 36 h TSD groups. This may indicate that TSD caused some damage to the participants, but this damage temporarily slowed during the 24 h to 36 h TSD period.
Collapse
Affiliation(s)
- Jie Lian
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Tao Song
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Zheyuan Zhang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xin An
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Shufang Chen
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
5
|
Raciti L, Raciti G, Militi D, Tonin P, Quartarone A, Calabrò RS. Sleep in Disorders of Consciousness: A Brief Overview on a Still under Investigated Issue. Brain Sci 2023; 13:275. [PMID: 36831818 PMCID: PMC9954700 DOI: 10.3390/brainsci13020275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Consciousness is a multifaceted concept, involving both wakefulness, i.e., a condition of being alert that is regulated by the brainstem, and awareness, a subjective experience of any thoughts or perception or emotion. Recently, the European Academy of Neurology has published international guidelines for a better diagnosis of coma and other disorders of consciousness (DOC) through the investigation of sleep patterns, such as slow-wave and REM, and the study of the EEG using machine learning methods and artificial intelligence. The management of sleep disorders in DOC patients is an increasingly hot topic and deserves careful diagnosis, to allow for the most accurate prognosis and the best medical treatment possible. The aim of this review was to investigate the anatomo-physiological basis of the sleep/wake cycle, as well as the main sleep patterns and sleep disorders in patients with DOC. We found that the sleep characteristics in DOC patients are still controversial. DOC patients often present a theta/delta pattern, while epileptiform activity, as well as other sleep elements, have been reported as correlating with outcomes in patients with coma and DOC. The absence of spindles, as well as REM and K-complexes of NREM sleep, have been used as poor predictors for early awakening in DOC patients, especially in UWS patients. Therefore, sleep could be considered a marker of DOC recovery, and effective treatments for sleep disorders may either indirectly or directly favor recovery of consciousness.
Collapse
Affiliation(s)
| | | | - David Militi
- IRCCS Centro Neurolesi Bonino Pulejo, 98121 Messina, Italy
| | | | | | | |
Collapse
|
6
|
Song Y, Lian J, Wang K, Wen J, Luo Y. Changes in the cortical network during sleep stage transitions. J Neurosci Res 2023; 101:20-33. [PMID: 36148534 DOI: 10.1002/jnr.25125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022]
Abstract
Sleep state transitions are closely related to insomnia, drowsiness, and sleep maintenance. However, how the cortical network varies during such a transition process remains unclear. Changes in the cortical interaction during the short-term process of sleep stage transitions were investigated. In all, 40 healthy young participants underwent overnight polysomnography. The phase transfer entropy of six frequency bands was obtained from 16 electroencephalography channels to assess the strength and direction of information flow between the cortical regions. Differences in the cortical network between the first and the last 10 s in a 40-s transition period across wakefulness, N1, N2, N3, and rapid eye movement were, respectively, studied. Various frequency bands exhibited different patterns during the sleep stage transitions. It was found that the mutual transitions between the sleep stages were not necessarily the opposite. More significant changes were observed in the sleep deepening process than in the process of sleep awakening. During sleep stage transitions, changes in the inflow and outflow strength of various cortical regions led to regional differences, but for the entire sleep progress, such an imbalance did not intensify, and a dynamic balance was instead observed. The detailed findings of variations in cortical interactions during sleep stage transition promote understanding of sleep mechanism, sleep process, and sleep function. Additionally, it is expected to provide helpful clues for sleep improvement, like reducing the time required to fall asleep and maintaining sleep depth.
Collapse
Affiliation(s)
- Yingjie Song
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiakai Lian
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kejie Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Wen
- Psychology Department, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Hilditch CJ, Bansal K, Chachad R, Wong LR, Bathurst NG, Feick NH, Santamaria A, Shattuck NL, Garcia JO, Flynn-Evans EE. Reconfigurations in brain networks upon awakening from slow wave sleep: Interventions and implications in neural communication. Netw Neurosci 2023; 7:102-121. [PMID: 37334002 PMCID: PMC10270716 DOI: 10.1162/netn_a_00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/05/2022] [Indexed: 04/04/2024] Open
Abstract
Sleep inertia is the brief period of impaired alertness and performance experienced immediately after waking. Little is known about the neural mechanisms underlying this phenomenon. A better understanding of the neural processes during sleep inertia may offer insight into the awakening process. We observed brain activity every 15 min for 1 hr following abrupt awakening from slow wave sleep during the biological night. Using 32-channel electroencephalography, a network science approach, and a within-subject design, we evaluated power, clustering coefficient, and path length across frequency bands under both a control and a polychromatic short-wavelength-enriched light intervention condition. We found that under control conditions, the awakening brain is typified by an immediate reduction in global theta, alpha, and beta power. Simultaneously, we observed a decrease in the clustering coefficient and an increase in path length within the delta band. Exposure to light immediately after awakening ameliorated changes in clustering. Our results suggest that long-range network communication within the brain is crucial to the awakening process and that the brain may prioritize these long-range connections during this transitional state. Our study highlights a novel neurophysiological signature of the awakening brain and provides a potential mechanism by which light improves performance after waking.
Collapse
Affiliation(s)
- Cassie J. Hilditch
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Kanika Bansal
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- US DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, MD, USA
| | - Ravi Chachad
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Lily R. Wong
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Nicholas G. Bathurst
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Nathan H. Feick
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Amanda Santamaria
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia
| | - Nita L. Shattuck
- Operations Research Department, Naval Postgraduate School, Monterey, CA, USA
| | - Javier O. Garcia
- US DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, MD, USA
| | - Erin E. Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
8
|
Ning Y, Zheng S, Feng S, Li K, Jia H. Altered Functional Connectivity and Topological Organization of Brain Networks Correlate to Cognitive Impairments After Sleep Deprivation. Nat Sci Sleep 2022; 14:1285-1297. [PMID: 35873714 PMCID: PMC9296880 DOI: 10.2147/nss.s366224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Sleep deprivation (SD) has a detrimental effect on cognitive functions. Numerous studies have indicated the mechanisms underlying cognitive impairments after SD in brain networks. However, the findings based on the functional connectivity (FC) and topological architecture of brain networks are inconsistent. Methods In this study, we recruited 30 healthy participants with regular sleep (aged 25.20 ± 2.20 years). All participants performed the repeatable battery for the assessment of neuropsychological status and resting-state fMRI scans twice, during the rested wakefulness (RW) state and after 24 h of total SD. Using the Dosenbach atlas, both large-scale FC and topological features of brain networks (ie nodal, global and local efficiency) were calculated for the RW and SD states. Furthermore, the correlation analysis was conducted to explore the relationship between the changes in FC and topological features of brain networks and cognitive performances. Results Compared to the RW state, the large-scale brain network results showed decreased between-network FC in somatomotor network (SMN)-default mode network (DMN), SMN-frontoparietal network (FPN), and SMN-ventral attention network (VAN), and increased between-network FC in the dorsal attention network (DAN)-VAN, DAN-SMN after SD. The clustering coefficient, characteristic path length and local efficiency decreased after SD. Moreover, the decreased attention score positively correlated with the decreased topological measures and negatively correlated with the FC of DAN-SMN. Conclusion Our results suggested that the increased FC of DAN-SMN and decreased topological features of brain networks may act as neural indicators for the decrease in attention after SD. Clinical Trial Registration The study was registered at the Chinese Clinical Trial Registry, registration ID: ChiCTR2000039858, China.
Collapse
Affiliation(s)
- Yanzhe Ning
- The Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Sisi Zheng
- The Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Sitong Feng
- The Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Kuangshi Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hongxiao Jia
- The Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Wang J, Di H. Natural light exposure and circadian rhythm: a potential therapeutic approach for disorders of consciousness. Sleep 2022; 45:6571981. [DOI: 10.1093/sleep/zsac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jing Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University , Hangzhou , China
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University , Hangzhou , China
| |
Collapse
|
10
|
Fasiello E, Gorgoni M, Scarpelli S, Alfonsi V, Ferini Strambi L, De Gennaro L. Functional connectivity changes in insomnia disorder: A systematic review. Sleep Med Rev 2022; 61:101569. [PMID: 34902821 DOI: 10.1016/j.smrv.2021.101569] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Insomnia (ID) is the most common sleep disorder; however pathogenetic mechanisms underlying ID symptoms are not fully understood. Adopting a multifactorial view and considering ID a condition that involves interregional neuronal coordination would be useful to understand the ID pathophysiology. Functional connectivity (FC) may help to shed light on functional processes and neural correlates underlying ID symptoms. Despite a growing number of studies assessing FC anomalies, insight into ID pathophysiology is still fragmentary. This systematic review aims to search empirical evidence regarding FC changes in ID during resting-state. Thirty-one studies involving 1052 ID participants met the inclusion criteria for this review. Results suggested several associations between ID symptoms and impaired intra- and inter-hemispheric interactions of principal resting-state networks. Overall, evidence supported the hypothesis that a disrupted organization of the brain functional connectome characterizes ID, resulting in a decline in sleep, cognition, emotion, and memory. However, the wide methodological heterogeneity between reviewed studies and limitations in terms of study protocols and statistical approaches raised from this systematic review, makes it difficult to provide a univocal framework of ID pathophysiology. Future researches in this field should lead towards shared and rigorous search designs to ensure solid research evidence in the ID pathophysiology.
Collapse
Affiliation(s)
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza - University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza - University of Rome, Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza - University of Rome, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Luigi Ferini Strambi
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza - University of Rome, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
11
|
Cacciatore M, Magnani FG, Leonardi M, Rossi Sebastiano D, Sattin D. Sleep Treatments in Disorders of Consciousness: A Systematic Review. Diagnostics (Basel) 2021; 12:diagnostics12010088. [PMID: 35054255 PMCID: PMC8775271 DOI: 10.3390/diagnostics12010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022] Open
Abstract
Sleep disorders are among the main comorbidities in patients with a Disorder of Consciousness (DOC). Given the key role of sleep in neural and cognitive functioning, detecting and treating sleep disorders in DOCs might be an effective therapeutic strategy to boost consciousness recovery and levels of awareness. To date, no systematic reviews have been conducted that explore the effect of sleep treatments in DOCs; thus, we systematically reviewed the existing studies on both pharmacological and non-pharmacological treatments for sleep disorders in DOCs. Among 2267 assessed articles, only 7 were included in the systematic review. The studies focused on two sleep disorder categories (sleep-related breathing disorders and circadian rhythm dysregulation) treated with both pharmacological (Modafinil and Intrathecal Baclofen) and non-pharmacological (positive airway pressure, bright light stimulation, and central thalamic deep brain stimulation) interventions. Although the limited number of studies and their heterogeneity do not allow generalized conclusions, all the studies highlighted the effectiveness of treatments on both sleep disorders and levels of awareness. For this reason, clinical and diagnostic evaluations able to detect sleep disorders in DOC patients should be adopted in the clinical routine for the purpose of intervening promptly with the most appropriate treatment.
Collapse
Affiliation(s)
- Martina Cacciatore
- UOC Neurologia, Salute Pubblica, Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (M.L.)
| | - Francesca G. Magnani
- UOC Neurologia, Salute Pubblica, Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (M.L.)
- Correspondence: ; Tel.: +39-02-23942188
| | - Matilde Leonardi
- UOC Neurologia, Salute Pubblica, Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (M.L.)
| | - Davide Rossi Sebastiano
- Unità di Neurofisiopatologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Davide Sattin
- IRCCS Istituti Clinici Scientifici Maugeri di Milano, 20138 Milan, Italy;
| |
Collapse
|
12
|
Miraglia F, Vecchio F, Pellicciari MC, Cespon J, Rossini PM. Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex. Int J Neural Syst 2021; 32:2150056. [PMID: 34651550 DOI: 10.1142/s0129065721500568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evidence indicates that the transcranial direct current stimulation (tDCS) has the potential to transiently modulate cognitive function, including age-related changes in brain performance. Only a small number of studies have explored the interaction between the stimulation sites on the scalp, task performance, and brain network connectivity within the frame of physiological aging. We aimed to evaluate the spread of brain activation in both young and older adults in response to anodal tDCS applied to two different scalp stimulation sites: Prefrontal cortex (PFC) and posterior parietal cortex (PPC). EEG data were recorded during tDCS stimulation and evaluated using the Small World (SW) index as a graph theory metric. Before and after tDCS, participants performed a behavioral task; a performance accuracy index was computed and correlated with the SW index. Results showed that the SW index increased during tDCS of the PPC compared to the PFC at higher EEG frequencies only in young participants. tDCS at the PPC site did not exert significant effects on the performance, while tDCS at the PFC site appeared to influence task reaction times in the same direction in both young and older participants. In conclusion, studies using tDCS to modulate functional connectivity and influence behavior can help identify suitable protocols for the aging brain.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy.,eCampus University, Novedrate (Como), Italy
| | | | - Jesus Cespon
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy
| |
Collapse
|
13
|
Gorgoni M, Scarpelli S, Annarumma L, D’Atri A, Alfonsi V, Ferrara M, De Gennaro L. The Regional EEG Pattern of the Sleep Onset Process in Older Adults. Brain Sci 2021; 11:1261. [PMID: 34679326 PMCID: PMC8534130 DOI: 10.3390/brainsci11101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
Healthy aging is characterized by macrostructural sleep changes and alterations of regional electroencephalographic (EEG) sleep features. However, the spatiotemporal EEG pattern of the wake-sleep transition has never been described in the elderly. The present study aimed to assess the topographical and temporal features of the EEG during the sleep onset (SO) in a group of 36 older participants (59-81 years). The topography of the 1 Hz bins' EEG power and the time course of the EEG frequency bands were assessed. Moreover, we compared the delta activity and delta/beta ratio between the older participants and a group of young adults. The results point to several peculiarities in the elderly: (a) the generalized post-SO power increase in the slowest frequencies did not include the 7 Hz bin; (b) the alpha power revealed a frequency-specific pattern of post-SO modifications; (c) the sigma activity exhibited only a slight post-SO increase, and its highest bins showed a frontotemporal power decrease. Older adults showed a generalized reduction of delta power and delta/beta ratio in both pre- and post-SO intervals compared to young adults. From a clinical standpoint, the regional EEG activity may represent a target for brain stimulation techniques to reduce SO latency and sleep fragmentation.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | | | - Aurora D’Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.D.); (M.F.)
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.D.); (M.F.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| |
Collapse
|