1
|
Gamage NN, Liao WY, Hand BJ, Atherton PJ, Piasecki M, Opie GM, Semmler JG. Theta-gamma transcranial alternating current stimulation enhances ballistic motor performance in healthy young and older adults. Neurobiol Aging 2025; 152:1-12. [PMID: 40300218 DOI: 10.1016/j.neurobiolaging.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Theta-gamma transcranial alternating current stimulation (TG tACS) over primary motor cortex (M1) can improve ballistic motor performance in young adults, but the effect on older adults is unknown. This study investigated the effects of TG tACS on motor performance and M1 excitability in 18 young and 18 older adults. High-definition TG tACS (6 Hz theta, 75 Hz gamma) or sham tACS was applied over right M1 for 20 min during a ballistic left-thumb abduction motor training task performed in two experimental sessions. Motor performance was quantified as changes in movement acceleration during and up to 60 min after training. Transcranial magnetic stimulation (TMS) was used to assess changes in M1 excitability with motor-evoked potentials (MEP) and short-interval intracortical inhibition (SICI) before and after training. We found that TG tACS increased motor performance compared with sham tACS in young and older adults (P < 0.001), with greater effects for young adults (P = 0.01). The improved motor performance with TG tACS lasted at least 60 min after training in both age groups. Motor training was accompanied by greater MEP amplitudes with TG tACS compared to sham tACS in young and older adults (P < 0.001), but SICI did not vary between tACS sessions (P = 0.40). These findings indicate that TG tACS over M1 improves motor performance and alters training-induced changes in M1 excitability in healthy young and older adults. TG tACS may therefore be beneficial to alleviate motor deficits in the ageing population.
Collapse
Affiliation(s)
- Nishadi N Gamage
- Discipline of Physiology, School of Biomedicine, University of Adelaide, Australia; Centre of Metabolism, Ageing & Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, University of Nottingham, United Kingdom
| | - Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, University of Adelaide, Australia
| | - Brodie J Hand
- Discipline of Physiology, School of Biomedicine, University of Adelaide, Australia
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, University of Nottingham, United Kingdom
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, University of Nottingham, United Kingdom
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, University of Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, University of Adelaide, Australia.
| |
Collapse
|
2
|
Liao W, Hand B, Cirillo J, Sasaki R, Opie G, Goldsworthy M, Semmler J. Gamma Transcranial Alternating Current Stimulation Has Frequency-Dependent Effects on Human Motor Cortex Plasticity Induced by Theta-Burst Stimulation. Eur J Neurosci 2025; 61:e70018. [PMID: 39930653 PMCID: PMC11811485 DOI: 10.1111/ejn.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Long-term potentiation (LTP)-like plasticity in primary motor cortex (M1) induced by intermittent theta burst stimulation (iTBS) can be enhanced by transcranial alternating current stimulation (tACS) at a gamma frequency of 70 Hz. Recent evidence suggests that there is some frequency specificity in the effects of tACS on motor function within the midgamma band (60-90 Hz). The purpose of this study was to examine the effect of different tACS frequencies within the gamma band on the neuroplastic response to iTBS. Seventeen healthy young adults performed four experimental sessions, where iTBS was combined with different tACS conditions (60, 75 and 90 Hz, sham) over M1 using a tACS-iTBS costimulation approach. Motor evoked potential (MEP) amplitude and short-interval intracortical inhibition (SICI) were assessed from a hand muscle before and after the intervention using transcranial magnetic stimulation with posterior-anterior (PA) and anterior-posterior (AP) coil orientations. Gamma tACS-iTBS costimulation increased PA and AP MEPs when gamma tACS was applied at 90 Hz, but not at 75 or 60 Hz, compared with sham tACS. PA and AP SICI was reduced by tACS-iTBS costimulation, but this was not influenced by gamma tACS frequency. Gamma tACS can increase LTP-like plasticity when combined with iTBS over M1, with the largest effect observed when tACS was applied at higher gamma frequencies. The functional relevance of targeting higher gamma frequencies within different brain areas and study populations remains to be determined.
Collapse
Affiliation(s)
- Wei‐Yeh Liao
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| | - Brodie J. Hand
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| | - John Cirillo
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| | - Ryoki Sasaki
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Graduate Course of Health and Social ServicesKanagawa University of Human ServicesYokosukaJapan
| | - George M. Opie
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| | - Mitchell R. Goldsworthy
- Behaviour‐Brain‐Body Research Centre, Justice and SocietyUniversity of South AustraliaAdelaideAustralia
- Hopwood Centre for Neurobiology, Lifelong Health ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - John G. Semmler
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| |
Collapse
|
3
|
Morales Fajardo K, Yan X, Lungoci G, Casado Sánchez M, Mitsis GD, Boudrias MH. The Modulatory Effects of Transcranial Alternating Current Stimulation on Brain Oscillatory Patterns in the Beta Band in Healthy Older Adults. Brain Sci 2024; 14:1284. [PMID: 39766483 PMCID: PMC11675015 DOI: 10.3390/brainsci14121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the last few years, transcranial alternating current stimulation (tACS) has attracted attention as a promising approach to interact with ongoing oscillatory cortical activity and, consequently, to enhance cognitive and motor processes. While tACS findings are limited by high variability in young adults' responses, its effects on brain oscillations in older adults remain largely unexplored. In fact, the modulatory effects of tACS on cortical oscillations in healthy aging participants have not yet been investigated extensively, particularly during movement. This study aimed to examine the after-effects of 20 Hz and 70 Hz High-Definition tACS on beta oscillations both during rest and movement. Methods: We recorded resting state EEG signals and during a handgrip task in 15 healthy older participants. We applied 10 min of 20 Hz HD-tACS, 70 Hz HD-tACS or Sham stimulation for 10 min. We extracted resting-state beta power and movement-related beta desynchronization (MRBD) values to compare between stimulation frequencies and across time. Results: We found that 20 Hz HD-tACS induced a significant reduction in beta power for electrodes C3 and CP3, while 70 Hz did not have any significant effects. With regards to MRBD, 20 Hz HD-tACS led to more negative values, while 70 Hz HD-tACS resulted in more positive ones for electrodes C3 and FC3. Conclusions: These findings suggest that HD-tACS can modulate beta brain oscillations with frequency specificity. They also highlight the focal impact of HD-tACS, which elicits effects on the cortical region situated directly beneath the stimulation electrode.
Collapse
Affiliation(s)
- Kenya Morales Fajardo
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| | - Xuanteng Yan
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - George Lungoci
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Monserrat Casado Sánchez
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Georgios D. Mitsis
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| |
Collapse
|
4
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 PMCID: PMC11525577 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Tang Y, Xing Y, Sun L, Wang Z, Wang C, Yang K, Zhu W, Shi X, Xie B, Yin Y, Mi Y, Wei T, Tong R, Qiao Y, Yan S, Wei P, Yang Y, Shan Y, Zhang X, Jia J, Teipel SJ, Howard R, Lu J, Li C, Zhao G. TRanscranial AlterNating current stimulation FOR patients with mild Alzheimer's Disease (TRANSFORM-AD): a randomized controlled clinical trial. Alzheimers Res Ther 2024; 16:203. [PMID: 39267112 PMCID: PMC11395938 DOI: 10.1186/s13195-024-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.
Collapse
Affiliation(s)
- Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
| | - Yi Xing
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Liwei Sun
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhibin Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- The National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Xinrui Shi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Beijia Xie
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yingxin Mi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Renjie Tong
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuchen Qiao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Shaozhen Yan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jianping Jia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock & Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock, Germany
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Grigutsch LS, Haverland B, Timmsen LS, Asmussen L, Braaß H, Wolf S, Luu TV, Stagg CJ, Schulz R, Quandt F, Schwab BC. Differential effects of theta-gamma tACS on motor skill acquisition in young individuals and stroke survivors: A double-blind, randomized, sham-controlled study. Brain Stimul 2024; 17:1076-1085. [PMID: 39245294 DOI: 10.1016/j.brs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Theta-gamma transcranial alternating current stimulation (tACS) was recently found to enhance thumb acceleration in young, healthy participants, suggesting a potential role in facilitating motor skill acquisition. Given the relevance of motor skill acquisition in stroke rehabilitation, theta-gamma tACS may hold potential for treating stroke survivors. OBJECTIVE We aimed to examine the effects of theta-gamma tACS on motor skill acquisition in young, healthy participants and stroke survivors. METHODS In a pre-registered, double-blind, randomized, sham-controlled study, 78 young, healthy participants received either theta-gamma peak-coupled (TGP) tACS, theta-gamma trough-coupled (TGT) tACS or sham stimulation. 20 individuals with a chronic stroke received either TGP or sham. TACS was applied over motor cortical areas while participants performed an acceleration-dependent thumb movement task. Stroke survivors were characterized using standardized testing, with a subgroup receiving additional structural brain imaging. RESULTS Neither TGP nor TGT tACS significantly modified general motor skill acquisition in the young, healthy cohort. In contrast, in the stroke cohort, TGP diminished motor skill acquisition compared to sham. Exploratory analyses revealed that, independent of general motor skill acquisition, healthy participants receiving TGP or TGT exhibited greater peak thumb acceleration than those receiving sham. CONCLUSION Although theta-gamma tACS increased thumb acceleration in young, healthy participants, consistent with previous reports, it did not enhance overall motor skill acquisition in a more complex motor task. Furthermore, it even had detrimental effects on motor skill acquisition in stroke survivors.
Collapse
Affiliation(s)
- L S Grigutsch
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B Haverland
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L S Timmsen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Asmussen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Wolf
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T V Luu
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - R Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - B C Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
7
|
Shah M, Suresh S, Paddick J, Mellow ML, Rees A, Berryman C, Stanton TR, Smith AE. Age-related changes in responsiveness to non-invasive brain stimulation neuroplasticity paradigms: A systematic review with meta-analysis. Clin Neurophysiol 2024; 162:53-67. [PMID: 38579515 DOI: 10.1016/j.clinph.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES We aimed to summarise and critically appraise the available evidence for the effect of age on responsiveness to non-invasive brain stimulation (NBS) paradigms delivered to the primary motor cortex. METHODS Four databases (Medline, Embase, PsycINFO and Scopus) were searched from inception to February 7, 2023. Studies investigating age group comparisons and associations between age and neuroplasticity induction from NBS paradigms were included. Only studies delivering neuroplasticity paradigms to the primary motor cortex and responses measured via motor-evoked potentials (MEPs) in healthy adults were considered. RESULTS 39 studies, encompassing 40 experiments and eight NBS paradigms were included: paired associative stimulation (PAS; n = 12), repetitive transcranial magnetic stimulation (rTMS; n = 2), intermittent theta burst stimulation (iTBS; n = 8), continuous theta burst stimulation (cTBS; n = 7), transcranial direct and alternating current stimulation ((tDCS; n = 7; tACS; n = 2)), quadripulse stimulation (QPS; n = 1) and i-wave periodic transcranial magnetic stimulation (iTMS; n = 1). Pooled findings from PAS paradigms suggested older adults have reduced post-paradigm responses, although there was considerable heterogeneity. Mixed results were observed across all other NBS paradigms and post-paradigm timepoints. CONCLUSIONS/SIGNIFICANCE Whilst age-dependent reduction in corticospinal excitability is possible, there is extensive inter- and intra-individual variability both within and between studies, making it difficult to draw meaningful conclusions from pooled analyses.
Collapse
Affiliation(s)
- Mahima Shah
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Suraj Suresh
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Johanna Paddick
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia; Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI)
| | - Maddison L Mellow
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Amy Rees
- Discipline of Physiology, School of Biomedicine. The University of Adelaide, Adelaide 5000, Australia
| | - Carolyn Berryman
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; South Australian Health and Medical Research Institute (SAHMRI), North Tce, Adelaide 5000, Australia; IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Tasha R Stanton
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI); IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
8
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
9
|
Lu Q, Huang S, Zhang T, Song J, Dong M, Qian Y, Teng J, Wang T, He C, Shen Y. Age-related differences in long-term potentiation-like plasticity and short-latency afferent inhibition and their association with cognitive function. Gen Psychiatr 2024; 37:e101181. [PMID: 38390239 PMCID: PMC10882289 DOI: 10.1136/gpsych-2023-101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background The neurophysiological differences in cortical plasticity and cholinergic system function due to ageing and their correlation with cognitive function remain poorly understood. Aims To reveal the differences in long-term potentiation (LTP)-like plasticity and short-latency afferent inhibition (SAI) between older and younger individuals, alongside their correlation with cognitive function using transcranial magnetic stimulation (TMS). Methods The cross-sectional study involved 31 younger adults aged 18-30 and 46 older adults aged 60-80. All participants underwent comprehensive cognitive assessments and a neurophysiological evaluation based on TMS. Cognitive function assessments included evaluations of global cognitive function, language, memory and executive function. The neurophysiological assessment included LTP-like plasticity and SAI. Results The findings of this study revealed a decline in LTP among the older adults compared with the younger adults (wald χ2=3.98, p=0.046). Subgroup analysis further demonstrated a significant reduction in SAI level among individuals aged 70-80 years in comparison to both the younger adults (SAI(N20): (t=-3.37, p=0.018); SAI(N20+4): (t=-3.13, p=0.038)) and those aged 60-70 (SAI(N20): (t=-3.26, p=0.025); SAI(N20+4): (t=-3.69, p=0.006)). Conversely, there was no notable difference in SAI level between those aged 60-70 years and the younger group. Furthermore, after employing the Bonferroni correction, the correlation analysis revealed that only the positive correlation between LTP-like plasticity and language function (r=0.61, p<0.001) in the younger group remained statistically significant. Conclusions During the normal ageing process, a decline in synaptic plasticity may precede cholinergic system dysfunction. In individuals over 60 years of age, there is a reduction in LTP-like plasticity, while a decline in cholinergic system function is observed in those over 70. Thus, the cholinergic system may play a vital role in preventing cognitive decline during normal ageing. In younger individuals, LTP-like plasticity might represent a potential neurophysiological marker for language function.
Collapse
Affiliation(s)
- Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sisi Huang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Song
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Manyu Dong
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yilun Qian
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Teng
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Lai MH, Yu XM, Lu Y, Wang HL, Fu W, Zhou HX, Li YL, Hu J, Xia J, Hu Z, Shan CL, Wang F, Wang C. Effectiveness and brain mechanism of multi-target transcranial alternating current stimulation (tACS) on motor learning in stroke patients: study protocol for a randomized controlled trial. Trials 2024; 25:97. [PMID: 38291500 PMCID: PMC10826150 DOI: 10.1186/s13063-024-07913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has proven to be an effective treatment for improving cognition, a crucial factor in motor learning. However, current studies are predominantly focused on the motor cortex, and the potential brain mechanisms responsible for the therapeutic effects are still unclear. Given the interconnected nature of motor learning within the brain network, we have proposed a novel approach known as multi-target tACS. This study aims to ascertain whether multi-target tACS is more effective than single-target stimulation in stroke patients and to further explore the potential underlying brain mechanisms by using techniques such as transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI). METHODS This study employs a double-blind, sham-controlled, randomized controlled trial design with a 2-week intervention period. Both participants and outcome assessors will remain unaware of treatment allocation throughout the study. Thirty-nine stroke patients will be recruited and randomized into three distinct groups, including the sham tACS group (SS group), the single-target tACS group (ST group), and the multi-target tACS group (MT group), at a 1:1:1 ratio. The primary outcomes are series reaction time tests (SRTTs) combined with electroencephalograms (EEGs). The secondary outcomes include motor evoked potential (MEP), central motor conduction time (CMCT), short interval intracortical inhibition (SICI), intracortical facilitation (ICF), magnetic resonance imaging (MRI), Box and Block Test (BBT), and blood sample RNA sequencing. The tACS interventions for all three groups will be administered over a 2-week period, with outcome assessments conducted at baseline (T0) and 1 day (T1), 7 days (T2), and 14 days (T3) of the intervention phase. DISCUSSION The study's findings will determine the potential of 40-Hz tACS to improve motor learning in stroke patients. Additionally, it will compare the effectiveness of multi-target and single-target approaches, shedding light on their respective improvement effects. Through the utilization of techniques such as TMS and MRI, the study aims to uncover the underlying brain mechanisms responsible for the therapeutic impact. Furthermore, the intervention has the potential to facilitate motor learning efficiency, thereby contributing to the advancement of future stroke rehabilitation treatment. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300073465. Registered on 11 July 2023.
Collapse
Affiliation(s)
- Ming-Hui Lai
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Xiao-Ming Yu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yan Lu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Hong-Lin Wang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Wang Fu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Huan-Xia Zhou
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yuan-Li Li
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jun Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Jiayi Xia
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Zekai Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Chun-Lei Shan
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Cong Wang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China.
- Queensland Brain Institute, the University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
11
|
Löffler BS, Stecher HI, Meiser A, Fudickar S, Hein A, Herrmann CS. Attempting to counteract vigilance decrement in older adults with brain stimulation. FRONTIERS IN NEUROERGONOMICS 2023; 4:1201702. [PMID: 38234473 PMCID: PMC10790873 DOI: 10.3389/fnrgo.2023.1201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Introduction Against the background of demographic change and the need for enhancement techniques for an aging society, we set out to repeat a study that utilized 40-Hz transcranial alternating current stimulation (tACS) to counteract the slowdown of reaction times in a vigilance experiment but with participants aged 65 years and older. On an oscillatory level, vigilance decrement is linked to rising occipital alpha power, which has been shown to be downregulated using gamma-tACS. Method We applied tACS on the visual cortex and compared reaction times, error rates, and alpha power of a group stimulated with 40 Hz to a sham and a 5-Hz-stimulated control group. All groups executed two 30-min-long blocks of a visual task and were stimulated according to group in the second block. We hypothesized that the expected increase in reaction times and alpha power would be reduced in the 40-Hz group compared to the control groups in the second block (INTERVENTION). Results Statistical analysis with linear mixed models showed that reaction times increased significantly over time in the first block (BASELINE) with approximately 3 ms/min for the SHAM and 2 ms/min for the 5-Hz and 40-Hz groups, with no difference between the groups. The increase was less pronounced in the INTERVENTION block (1 ms/min for SHAM and 5-Hz groups, 3 ms/min for the 40-Hz group). Differences among groups in the INTERVENTION block were not significant if the 5-Hz or the 40-Hz group was used as the base group for the linear mixed model. Statistical analysis with a generalized linear mixed model showed that alpha power was significantly higher after the experiment (1.37 μV2) compared to before (1 μV2). No influence of stimulation (40 Hz, 5 Hz, or sham) could be detected. Discussion Although the literature has shown that tACS offers potential for older adults, our results indicate that findings from general studies cannot simply be transferred to an old-aged group. We suggest adjusting stimulation parameters to the neurophysiological features expected in this group. Next to heterogeneity and cognitive fitness, the influence of motivation and medication should be considered.
Collapse
Affiliation(s)
- Birte S. Löffler
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Heiko I. Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Arnd Meiser
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Sebastian Fudickar
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Hein
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Zhu Y, Wu D, Sun K, Chen X, Wang Y, He Y, Xiao W. Alpha and Theta Oscillations Are Causally Linked to Interference Inhibition: Evidence from High-Definition Transcranial Alternating Current Stimulation. Brain Sci 2023; 13:1026. [PMID: 37508958 PMCID: PMC10377194 DOI: 10.3390/brainsci13071026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The Go/NoGo task and color-word Stroop task were used to investigate the effect of applying different frequency bands of neural oscillations to the lDLPFC on inhibitory control modulation. (2) Methods: Participants were randomly categorized into four groups and received HD-tACS at 6, 10, and 20 Hz or sham stimulation at 1.5 mA for 20 min. All participants performed a color-word Stroop task and Go/NoGo task before and immediately after the stimulation; closed-eye resting-state EEG signals were acquired for 3 min before and after the tasks. (3) Results: There were no significant differences in the Go/NoGo behavioral indices task across the four groups. In the color-word Stroop task, the Stroop effect of response time was significantly reduced by 6 and 10 Hz stimulations compared to sham stimulation, and the Stroop effect of accuracy was significantly reduced by 10 Hz stimulation. There were no significant differences in the frequency range-specific (delta, theta, alpha, beta, or gamma) resting EEG power before and after stimulation. (4) Conclusions: HD-tACS at 6 and 10 Hz effectively improved participants' performance on the color-word Stroop task, demonstrating the importance of the lDLPFC in interference inhibition and supporting a causal relationship between theta and alpha oscillations in interference inhibition.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Di Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Kewei Sun
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Xianglong Chen
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yifan Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yang He
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Wei Xiao
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
13
|
Van Dam JM, Graetz L, Pitcher JB, Goldsworthy MR. The effects of age and biological sex on the association between I-wave recruitment and the response to cTBS: an exploratory study. Brain Res 2023; 1810:148359. [PMID: 37030620 DOI: 10.1016/j.brainres.2023.148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
The neuroplastic response to continuous theta burst stimulation (cTBS) is inherently variable. The measurement of I-wave latencies has been shown to strongly predict the magnitude and direction of the response to cTBS, whereby longer latencies are associated with stronger long-term depression-like responses. However, potential differences in this association relating to age and sex have not been explored. We performed cTBS and measured I-wave recruitment (via MEP latencies) in 66 participants (31 female) ranging in age from 11 to 78 years. The influence of age and sex on the association between I-wave recruitment and the response to cTBS was tested using linear regression models. In contrast to previous studies, there was not a significant association between I-wave latencies and cTBS response at the group level (p = 0.142, R2 = 0.033). However, there were interactions between I-waves and both age and sex when predicting cTBS response. Subgroup analysis revealed that preferential late I-wave recruitment predicted cTBS response in adolescent females, but not in adolescent or adult males or adult females. These data suggest that the generalisability of I-wave measurement in predicting the response to cTBS may be lower than initially believed. Prediction models should include age and sex, rather than I-wave latencies alone, as our findings suggest that, while each factor alone is not a strong predictor, these factors interact to influence the response to cTBS.
Collapse
Affiliation(s)
- Jago M Van Dam
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Lynton Graetz
- Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Julia B Pitcher
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia.
| |
Collapse
|
14
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
15
|
Guan A, Wang S, Huang A, Qiu C, Li Y, Li X, Wang J, Wang Q, Deng B. The role of gamma oscillations in central nervous system diseases: Mechanism and treatment. Front Cell Neurosci 2022; 16:962957. [PMID: 35966207 PMCID: PMC9374274 DOI: 10.3389/fncel.2022.962957] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
Gamma oscillation is the synchronization with a frequency of 30–90 Hz of neural oscillations, which are rhythmic electric processes of neuron groups in the brain. The inhibitory interneuron network is necessary for the production of gamma oscillations, but certain disruptions such as brain inflammation, oxidative stress, and metabolic imbalances can cause this network to malfunction. Gamma oscillations specifically control the connectivity between different brain regions, which is crucial for perception, movement, memory, and emotion. Studies have linked abnormal gamma oscillations to conditions of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Evidence suggests that gamma entrainment using sensory stimuli (GENUS) provides significant neuroprotection. This review discusses the function of gamma oscillations in advanced brain activities from both a physiological and pathological standpoint, and it emphasizes gamma entrainment as a potential therapeutic approach for a range of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ao Guan
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Shaoshuang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ailing Huang
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chenyue Qiu
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Yansong Li
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuying Li
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jinfei Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Qiang Wang,
| | - Bin Deng
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Bin Deng,
| |
Collapse
|
16
|
Liu B, Yan X, Chen X, Wang Y, Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng 2021; 18. [PMID: 34962233 DOI: 10.1088/1741-2552/ac3ef3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e. tACS. However, less is known about the interplay between the rhythmic stimulation and visual stimulation.Approach.Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20min 10Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS.Main results.Our result revealed that tACS boosted the 10Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min.Significance.Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xinyi Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
17
|
GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:48. [PMID: 34824891 PMCID: PMC8588888 DOI: 10.5334/tohm.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous inhibitory neurotransmitter critical to the control of movement both cortically and subcortically. Modulation of GABA can alter the characteristic rest as well as movement-related oscillatory activity in the alpha (8-12 Hz), beta (13-30 Hz, and gamma (60-90 Hz) frequencies, but the specific mechanisms by which GABAergic modulation can modify these well-described changes remains unclear. Through pharmacologic GABAergic modulation and evaluation across the age spectrum, the contributions of GABA to these characteristic oscillatory activities are beginning to be understood. Here, we review how baseline GABA signaling plays a key role in motor networks and in cortical oscillations detected by scalp electroencephalography and magnetoencephalography. We also discuss the data showing specific alterations to baseline movement related oscillatory changes from pharmacologic intervention on GABAergic tone as well as with healthy aging. These data provide greater insight into the physiology of movement and may help improve future development of novel therapeutics for patients who suffer from movement disorders.
Collapse
|
18
|
Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 2021; 239:2661-2678. [PMID: 34269850 DOI: 10.1007/s00221-021-06163-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.
Collapse
|
19
|
Guerra A, Colella D, Giangrosso M, Cannavacciuolo A, Paparella G, Fabbrini G, Suppa A, Berardelli A, Bologna M. Driving motor cortex oscillations modulates bradykinesia in Parkinson's disease. Brain 2021; 145:224-236. [PMID: 34245244 DOI: 10.1093/brain/awab257] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
In Parkinson's disease (PD) patients, beta (β) and gamma (γ) oscillations are altered in the basal ganglia, and this abnormality contributes to the pathophysiology of bradykinesia. However, it is unclear whether β and γ rhythms at the primary motor cortex (M1) level influence bradykinesia. Transcranial alternating current stimulation (tACS) can modulate cortical rhythms by entraining endogenous oscillations. We tested whether β- and γ-tACS on M1 modulate bradykinesia in PD patients by analyzing the kinematic features of repetitive finger tapping, including movement amplitude, velocity, and sequence effect, recorded during β-, γ-, and sham tACS. We also verified whether possible tACS-induced bradykinesia changes depended on modifications in specific M1 circuits, as assessed by short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). Patients were studied OFF and ON dopaminergic therapy. Results were compared to those obtained in a group of healthy subjects (HS). In patients, movement velocity significantly worsened during β-tACS and movement amplitude improved during γ-tACS, while the sequence effect did not change. In addition, SAI decreased (reduced inhibition) during β-tACS and SICI decreased during both γ- and β-tACS in PD. The effects of tACS were comparable between OFF and ON sessions. In patients OFF therapy, the degree of SICI modulation during β- and γ-tACS correlated with movement velocity and amplitude changes. Moreover, there was a positive correlation between the effect of γ-tACS on movement amplitude and motor symptoms severity. Our results show that cortical β and γ oscillations are relevant in the pathophysiology of bradykinesia in PD and that changes in inhibitory GABA-A-ergic interneuronal activity may reflect compensatory M1 mechanisms to counteract bradykinesia. In conclusion, abnormal oscillations at the M1 level of the basal ganglia-thalamo-cortical network play a relevant role in the pathophysiology of bradykinesia in PD.
Collapse
Affiliation(s)
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | | | | | | | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Italy
| |
Collapse
|
20
|
Semmler JG, Opie GM. Boosting brain plasticity in older adults with non-invasive brain co-stimulation. Clin Neurophysiol 2021; 132:1334-1335. [PMID: 33832844 DOI: 10.1016/j.clinph.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Affiliation(s)
- John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.
| | - George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
21
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|