1
|
Ramírez Maldonado V, Navas Acosta J, Maldonado Marcos I, Villaverde Ramiro Á, Hernández-Sánchez A, Hernández Rivas JM, Benito Sánchez R. Unraveling the Genetic Heterogeneity of Acute Lymphoblastic Leukemia Based on NGS Applications. Cancers (Basel) 2024; 16:3965. [PMID: 39682152 DOI: 10.3390/cancers16233965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological neoplasm characterized by the clonal expansion of abnormal lymphoid precursors in bone marrow, which leads to alterations in the processes of cell differentiation and maturation as a consequence of genetic alterations. The integration of conventional methods, such as cytogenetics and immunophenotyping, and next-generation sequencing (NGS) has led to significant improvements at diagnosis and patient stratification; this has also allowed the discovery of several novel molecular entities with specific genetic variants that may drive the processes of leukemogenesis. Nevertheless, the understanding of the process of leukemogenesis remains a challenge since this disease persists as the most frequent cancer in children; it accounts for approximately one-quarter of adult acute leukemias, and the patient management may take into consideration the high intra- and inter-tumor heterogeneity and the relapse risk due to the various molecular events that can occur during clonal evolution. Some germline variants have been identified as risk factors or have been found to be related to the response to treatment. Therefore, better knowledge of the genetic alterations in B-ALL will have a prognostic impact from the perspective of personalized medicine. This review aims to compare, synthesize, and highlight recent findings concerning ALL obtained through NGS that have led to a better understanding of new molecular subtypes based on immunophenotypic characteristics, mutational profiles, and expression profiles.
Collapse
Affiliation(s)
- Valentina Ramírez Maldonado
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Josgrey Navas Acosta
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Iván Maldonado Marcos
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ángela Villaverde Ramiro
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Hernández-Sánchez
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Jesús M Hernández Rivas
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Rocío Benito Sánchez
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Wu Z, Song Q, Liu M, Hu Y, Peng X, Zhang Z, Yao X, Peng Q. Deciphering the role of HLF in idiopathic orbital inflammation: integrative analysis via bioinformatics and machine learning techniques. Sci Rep 2024; 14:19346. [PMID: 39164324 PMCID: PMC11336107 DOI: 10.1038/s41598-024-68890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Idiopathic orbital inflammation, formerly known as NSOI (nonspecific orbital inflammation), is characterized as a spectrum disorder distinguished by the polymorphic infiltration of lymphoid tissue, presenting a complex and poorly understood etiology. Recent advancements have shed light on the HLF (Human lactoferrin), proposing its critical involvement in the regulation of hematopoiesis and the maintenance of innate mucosal immunity. This revelation has generated significant interest in exploring HLF's utility as a biomarker for NSOI, despite the existing gaps in our understanding of its biosynthetic pathways and operational mechanisms. Intersecting multi-omic datasets-specifically, common differentially expressed genes between GSE58331 and GSE105149 from the Gene Expression Omnibus and immune-related gene compendiums from the ImmPort database-we employed sophisticated analytical methodologies, including Lasso regression and support vector machine-recursive feature elimination, to identify HLF. Gene set enrichment analysis and gene set variation analysis disclosed significant immune pathway enrichment within gene sets linked to HLF. The intricate relationship between HLF expression and immunological processes was further dissected through the utilization of CIBERSORT and ESTIMATE algorithms, which assess characteristics of the immune microenvironment, highlighting a noteworthy association between increased HLF expression and enhanced immune cell infiltration. The expression levels of HLF were corroborated using data from the GSE58331 dataset, reinforcing the validity of our findings. Analysis of 218 HLF-related differentially expressed genes revealed statistically significant discrepancies. Fifteen hub genes were distilled using LASSO and SVM-RFE algorithms. Biological functions connected with HLF, such as leukocyte migration, ossification, and the negative regulation of immune processes, were illuminated. Immune cell analysis depicted a positive correlation between HLF and various cells, including resting mast cells, activated NK cells, plasma cells, and CD8 T cells. Conversely, a negative association was observed with gamma delta T cells, naive B cells, M0 and M1 macrophages, and activated mast cells. Diagnostic assessments of HLF in distinguishing NSOI showed promising accuracy. Our investigation delineates HLF as intricately associated with NSOI, casting light on novel biomarkers for diagnosis and progression monitoring of this perplexing condition.
Collapse
Affiliation(s)
- Zixuan Wu
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qiujie Song
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Meiling Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yi Hu
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xin Peng
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Zheyuan Zhang
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaolei Yao
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China.
| | - Qinghua Peng
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China.
| |
Collapse
|
3
|
Yao Y, Zhou J, Li Y, Shi S, Yu L, Wu D, Wang Y. CD19 CAR T-cell therapy in relapsed TCF3-HLF-positive B-cell acute lymphoblastic leukemia. Ann Hematol 2024:10.1007/s00277-024-05945-z. [PMID: 39145779 DOI: 10.1007/s00277-024-05945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Yao Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jin Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanting Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sensen Shi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Yu
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Bell HL, Blair HJ, Jepson Gosling SJ, Galler M, Astley D, Moorman AV, Heidenreich O, Veal GJ, van Delft FW, Lunec J, Irving JAE. Combination p53 activation and BCL-x L/BCL-2 inhibition as a therapeutic strategy in high-risk and relapsed acute lymphoblastic leukemia. Leukemia 2024; 38:1223-1235. [PMID: 38600316 PMCID: PMC11147763 DOI: 10.1038/s41375-024-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Due to the rarity of TP53 mutations in acute lymphoblastic leukemia (ALL), p53 re-activation by antagonism of the p53-MDM2 interaction represents a potential therapeutic strategy for the majority of ALL. Here, we demonstrate the potent antileukemic activity of the MDM2 antagonist idasanutlin in high-risk and relapsed ex vivo coculture models of TP53 wildtype ALL (n = 40). Insufficient clinical responses to monotherapy MDM2 inhibitors in other cancers prompted us to explore optimal drugs for combination therapy. Utilizing high-throughput combination screening of 1971 FDA-approved and clinically advanced compounds, we identified BCL-xL/BCL-2 inhibitor navitoclax as the most promising idasanutlin combination partner. The idasanutlin-navitoclax combination was synergistically lethal to prognostically-poor, primary-derived and primary patient blasts in ex vivo coculture, and reduced leukemia burden in two very high-risk ALL xenograft models at drug concentrations safely attained in patients; in fact, the navitoclax plasma concentrations were equivalent to those attained in contemporary "low-dose" navitoclax clinical trials. We demonstrate a preferential engagement of cell death over G1 cell cycle arrest, mechanistically implicating MCL-1-binding pro-apoptotic sensitizer NOXA. The proposed combination of two clinical-stage compounds independently under clinical evaluation for ALL is of high clinical relevance and warrants consideration for the treatment of patients with high-risk and relapsed ALL.
Collapse
Affiliation(s)
- Hayden L Bell
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Helen J Blair
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Samantha J Jepson Gosling
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Martin Galler
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Daniel Astley
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Gareth J Veal
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Frederik W van Delft
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - John Lunec
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Julie A E Irving
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Gottardi F, Baccelli F, Leardini D, Di Battista A, Castellucci P, D'Amico D, Serravalle S, Bertuccio SN, Messelodi D, Prete A, Masetti R. Successful treatment of a chemotherapy-resistant t(17;19) paediatric ALL with a combination of inotuzumab, venetoclax and navitoclax. Br J Haematol 2023; 202:e39-e42. [PMID: 37350036 DOI: 10.1111/bjh.18936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Francesca Gottardi
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonia Di Battista
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Domenico D'Amico
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Salvatore Serravalle
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Daria Messelodi
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Takahashi N, Mochizuki K, Kobayashi S, Ohara Y, Kudo S, Saito Y, Ikeda K, Ohto H, Kikuta A, Sano H. T-Cell-Replete Haploidentical Hematopoietic Stem Cell Transplantation for a Patient With Tcf3-Hlf-Positive Acute Lymphoblastic Leukemia Extramedullary Relapse After Unrelated Bone Marrow Transplantation. J Pediatr Hematol Oncol 2023; 45:e419-e422. [PMID: 36162014 DOI: 10.1097/mph.0000000000002555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
TCF3-HLF-positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has an extremely poor prognosis. A 2-year-old boy with TCF3-HLF-positive BCP-ALL had an isolated extramedullary relapse in multiple bones after allogeneic hematopoietic stem cells transplantation (HSCT) from a human leukocyte antigen-matched unrelated donor. In this study, he received a T-cell-replete haploidentical HSCT (TCR-haplo-HSCT) from his father when in nonremission state, which resulted in a sustained complete remission for over 3 years. Immune therapies for patients with an extramedullary relapse of TCF3-HLF-positive BCP-ALL have been attempted; however, long-term efficacies of these therapies remain unknown. Our TCR-haplo-HSCT may be an effective therapeutic option for such patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuya Saito
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kazuhiko Ikeda
- Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima
| | - Hitoshi Ohto
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | | | | |
Collapse
|
7
|
Fergusson NJ, Adeel K, Kekre N, Atkins H, Hay KA. A systematic review and meta-analysis of CD22 CAR T-cells alone or in combination with CD19 CAR T-cells. Front Immunol 2023; 14:1178403. [PMID: 37180149 PMCID: PMC10174241 DOI: 10.3389/fimmu.2023.1178403] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cells are an emerging therapy for the treatment of relapsed/refractory B-cell malignancies. While CD19 CAR-T cells have been FDA-approved, CAR T-cells targeting CD22, as well as dual-targeting CD19/CD22 CAR T-cells, are currently being evaluated in clinical trials. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of CD22-targeting CAR T-cell therapies. We searched MEDLINE, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials from inception to March 3rd 2022 for full-length articles and conference abstracts of clinical trials employing CD22-targeting CAR T-cells in acute lymphocytic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The primary outcome was best complete response (bCR). A DerSimonian and Laird random-effects model with arcsine transformation was used to pool outcome proportions. From 1068 references screened, 100 were included, representing 30 early phase studies with 637 patients, investigating CD22 or CD19/CD22 CAR T-cells. CD22 CAR T-cells had a bCR of 68% [95% CI, 53-81%] in ALL (n= 116), and 64% [95% CI, 46-81%] in NHL (n= 28) with 74% and 96% of patients having received anti-CD19 CAR T-cells previously in ALL and NHL studies respectively. CD19/CD22 CAR T-cells had a bCR rate of 90% [95% CI, 84-95%] in ALL (n= 297) and 47% [95% CI, 34-61%] in NHL (n= 137). The estimated incidence of total and severe (grade ≥3) CRS were 87% [95% CI, 80-92%] and 6% [95% CI, 3-9%] respectively. ICANS and severe ICANS had an estimated incidence of 16% [95% CI, 9-25%] and 3% [95% CI, 1-5%] respectively. Early phase trials of CD22 and CD19/CD22 CAR T-cells show high remission rates in ALL and NHL. Severe CRS or ICANS were (1)rare and dual-targeting did not increase toxicity. Variability in CAR construct, dose, and patient factors amongst studies limits comparisons, with long-term outcomes yet to be reported. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42020193027.
Collapse
Affiliation(s)
- Nathan J. Fergusson
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Komal Adeel
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Natasha Kekre
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Division of Hematology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Harold Atkins
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Hematology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Kevin A. Hay
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
- Vancouver General Hospital, Leukemia and Bone Marrow Transplant Program of British Columbia, Vancouver, BC, Canada
- *Correspondence: Kevin A. Hay,
| |
Collapse
|
8
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|