1
|
Raz C, Tzirkel-Hancock N, Shemesh M, Argov-Argaman N. The role of structure in the interaction between bacteria, mammary epithelial cells and milk fat globules from raw or "cultured" milk. Food Chem 2024; 467:142244. [PMID: 39637660 DOI: 10.1016/j.foodchem.2024.142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/05/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
The study aimed to distinguish between the role played by the structural properties of MFG from its chemical composition in modulating its interaction with pathogenic and commensal bacteria. MFG from mammary gland epithelial cells (MEC) or raw milk was tested. Small MFG from both sources promoted growth of B.subtilis while large MFG triggered biofilm formation. Metabolomic profiles supported these findings for MEC-derived MFG. In contrast, pathogenic bacteria like E. coli weren't affected by MFG size from both sources. Using lipid mixture formulated to mimic the chemical composition of small MFG did not induce growth of the bacteria. Results validate that (i) milk components secreted by MEC share some structural-functional properties with raw MFG and (ii) the structure of the MFG plays a pivotal role in modulating the interaction between milk fat and bacteria. Taken together, MFG size variations may provide a competitive advantage to commensal bacteria as a protective mechanism.
Collapse
Affiliation(s)
- C Raz
- Animal Science Department, The faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Israel; Agriculture Research Organization, Rishon LeZion, Israel.
| | - N Tzirkel-Hancock
- Animal Science Department, The faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Israel.
| | - M Shemesh
- Agriculture Research Organization, Rishon LeZion, Israel.
| | - N Argov-Argaman
- Animal Science Department, The faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
2
|
Fitzpatrick CJ, Freitas D, O’Callaghan TF, O’Mahony JA, Brodkorb A. Variations in Bovine Milk Proteins and Processing Conditions and Their Effect on Protein Digestibility in Humans: A Review of In Vivo and In Vitro Studies. Foods 2024; 13:3683. [PMID: 39594097 PMCID: PMC11594227 DOI: 10.3390/foods13223683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Bovine milk proteins account for 10% of the global protein supply, which justifies the importance of thoroughly understanding their digestive processes. Extensive research on digestion is being conducted both in vivo and in vitro. However, interpretations and comparisons across different studies require a thorough understanding of the methodologies used. Both the rate and extent of milk protein digestion can be affected by several intrinsic and extrinsic factors with potential implications for overall digestibility and physiological responses. Among intrinsic factors, the impact of genetic variants in native milk proteins has emerged as a growing research area. To these, further complexity is added by the processing conditions frequently applied to milk prior to consumption. The main aim of this work is to provide an overview of the current knowledge on the impact of variations in milk protein profiles (particularly whey: casein ratio and protein polymorphisms), the treatments applied during processing (pasteurisation, homogenisation) and consumption (temperature changes) on protein digestion. To support the interpretation of the current literature, this manuscript also presents a historical perspective into research in this field and summarizes the protocols that are most frequently used, presently, on in vitro digestion studies.
Collapse
Affiliation(s)
- Conor J. Fitzpatrick
- Teagasc, Moorepark Research Centre, Fermoy, Co., P61 C996 Cork, Ireland; (C.J.F.)
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland
- Vistamilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Daniela Freitas
- Teagasc, Moorepark Research Centre, Fermoy, Co., P61 C996 Cork, Ireland; (C.J.F.)
| | - Tom F. O’Callaghan
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland
- Vistamilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - James A. O’Mahony
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland
- Vistamilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - André Brodkorb
- Teagasc, Moorepark Research Centre, Fermoy, Co., P61 C996 Cork, Ireland; (C.J.F.)
- Vistamilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| |
Collapse
|
3
|
Charton E, Menard O, Cochet MF, Le Gouar Y, Jardin J, Henry G, Ossemond J, Bellanger A, Montoya CA, Moughan PJ, Dupont D, Le Huërou-Luron I, Deglaire A. Human milk vs. Infant formula digestive fate: In vitro dynamic digestion and in vivo mini-piglet models lead to similar conclusions. Food Res Int 2024; 196:115070. [PMID: 39614495 DOI: 10.1016/j.foodres.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
Infant formula (IF), the only nutritionally adequate substitute for human milk (HM), still needs to be improved to be more biomimetic with HM, including in terms of digestive fate. The latter can be explored using different digestion models. The present study aimed to compare IF and HM digestion using in vivo (mini-piglet) and in vitro (dynamic system, DIDGI®) models. Fresh mature HM was collected and compared with a standard bovine IF. In vivo, 18 Yucatan mini-piglets (24-day-old) received HM or IF and were euthanized 30 min after the last meal. The entire digestive content was collected from the stomach to the colon. In vitro, the same meals were fed to an in vitro dynamic digestion model simulating the term infant at four weeks of age. Digesta were sampled regularly in the gastric and intestinal compartments. Structure (confocal microscopy and laser light scattering) and proteolysis (SDS-PAGE for residual intact proteins, OPA for hydrolysis degree, LC-MS/MS for peptides) were investigated along digestion. The digesta microstructure differed between HM and IF in a similar way between in vitro and in vivo digestion. In vitro gastric proteolysis of caseins and α-lactalbumin was significantly slower for HM than for IF, such as for the early intestinal proteolysis degree. In vitro bioaccessibility of free AAs explained only 30 % of the true ileal digestibility of AAs. Peptide mapping of caseins differed between HM and IF along their digestion. The relative peptide mapping data over six proteins from HM and IF were highly correlated between in vitro and in vivo digestion, particularly at 80 and 120 min of in vitro gastric digestion vs. in vivo stomach data and at 20 and 40 min of in vitro intestinal digestion vs. in vivo proximal jejunum data (r = 0.7-0.9, p < 0.0001, n = 1604). 40 to 50 % of the bioactive peptides identified in vivo were also found in vitro, with a good correlation of their abundances (r = 0.5, p < 0.0001, n = 61). Overall, in vitro and in vivo digestion were in good agreement, both indicating a different digestive fate for HM and IF.
Collapse
Affiliation(s)
- Elise Charton
- STLO, L'Institut Agro, INRAE, 35042 Rennes, France; Institut NuMeCan, INRAE, INSERM, Univ Rennes, 35590 Saint Gilles, France.
| | | | | | | | | | | | | | - Amandine Bellanger
- CHU Rennes, Pediatrics Department, 35000 Rennes, France; University of Rennes, Faculty of Medicine, 35000 Rennes, France; CHU Rennes, CIC-Inserm 1414, 35000 Rennes, France
| | - Carlos A Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand; Smart Foods Innovation and Bioproducts Group, AgResearch Limited, Palmerston North, New Zealand.
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
4
|
Gharbi N, Stone D, Fittipaldi N, Unger S, O'Connor DL, Pouliot Y, Doyen A. Application of pressure homogenization on whole human milk pasteurized by high hydrostatic pressure: Effect on protein aggregates in milk fat globule membrane and skim milk phases. Food Chem 2024; 455:139863. [PMID: 38823140 DOI: 10.1016/j.foodchem.2024.139863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
This study explored the impact of homogenization (at pressures of 16, 30, and 45 MPa) on both raw and high hydrostatic pressure (HHP)-treated human milk (HM). It focused on protein compositions and binding forces of soluble and insoluble fractions for both milk fat globule membrane (MFGM) and skim milk. Mild homogenization of HHP-treated milk increased lactoferrin (LF) levels in the insoluble fractions of both MFGM and skim milk, due to insoluble aggregation through hydrophobic interactions. Intense homogenization of HHP-treated milk decreased the LF level in the MFGM fractions due to the LF desorption from the MFGM, which increased LF level in the insoluble skim milk fraction. Homogenized-HHP treated milk showed noticeably higher casein (CN) level at the MFGM compared to homogenized-raw milk, attributed to HHP effect on CN micelles. Overall, the combined use of HHP and shear-homogenization should be avoided as it increased the biological proteins in insoluble fractions.
Collapse
Affiliation(s)
- Negar Gharbi
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Debbie Stone
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada
| | - Nahuel Fittipaldi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada; Public Health Ontario, Toronto, Ontario, Canada
| | - Sharon Unger
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Canada,; Department of Pediatrics, University of Toronto, Toronto, Canada; Department of Pediatrics, Sinai Health, Toronto, Canada
| | - Deborah L O'Connor
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Canada,; Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatrics, Sinai Health, Toronto, Canada
| | - Yves Pouliot
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Alain Doyen
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada.
| |
Collapse
|
5
|
Ozturk G, Paviani B, Rai R, Robinson RC, Durham SD, Baller MI, Wang A, Nitin N, Barile D. Investigating Milk Fat Globule Structure, Size, and Functionality after Thermal Processing and Homogenization of Human Milk. Foods 2024; 13:1242. [PMID: 38672914 PMCID: PMC11049580 DOI: 10.3390/foods13081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk provides bioactive compounds such as milk fat globules (MFGs), which promote brain development, modulate the immune system, and hold antimicrobial properties. To ensure microbiological safety, donor milk banks apply heat treatments. This study compares the effects of heat treatments and homogenization on MFG's physicochemical properties, bioactivity, and bioavailability. Vat pasteurization (Vat-PT), retort (RTR), and ultra-high temperature (UHT) were performed with or without homogenization. UHT, RTR, and homogenization increased the colloidal dispersion of globules, as indicated by increased zeta potential. The RTR treatment completely inactivated xanthine oxidase activity (a marker of MFG bioactivity), whereas UHT reduced its activity by 93%. Interestingly, Vat-PT resulted in less damage, with 28% activity retention. Sialic acid, an important compound for brain health, was unaffected by processing. Importantly, homogenization increased the in vitro lipolysis of MFG, suggesting that this treatment could increase the digestibility of MFG. In terms of color, homogenization led to higher L* values, indicating increased whiteness due to finer dispersion of the fat and casein micelles (and thus greater light scattering), whereas UHT and RTR increased b* values associated with Maillard reactions. This study highlights the nuanced effects of processing conditions on MFG properties, emphasizing the retention of native characteristics in Vat-PT-treated human milk.
Collapse
Affiliation(s)
- Gulustan Ozturk
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Rewa Rai
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Sierra D. Durham
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Mara I. Baller
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Infantes-Garcia MR, Verkempinck SHE, Carriére F, Hendrickx ME, Grauwet T. Pre-duodenal lipid digestion of emulsions: Relevance, colloidal aspects and mechanistic insight. Food Res Int 2023; 168:112785. [PMID: 37120232 DOI: 10.1016/j.foodres.2023.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The digestion of lipids in the human body has several health and nutritional implications. Lipid digestion is an interfacial phenomenon meaning that water-soluble lipases need to first adsorb to the oil-water interface before enzymatic conversions can start. The digestion of lipids mainly occurs on colloidal structures dispersed in water, such as oil-in-water (o/w) emulsions, which can be designed during food formulation/processing or structured during digestion. From a food design perspective, different in vitro studies have demonstrated that the kinetics of lipid digestion can be influenced by emulsion properties. However, most of these studies have been performed with pancreatic enzymes to simulate lipolysis in the small intestine. Only few studies have dealt with lipid digestion in the gastric phase and its subsequent impact on intestinal lipolysis. In this aspect, this review compiles information on the physiological aspects of gastric lipid digestion. In addition, it deals with colloidal and interfacial aspects starting from emulsion design factors and how they evolve during in vitro digestion. Finally, molecular mechanisms describing gastric lipolysis are discussed.
Collapse
Affiliation(s)
- Marcos R Infantes-Garcia
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Fréderic Carriére
- CNRS, Aix-Marseille Université, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, 13402 Marseille cedex 9, France
| | - Marc E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Pitino MA, Beggs MR, O'Connor DL, Doyen A, Pouliot Y, Sergius-Ronot M, Unger S. Donor human milk processing and its impact on infant digestion: A systematic scoping review of in vitro and in vivo studies. Adv Nutr 2023; 14:173-189. [PMID: 36811588 PMCID: PMC10102984 DOI: 10.1016/j.advnut.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 12/27/2022] Open
Abstract
When there is an inadequate supply of mother's milk, pasteurized donor human milk is preferred over formula to supplement feeds for preterm infants. Although providing donor milk helps to improve feeding tolerance and reduce necrotizing enterocolitis, changes to its composition and reductions in bioactivity during processing, are thought to contribute to the slower growth often exhibited by these infants. To improve the clinical outcomes of recipient infants by maximizing the quality of donor milk, research is currently investigating strategies to optimize all aspects of processing, including pooling, pasteurization, and freezing; however, reviews of this literature typically only summarize the impact of a processing technique on composition or bioactivity. Reviews of published research investigating the impact of donor milk processing on infant digestion/absorption are lacking and thus, was the objective for this systematic scoping review, Open Science Framework (https://doi.org/10.17605/OSF.IO/PJTMW). Databases were searched for primary research studies evaluating donor milk processing for pathogen inactivation or other rationale and subsequent effect on infant digestion/absorption. Non-human milk studies or those assessing other outcomes were excluded. Overall, 24 articles from 12,985 records screened were included. Most studied thermal methods to inactivate pathogens, predominantly Holder pasteurization (HoP) (62.5°C, 30 min) and high-temperature short-time. Heating consistently decreased lipolysis and increased proteolysis of lactoferrin and caseins; however, protein hydrolysis was unaffected from in vitro studies. The abundance and diversity of released peptides remain unclear and should be further explored. Greater investigation into less-harsh methods for pasteurization, such as high-pressure processing, is warranted. Only 1 study assessed the impact of this technique and found minimal impact on digestion outcomes compared with HoP. Fat homogenization appeared to positively impact fat digestion (n = 3 studies), and only 1 eligible study investigated freeze-thawing. Identified knowledge gaps regarding optimal methods of processing should be further explored to improve the quality and nutrition of donor milk.
Collapse
Affiliation(s)
- Michael A Pitino
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Megan R Beggs
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Deborah L O'Connor
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Sinai Health, Toronto, Ontario, Canada; Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Ontario, Canada
| | - Alain Doyen
- Université Laval, Département des Sciences des Aliments, Institut sur la nutrition et les aliments fonctionnels (INAF) Québec, Québec, Canada
| | - Yves Pouliot
- Université Laval, Département des Sciences des Aliments, Institut sur la nutrition et les aliments fonctionnels (INAF) Québec, Québec, Canada
| | - Mélanie Sergius-Ronot
- Université Laval, Département des Sciences des Aliments, Institut sur la nutrition et les aliments fonctionnels (INAF) Québec, Québec, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Sinai Health, Toronto, Ontario, Canada; Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Ontario, Canada; Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Charton E, Bourgeois A, Bellanger A, Le-Gouar Y, Dahirel P, Romé V, Randuineau G, Cahu A, Moughan PJ, Montoya CA, Blat S, Dupont D, Deglaire A, Le Huërou-Luron I. Infant nutrition affects the microbiota-gut-brain axis: Comparison of human milk vs. infant formula feeding in the piglet model. Front Nutr 2022; 9:976042. [PMID: 36211510 PMCID: PMC9532976 DOI: 10.3389/fnut.2022.976042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early nutrition plays a dominant role in infant development and health. It is now understood that the infant diet impacts the gut microbiota and its relationship with gut function and brain development. However, its impact on the microbiota-gut-brain axis has not been studied in an integrative way. The objective here was to evaluate the effects of human milk (HM) or cow’s milk based infant formula (IF) on the relationships between gut microbiota and the collective host intestinal-brain axis. Eighteen 10-day-old Yucatan mini-piglets were fed with HM or IF. Intestinal and fecal microbiota composition, intestinal phenotypic parameters, and the expression of genes involved in several gut and brain functions were determined. Unidimensional analyses were performed, followed by multifactorial analyses to evaluate the relationships among all the variables across the microbiota-gut-brain axis. Compared to IF, HM decreased the α-diversity of colonic and fecal microbiota and modified their composition. Piglets fed HM had a significantly higher ileal and colonic paracellular permeability assessed by ex vivo analysis, a lower expression of genes encoding tight junction proteins, and a higher expression of genes encoding pro-inflammatory and anti-inflammatory immune activity. In addition, the expression of genes involved in endocrine function, tryptophan metabolism and nutrient transport was modified mostly in the colon. These diet-induced intestinal modifications were associated with changes in the brain tissue expression of genes encoding the blood-brain barrier, endocrine function and short chain fatty acid receptors, mostly in hypothalamic and striatal areas. The integrative approach underlined specific groups of bacteria (Veillonellaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, and Prevotellaceae) associated with changes in the gut-brain axis. There is a clear influence of the infant diet, even over a short dietary intervention period, on establishment of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Elise Charton
- STLO, INRAE, Institut Agro, Rennes, France
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | | | - Patrice Dahirel
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Véronique Romé
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | - Armelle Cahu
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Smart Foods and Bioproducts Innovation Centre of Excellence, AgResearch Limited, Palmerston North, New Zealand
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Isabelle Le Huërou-Luron
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- *Correspondence: Isabelle Le Huërou-Luron,
| |
Collapse
|
9
|
Correa KDP, Silva METD, Oliveira DRBD, Oliveira AFD, Santos IJB, Oliveira EBD, Coimbra JSDR. Influence of Homogenization in the Physicochemical Quality of Human Milk and Fat Retention in Gastric Tubes. J Hum Lact 2022; 38:309-322. [PMID: 34308701 DOI: 10.1177/08903344211031456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The retention of human milk nutrients in gastric tubes used to feed premature infants is a challenge to be overcome. RESEARCH AIMS To evaluate (1) the performance of six homogenizers (mixing processor, piston valve, ultrasonic bath, ultraturrax, stirring mixer, and ultrasound probe) for the fat retention reduction in gastric tubes; (2) the influence of the best homogenization conditions on the fatty acid and protein profiles of human milk; and (3) the cost/benefit ratio for the inclusion of homogenization as a new step in human milk processing. METHODS The influence of different levels and times of homogenization on reducing fat retention of human milk in probes was evaluated in this comparative prospective cross-sectional study. After homogenization, human milk flowed through a gavage and infusion pump apparatus used for feeding. Fat content was quantified before and after feeding. The techniques that reduced fat globule sizes and/or promoted a lower percentage of fat holding were evaluated for efficiency, variations in the fatty acid and protein profiles, and energy density and operating costs. RESULTS Homogenization led to a reduction in fat retention in feeding probes. The mixer processor and the ultrasound probe reduced fat retention by 99.23% (SD = 0.07) and 99.95% (SD = 0.02), respectively, and did not negatively influence fatty acid and protein profiles. The mixer processor demonstrated low energy density and low cost for human milk processing. CONCLUSION Homogenization promoted reduced fat retention in the feed probe and could help maintain fat nutrients of human milk during enteral feeding.
Collapse
Affiliation(s)
- Kely de Paula Correa
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brasil
| | | | | | | | - Igor Jose Boggione Santos
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei (UFSJ) - Campus Alto Paraopeba, Ouro Branco, MG, Brasil
| | | | | |
Collapse
|
10
|
Reyes SM, Patra B, Elliott MJ. The Impact of Homogenization on Donor Human Milk and Human Milk-Based Fortifiers and Implications for Preterm Infant Health. Curr Dev Nutr 2022; 6:nzab147. [PMID: 35059551 PMCID: PMC8764228 DOI: 10.1093/cdn/nzab147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
An exclusive human milk diet (EHMD) has been shown to reduce health complications of prematurity in infants born weighing ≤1250 g compared with cow milk-based diets. Accordingly, the number of available human milk (HM)-based nutritional products continues to increase. Newly available products, and those reportedly soon to enter the market, include homogenized donor HM and homogenized HM-based fortifiers. Existing literature demonstrating the benefits of an EHMD, however, is limited to non-homogenized HM-based products. Herein, we summarize existing evidence on the impact of homogenization on HM, with a particular focus on changes to the macromolecular structure of the milk fat globule and the subsequent impact on digestion kinetics. We use these published data to create a conceptual framework for the potential implications of homogenized HM-based nutritional products on preterm infant health. Importantly, we underscore that the safety and efficacy of homogenized HM-based products warrant investigation.
Collapse
Affiliation(s)
| | | | - Melinda J Elliott
- Prolacta Bioscience®, Duarte, CA, USA
- Pediatrix Medical Group of Maryland, Rockville, MD, USA
| |
Collapse
|
11
|
Friend LL, Perrin MT. Methods of mixing donor human milk during bottling results in fat differences between samples within a pool. J Dairy Sci 2021; 104:5256-5264. [PMID: 33516556 DOI: 10.3168/jds.2020-19112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/14/2020] [Indexed: 11/19/2022]
Abstract
The influence of milk-banking processes on nutrients in donor human milk (DHM) is largely unknown. Previous studies have measured nutrients between pools of DHM, but within-pool nutrient differences (between bottles from the same pool) have yet to be elucidated. The objective of this study was to gain a better understanding of the effect of different mixing characteristics on the distribution of fat, protein, IgA, and lysozyme in bottled, raw DHM. Pools of DHM were created in a laboratory setting according to published human milk-banking guidelines and assigned to a mixing treatment (mixing during bottling method, pooling container material, and refrigerated hold time). Four mixing protocols using glass pooling containers and a 1-h refrigerated hold time were tested: control (no mixing during bottling); manual-A (Man-A, hand swirl after pouring 3 bottles); manual-B (Man-B, hand swirl after pouring every bottle); and mechanical-G (Mech-G, continuous stirring with a magnet). As secondary objectives, we compared the effect of a glass and a plastic pooling container with mechanical mixing (mechanical-P, Mech-P), and compared refrigerated delays of 1 and 24 h before bottling with manual mixing (manual-A24, Man-A24). To control for differences in nutrient content, comparisons between treatments were made using absolute percent difference from the treatment-specific mean; and comparisons within a treatment were made using the ratio of fat content in a bottle to fat content in the first bottle of the same pool. We did not observe differences in nutrient distribution between Man-A, Man-B, and Mech-G in pools held for 1 h, but all were significantly different from the control for fat. There were no differences between glass or plastic pooling containers when mechanical mixing was used. Holding a pool in the refrigerator for 24 h before bottling created significantly greater fat distribution than holding a pool for 1 h. Outcomes were the result of controlled experiments. In summary, manual and mechanical mixing of 1,700-mL DHM pools produces similar fat and protein distributions when DHM is pooled and bottled after a 1-h hold time. When DHM is held for 24 h before bottling, more research is needed to determine the duration of initial mixing needed to reduce fat variability between bottles.
Collapse
Affiliation(s)
- Linda L Friend
- Department of Nutrition, University of North Carolina Greensboro, Greensboro 27412
| | - Maryanne T Perrin
- Department of Nutrition, University of North Carolina Greensboro, Greensboro 27412.
| |
Collapse
|
12
|
He X, McClorry S, Hernell O, Lönnerdal B, Slupsky CM. Digestion of human milk fat in healthy infants. Nutr Res 2020; 83:15-29. [PMID: 32987285 DOI: 10.1016/j.nutres.2020.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Lipid digestion is critical for infant development, and yet, the interconnection between lipid digestion and the microbiota is largely understudied. This review focuses on digestion of the human milk fat globule and summarizes the current understanding of the mechanisms underlying this process in infants. We first discuss the partial hydrolysis of milk fat in the stomach, which leads to rearrangement of lipid droplets, creating a lipid-water interface necessary for duodenal lipolysis. In the first few months of life, secretion of pancreatic triglyceride lipase, phospholipase A2, and bile salts is immature. The dominant lipases aiding fat digestion in the newborn small intestine are therefore pancreatic lipase-related protein 2 and bile salt-stimulated lipase from both the exocrine pancreas and milk. We summarize the interaction between ionic fatty acids and cations to form insoluble fatty acid soaps and how it is influenced by various factors, including cation availability, pH, and bile salt concentration, as well as saturation and chain length of fatty acids. We further argue that the formation of the soap complex does not contribute to lipid bioavailability. Next, the possible roles that the gut microbiota plays in lipid digestion and absorption are discussed. Finally, we provide a perspective on how the manufacturing process of infant formula and dairy products may alter the physical properties and structure of lipid droplets, thereby altering the rate of lipolysis.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Shannon McClorry
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, SE 901 85 Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Carolyn M Slupsky
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Yuan T, Zhu X, Mu G, Qian F, Xiong H. Effects of Chemical Composition and Microstructure in Human Milk and Infant Formulas on Lipid Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5462-5470. [PMID: 32307995 DOI: 10.1021/acs.jafc.0c00745] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infant formula (IF) is an important substitute for infants when human milk (HM) is unavailable; however, it was often observed with "insufficient fat" and showed different metabolic phenotypes, which may affect the growth and brain development of the infant. Considering that the milk fat digestion rate may affect the fat absorption and metabolism and further influence the metabolic phenotype, it is valuable to study the fat digestive behaviors of IF and HM. In the current study, we investigated the in vitro fat digestive properties of HM in comparison to four formulas (IF1, 2, 3, 4) including IFs enriched in OPO lipids (IF1 and IF3) and IFs with common mixed plant oils (IF2 and IF4). Results showed that the extent of eventual lipid hydrolysis of HM (98.9 ± 2.70%) was higher than those of IF1 and IF3 (90.4 ± 3.39 and 91.1 ± 1.67%, respectively) (p < 0.05) and IF2 and IF4 (81.9 ± 1.64 and 79.9 ± 1.05% respectively) (p < 0.01). Native fat globules and protein aggregation were observed at the end of HM gastric digestion, and the aggregates became smaller and then resolved from 60 to 120 min in intestinal digestion, while a large number of aggregates were observed in IF, which may slow the lipid digestion. The absorption differences between HM and IFs in lipid digestion need further study to elucidate the nutritional relevance to infant development and growth.
Collapse
Affiliation(s)
- Tinglan Yuan
- State Key Lab of Food Science and Technology, College of Life Science and Food Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xuemei Zhu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- State Key Lab of Food Science and Technology, College of Life Science and Food Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Guangqing Mu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Fang Qian
- College of Food Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hua Xiong
- State Key Lab of Food Science and Technology, College of Life Science and Food Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
14
|
Teng F, Reis MG, Yang L, Ma Y, Day L. Structural characteristics of triacylglycerols contribute to the distinct in vitro gastric digestibility of sheep and cow milk fat prior to and after homogenisation. Food Res Int 2020; 130:108911. [DOI: 10.1016/j.foodres.2019.108911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/25/2022]
|
15
|
Variations in gastrointestinal lipases, pH and bile acid levels with food intake, age and diseases: Possible impact on oral lipid-based drug delivery systems. Adv Drug Deliv Rev 2019; 142:3-15. [PMID: 30926476 DOI: 10.1016/j.addr.2019.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/27/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
The lipids and some surfactants present in oral lipid-based drug delivery systems are potential substrates for the various lipases involved in gastrointestinal (GI) lipolysis. The levels of these enzymes, together with pH and biliairy secretion, are important parameters that condition the fate of lipid-based formulations (LBF) and the dispersion, solubilization and absorption of lipophilic drugs in the GI tract. Since in vitro methods of digestion are now combined with dissolution assays for a better assessment of LBF performance, it is essential to have a basic knowledge on lipase, pH and bile acid (BA) levels in vivo to develop relevant in vitro models. While these parameters and their variations in healthy subjects are today well documented, in vivo data on specific populations (age groups, patients with various diseases, patients with treatment affecting GI tract parameters, …) are scarce and obtaining them from clinical studies is sometimes difficult due to ethical limitations. Here we collected some in vivo data already available on the levels of digestive lipases, gastric and intestinal pH, and BAs at various ages and in patients with exocrine pancreatic insufficiency, a pathological situation that leads to drastic changes in GI tract parameters and impacts pharmacological treatments.
Collapse
|
16
|
Lenfestey MW, Neu J. Gastrointestinal Development: Implications for Management of Preterm and Term Infants. Gastroenterol Clin North Am 2018; 47:773-791. [PMID: 30337032 DOI: 10.1016/j.gtc.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) system provides digestive, absorptive, neuroendocrine, and immunologic functions to support overall health. If normal development is interrupted, a variety of complications and disease can arise. This article explores normal development of the GI tract and specific clinical challenges pertinent to preterm and term infants. Specific topics include abnormal motility, gastroesophageal reflux, current feeding recommendations for preterm infants, effects of parenteral nutrition, and the relationship between the GI tract and the immune system.
Collapse
Affiliation(s)
- Mary W Lenfestey
- Department of Pediatrics, University of Florida, PO Box 100296, Gainesville, FL 32610, USA
| | - Josef Neu
- Department of Pediatrics, University of Florida, 6516 Southwest 93rd Avenue, Gainesville, FL 32610, USA.
| |
Collapse
|
17
|
Fardet A, Dupont D, Rioux LE, Turgeon SL. Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Crit Rev Food Sci Nutr 2018; 59:1987-2010. [PMID: 29393659 DOI: 10.1080/10408398.2018.1435503] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Beyond nutrient composition matrix plays an important role on food health potential, notably acting on the kinetics of nutrient release, and finally on their bioavailability. This is particularly true for dairy products that present both solid (cheeses), semi-solid (yogurts) and liquid (milks) matrices. The main objective of this narrative review has been to synthesize available data in relation with the impact of physical structure of main dairy matrices on nutrient bio-accessibility, bioavailability and metabolic effects, in vitro, in animals and in humans. Focus has been made on dairy nutrients the most studied, i.e., proteins, lipids and calcium. Data collected show different kinetics of bioavailability of amino acids, fatty acids and calcium according to the physicochemical parameters of these matrices, including compactness, hardness, elasticity, protein/lipid ratio, P/Ca ratio, effect of ferments, size of fat globules, and possibly other qualitative parameters yet to be discovered. This could be of great interest for the development of innovative dairy products for older populations, sometimes in protein denutrition or with poor dentition, involving the development of dairy matrices with optimized metabolic effects by playing on gastric retention time and thus on the kinetics of release of the amino acids within bloodstream.
Collapse
Affiliation(s)
- Anthony Fardet
- a Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne , F Clermont-Ferrand , France
| | - Didier Dupont
- b Science and Technology of Milk and Eggs, STLO, Agrocampus Ouest, French National Institute for Agricultural Research (INRA) , Rennes , France
| | - Laurie-Eve Rioux
- c STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval , Québec City , Qc , Canada
| | - Sylvie L Turgeon
- c STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval , Québec City , Qc , Canada
| |
Collapse
|
18
|
Lipids in the Stomach – Implications for the Evaluation of Food Effects on Oral Drug Absorption. Pharm Res 2018; 35:55. [DOI: 10.1007/s11095-017-2289-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|