1
|
Cao J, Hu W, Chen Y, Ailikaiti A, Zhang Z, Rong L, Yu H, Wang H. Adrenal High-Expressional CYP27A1 Mediates Bile Acid Increase and Functional Impairment in Adult Male Offspring by Prenatal Dexamethasone Exposure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413299. [PMID: 39950753 PMCID: PMC11984885 DOI: 10.1002/advs.202413299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/16/2025] [Indexed: 04/12/2025]
Abstract
Prenatal dexamethasone exposure (PDE) can impact adrenal corticosteroid synthesis in adult offspring. Furthermore, the adrenal gland can autonomously synthesize bile acids, but local bile acids accumulation has cytotoxic effects. This study found that PDE increased histone 3 lysine 27 acetylation (H3K27ac) levels in the promoter region of cholesterol 27 hydroxylase (CYP27A1) and its expression, as well as total bile acids (TBA) concentrations and enhanced endoplasmic reticulum stress (ERS) and inhibit steroid synthesis in adult male offspring rat adrenal glands. However, it is reversed in females. Tracing back to the prenatal stage and in combination with cellular experiments, it is further revealed that dexamethasone can regulate glucocorticoid receptor (GR)/SET binding protein 1 (SETBP1)/CYP27A1 signal pathway, consequently cause intracellular increase of bile acids. Finally, administration of nilvadipine (CYP27A1 inhibitor) to male offspring for 4 weeks after birth resulted in the reversal of PDE-induced adrenal morphological and functional damage. In conclusion, PDE induces fetal adrenal corticosteroid dysfunction in adult male offspring by upregulating CYP27A1 promoter region H3K27ac levels and expression in the adrenal gland through the GR/SETBP1 signaling pathway. This effect persists beyond birth, leading to bile acids local increase and subsequent enhancement of ERS, ultimately inducing cellular dysfunction in adult adrenal glands.
Collapse
Affiliation(s)
- Jiangang Cao
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Institute of Clinical Pharmacy ResearchThe Affiliated Nanhua HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Wen Hu
- Department of PharmacyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Yawen Chen
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | | | - Ziyi Zhang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Lingbo Rong
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Hong Yu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
2
|
Li S, Wang X, Li X, Zhang W, Guo Y, Xu N, Luo J, Zhu S, He W. Breastfeeding in infancy and cardiovascular disease in middle-aged and older adulthood: a prospective study of 0.36 million UK Biobank participants. J Nutr Health Aging 2024; 28:100347. [PMID: 39216149 DOI: 10.1016/j.jnha.2024.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cardiovascular disease originates in early life. We aimed to investigate the association between breastfeeding in infancy and cardiovascular disease in adult life. METHODS We followed 364,240 participants from UK Biobank aged 40-73 years from 2006 - 2010 to 2021. Information on breastfeeding in infancy was self-reported by questionnaire. Cox proportional hazard regression models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI) for the association between breastfeeding and cardiovascular disease in middle-aged and older adulthood. The multivariable Cox models were used by adjusting for the age (used as the time scale), sex, ethnicity, assessment centre, birth weight, multiple birth status, maternal smoking during pregnancy, Townsend deprivation index, smoking status, alcohol drinker status, physical activity, and menopausal status for women. Binary and multinomial multivariable logistic regression models were used to explore the associations of breastfeeding in infancy with cardiovascular disease risk factors including obesity, body composition, metabolic and inflammatory disorders. RESULTS During a median of 12.6 years of follow-up, we documented 29,796 new cases of cardiovascular disease, including 24,797 coronary heart disease and 6229 stroke. The multivariable adjusted HRs for breastfed versus non-breastfed were 0.94 (95% CI: 0.91, 0.96) for cardiovascular disease, 0.94 (95% CI: 0.91, 0.96) for coronary heart disease, and 0.95 (95% CI: 0.89, 1.01) for stroke. Furthermore, the strength of observed association between breastfeeding and cardiovascular disease seems to decrease with age (P for interaction <0.001), and increase with polygenic risk for cardiovascular disease (P for interaction <0.001). Consistently, breastfeeding in infancy was associated with cardiovascular disease risk factors including lower body mass index 0.92 (95% CI: 0.89, 0.95), body fat percentage 0.85 (95% CI: 0.83, 0.87), android to gynoid fat ratio 0.89 (95% CI: 0.83, 0.96), visceral adipose tissue 0.92 (95% CI: 0.84, 1.01), as well as lower C-reactive protein level 0.95 (95% CI: 0.94, 0.97) and a lower risk of metabolic syndrome 0.89 (95% CI: 0.85, 0.92). CONCLUSIONS Breastfeeding in infancy was associated with a lower risk of cardiovascular disease in middle-aged and older adulthood. Promoting breastfeeding is vital not only for promoting child health, but also for halting the increasing trend of cardiovascular disease in adults.
Collapse
Affiliation(s)
- Shanshan Li
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyan Wang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinmei Li
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiwei Zhang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingying Guo
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nuo Xu
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junkai Luo
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wei He
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
4
|
Fenton TR, Samycia L, Elmrayed S, Nasser R, Alshaikh B. Growth patterns by birth size of preterm children born at 24-29 gestational weeks for the first 3 years. Paediatr Perinat Epidemiol 2024; 38:560-569. [PMID: 38747097 DOI: 10.1111/ppe.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Concerns are prevalent about preterm infant long-term growth regarding plotting low on growth charts at discharge, stunting, underweight, high body fat and subsequent cardiometabolic morbidities. OBJECTIVES To examine (a) longitudinal growth patterns of extremely and very preterm infants to 3 years corrected age (CA) (outcome), categorised by their birthweight for gestational age: small, appropriate and large for gestational age (SGA, AGA and LGA, respectively) (exposure); and (b) the ability of growth faltering (<-2 z-scores) to predict suboptimal cognitive scores at 3 years CA. METHODS Post-discharge head, length, weight and weight-4-length growth patterns of the PreM Growth cohort study infants born <30 weeks and < 1500 g, who had dietitian and multi-disciplinary support before and after discharge, were plotted against the World Health Organization growth standard. Infants with brain injuries, necrotising enterocolitis and bronchopulmonary dysplasia were excluded. RESULTS Of the included 405 infants, the proportions of infants with anthropometric measures > - 2 z-scores improved with age. The highest proportions <-2 z-scores for length (24.2%) and weight (24.0%) were at 36 gestational weeks. The proportion with small heads was low by 0 months CA (1.8%). By 3 years CA, only a few children plotted lower than -2 z-scores for length, weight-4-length and weight (<6%). After zero months CA, high weight-4-length and body mass index > + 2 z-scores were rare (2.1% at 3 years CA). Those born SGA had higher proportions with shorter heights (16.7% vs. 5.2%) and lower weights (27.8% vs. 3.5%) at 3 years CA compared to those born AGA. The ability of growth faltering to predict cognitive scores was limited (AUROC 0.42, 95% CI 0.39, 0.45 to 0.52, 95% CI 0.41, 0.63). CONCLUSIONS Although children born <30 weeks gestation without major neonatal morbidities plot low on growth charts at 36 weeks CA most catch up to growth chart curves by 3 years CA.
Collapse
Affiliation(s)
- Tanis R Fenton
- Community Health Sciences, O'Brien Institute of Public Health, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lauren Samycia
- Bachelor of Health Sciences Department, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seham Elmrayed
- Community Health Sciences, O'Brien Institute of Public Health, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Institute of Global Health and Human Ecology, American University in Cairo, Cairo, Egypt
| | - Roseann Nasser
- Saskatchewan Health Authority, Nutrition and Food Services, Regina, Saskatchewan, Canada
| | - Belal Alshaikh
- Community Health Sciences, O'Brien Institute of Public Health, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Liu B, Liu Y, Li S, Chen P, Zhang J, Feng L. Depletion of placental brain-derived neurotrophic factor (BDNF) is attributed to premature ovarian insufficiency (POI) in mice offspring. J Ovarian Res 2024; 17:141. [PMID: 38982490 PMCID: PMC11232340 DOI: 10.1186/s13048-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Premature ovarian insufficiency (POI) is one of the causes of female infertility. Unexplained POI is increasingly affecting women in their reproductive years. However, the etiology of POI is diverse and remains elusive. We and others have shown that brain-derived neurotrophic factor (BDNF) plays an important role in adult ovarian function. Here, we report on a novel role of BDNF in the Developmental Origins of POI. METHODS Placental BDNF knockout mice were created using CRISPR/CAS9. Homozygous knockout (cKO(HO)) mice didn't survive, while heterozygous knockout (cKO(HE)) mice did. BDNF reduction in cKO(HE) mice was confirmed via immunohistochemistry and Western blots. Ovaries were collected from cKO(HE) mice at various ages, analyzing ovarian metrics, FSH expression, and litter sizes. In one-month-old mice, oocyte numbers were assessed using super-ovulation, and oocyte gene expression was analyzed with smart RNAseq. Ovaries of P7 mice were studied with SEM, and gene expression was confirmed with RT-qPCR. Alkaline phosphatase staining at E11.5 and immunofluorescence for cyclinD1 assessed germ cell number and cell proliferation. RESULTS cKO(HE) mice had decreased ovarian function and litter size in adulthood. They were insensitive to ovulation induction drugs manifested by lower oocyte release after superovulation in one-month-old cKO(HE) mice. The transcriptome and SEM results indicate that mitochondria-mediated cell death or aging might occur in cKO(HE) ovaries. Decreased placental BDNF led to diminished primordial germ cell proliferation at E11.5 and ovarian reserve which may underlie POI in adulthood. CONCLUSION The current results showed decreased placental BDNF diminished primordial germ cell proliferation in female fetuses during pregnancy and POI in adulthood. Our findings can provide insights into understanding the underlying mechanisms of POI.
Collapse
Affiliation(s)
- Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pingping Chen
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Liping Feng
- Department of Obstetrics and Gynaecology, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Lu X, Chen B, Xu D, Hu W, Wang X, Dai Y, Wang Q, Peng Y, Chen K, Zhao D, Wang H. Epigenetic programming mediates abnormal gut microbiota and disease susceptibility in offspring with prenatal dexamethasone exposure. Cell Rep Med 2024; 5:101398. [PMID: 38301654 PMCID: PMC10897547 DOI: 10.1016/j.xcrm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Prenatal dexamethasone exposure (PDE) can lead to increased susceptibility to various diseases in adult offspring, but its effect on gut microbiota composition and the relationship with disease susceptibility remains unclear. In this study, we find sex-differential changes in the gut microbiota of 6-month-old infants with prenatal dexamethasone therapy (PDT) that persisted in female infants up to 2.5 years of age with altered bile acid metabolism. PDE female offspring rats show abnormal colonization and composition of gut microbiota and increased susceptibility to cholestatic liver injury. The aberrant gut microbiota colonization in the PDE offspring can be attributed to the inhibited Muc2 expression caused by decreased CDX2 expression before and after birth. Integrating animal and cell experiments, we further confirm that dexamethasone could inhibit Muc2 expression by activating GR/HDAC11 signaling and regulating CDX2 epigenetic modification. This study interprets abnormal gut microbiota and disease susceptibility in PDT offspring from intrauterine intestinal dysplasia.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Xia Wang
- Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Qian Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dongchi Zhao
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
7
|
Sundrani DP, Joshi SR. Assisted reproductive technology (ART) and epigenetic modifications in the placenta. HUM FERTIL 2023; 26:665-677. [PMID: 34706609 DOI: 10.1080/14647273.2021.1995901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/19/2021] [Indexed: 10/20/2022]
Abstract
Assisted reproductive technology (ART) has become common amongst couples with infertility issues. ART is known to be successful, but epidemiological data indicates that ART is associated with placental disorders. Additionally, reports show increased risks of short- and long-term complications in children born to mothers undergoing ART. However, the mechanisms responsible for these events are obscure. The placenta is considered as a key organ for programming of diseases and ART procedures are suggested to alter the placental function and intrauterine growth trajectories. Epigenetic changes in maternal and foetal tissues are suggested to be the underlying mechanisms for these outcomes. Epigenetic regulation is known to evolve following fertilisation and before implantation and subsequently across gestation. During these critical periods of epigenetic 'programming', DNA methylation and chromatin remodelling influence the placental structure and function by regulating the expression of various genes. ART treatment coinciding with epigenetic 'programming' events during gametogenesis and early embryo development may alter the programming phases leading to long-term consequences. Thus, disruptions in placental development observed in ART pregnancies could be associated with altered epigenetic regulation of vital genes in the placenta. The review summarises available literature on the influence of ART procedures on epigenetic changes in the placenta.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
8
|
DastAmooz S, Broujeni ST, Sarahian N. A primary study on rat fetal development and brain-derived neurotrophic factor levels under the control of electromagnetic fields. J Public Health Afr 2023; 14:2347. [PMID: 37538938 PMCID: PMC10395370 DOI: 10.4081/jphia.2023.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/22/2022] [Indexed: 08/05/2023] Open
Abstract
Background In previous researches, electromagnetic fields have been shown to adversely affect the behavior and biology of humans and animals; however, body growth and brain-derived neurotrophic factor levels were not evaluated. Objective The original investigation aimed to examine whether Electromagnetic Fields (EMF) exposure had adverse effects on spatial learning and motor function in rats and if physical activity could diminish the damaging effects of EMF exposure. In this study, we measured anthropometric measurements and brain-derived neurotrophic factor (BDNF) levels in pregnant rats' offspring to determine if Wi-Fi EMF also affected their growth. These data we report for the first time in this publication. Methods Twenty Albino-Wistar pregnant rats were divided randomly into EMF and control (CON) groups, and after delivery, 12 male fetuses were randomly selected. For assessing the body growth change of offspring beginning at delivery, then at 21 postnatal days, and finally at 56 post-natal days, the crown-rump length of the body was assessed using a digital caliper. Examining BDNF factor levels, an Enzyme-linked immunosorbent assay ELISA kit was taken. Bodyweight was recorded by digital scale. Results Outcomes of the anthropometric measurements demonstrated that EMF blocked body growth in rats exposed to EMF. The results of the BDNF test illustrated that the BDNF in the EMF liter group was remarkably decreased compared to the CON group. The results indicate that EMF exposure could affect BDNF levels and harm body growth in pregnant rats' offspring. Conclusions The results suggest that EMF exposure could affect BDNF levels and impair body growth in pregnant rats' offspring.
Collapse
Affiliation(s)
- Sima DastAmooz
- Department of Sport Science and Physical Education, Chinese University of Hong Kong, China
| | - Shahzad Tahmasebi Broujeni
- Department of Behavioral and Cognitive Sciences in Sport, Faculty of Sport Sciences and Health, University of Tehran, Iran
| | - Nahid Sarahian
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Cameron VA, Jones GT, Horwood LJ, Pilbrow AP, Martin J, Frampton C, Ip WT, Troughton RW, Greer C, Yang J, Epton MJ, Harris SL, Darlow BA. DNA methylation patterns at birth predict health outcomes in young adults born very low birthweight. Clin Epigenetics 2023; 15:47. [PMID: 36959629 PMCID: PMC10035230 DOI: 10.1186/s13148-023-01463-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Background Individuals born very low birthweight (VLBW) are at increased risk of impaired cardiovascular and respiratory function in adulthood. To identify markers to predict future risk for VLBW individuals, we analyzed DNA methylation at birth and at 28 years in the New Zealand (NZ) VLBW cohort (all infants born < 1500 g in NZ in 1986) compared with age-matched, normal birthweight controls. Associations between neonatal methylation and cardiac structure and function (echocardiography), vascular function and respiratory outcomes at age 28 years were documented. Results Genomic DNA from archived newborn heel-prick blood (n = 109 VLBW, 51 controls) and from peripheral blood at ~ 28 years (n = 215 VLBW, 96 controls) was analyzed on Illumina Infinium MethylationEPIC 850 K arrays. Following quality assurance and normalization, methylation levels were compared between VLBW cases and controls at both ages by linear regression, with genome-wide significance set to p < 0.05 adjusted for false discovery rate (FDR, Benjamini-Hochberg). In neonates, methylation at over 16,400 CpG methylation sites differed between VLBW cases and controls and the canonical pathway most enriched for these CpGs was Cardiac Hypertrophy Signaling (p = 3.44E−11). The top 20 CpGs that differed most between VLBW cases and controls featured clusters in ARID3A, SPATA33, and PLCH1 and these 3 genes, along with MCF2L, TRBJ2-1 and SRC, led the list of 15,000 differentially methylated regions (DMRs) reaching FDR-adj significance. Fifteen of the 20 top CpGs in the neonate EWAS showed associations between methylation at birth and adult cardiovascular traits (particularly LnRHI). In 28-year-old adults, twelve CpGs differed between VLBW cases and controls at FDR-adjusted significance, including hypermethylation in EBF4 (four CpGs), CFI and UNC119B and hypomethylation at three CpGs in HIF3A and one in KCNQ1. DNA methylation GrimAge scores at 28 years were significantly greater in VLBW cases versus controls and weakly associated with cardiovascular traits. Four CpGs were identified where methylation differed between VLBW cases and controls in both neonates and adults, three reversing directions with age (two CpGs in EBF4, one in SNAI1 were hypomethylated in neonates, hypermethylated in adults). Of these, cg16426670 in EBF4 at birth showed associations with several cardiovascular traits in adults. Conclusions These findings suggest that methylation patterns in VLBW neonates may be informative about future adult cardiovascular and respiratory outcomes and have value in guiding early preventative care to improve adult health. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-023-01463-3.
Collapse
Affiliation(s)
- Vicky A. Cameron
- grid.29980.3a0000 0004 1936 7830Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140 New Zealand
| | - Gregory T. Jones
- grid.29980.3a0000 0004 1936 7830Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - L. John Horwood
- grid.29980.3a0000 0004 1936 7830Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Anna P. Pilbrow
- grid.29980.3a0000 0004 1936 7830Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140 New Zealand
| | - Julia Martin
- grid.29980.3a0000 0004 1936 7830Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Chris Frampton
- grid.29980.3a0000 0004 1936 7830Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140 New Zealand
| | - Wendy T. Ip
- grid.29980.3a0000 0004 1936 7830Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140 New Zealand
| | - Richard W. Troughton
- grid.29980.3a0000 0004 1936 7830Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140 New Zealand
| | - Charlotte Greer
- grid.29980.3a0000 0004 1936 7830Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140 New Zealand
| | - Jun Yang
- grid.414299.30000 0004 0614 1349Respiratory Physiology Laboratory, Christchurch Hospital, Christchurch, New Zealand
| | - Michael J. Epton
- grid.414299.30000 0004 0614 1349Respiratory Physiology Laboratory, Christchurch Hospital, Christchurch, New Zealand
| | - Sarah L. Harris
- grid.29980.3a0000 0004 1936 7830Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Brian A. Darlow
- grid.29980.3a0000 0004 1936 7830Department of Paediatrics, University of Otago, Christchurch, New Zealand
| |
Collapse
|
10
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
11
|
Embleton ND, Jennifer Moltu S, Lapillonne A, van den Akker CHP, Carnielli V, Fusch C, Gerasimidis K, van Goudoever JB, Haiden N, Iacobelli S, Johnson MJ, Meyer S, Mihatsch W, de Pipaon MS, Rigo J, Zachariassen G, Bronsky J, Indrio F, Köglmeier J, de Koning B, Norsa L, Verduci E, Domellöf M. Enteral Nutrition in Preterm Infants (2022): A Position Paper From the ESPGHAN Committee on Nutrition and Invited Experts. J Pediatr Gastroenterol Nutr 2023; 76:248-268. [PMID: 36705703 DOI: 10.1097/mpg.0000000000003642] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To review the current literature and develop consensus conclusions and recommendations on nutrient intakes and nutritional practice in preterm infants with birthweight <1800 g. METHODS The European Society of Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) Committee of Nutrition (CoN) led a process that included CoN members and invited experts. Invited experts with specific expertise were chosen to represent as broad a geographical spread as possible. A list of topics was developed, and individual leads were assigned to topics along with other members, who reviewed the current literature. A single face-to-face meeting was held in February 2020. Provisional conclusions and recommendations were developed between 2020 and 2021, and these were voted on electronically by all members of the working group between 2021 and 2022. Where >90% consensus was not achieved, online discussion meetings were held, along with further voting until agreement was reached. RESULTS In general, there is a lack of strong evidence for most nutrients and topics. The summary paper is supported by additional supplementary digital content that provide a fuller explanation of the literature and relevant physiology: introduction and overview; human milk reference data; intakes of water, protein, energy, lipid, carbohydrate, electrolytes, minerals, trace elements, water soluble vitamins, and fat soluble vitamins; feeding mode including mineral enteral feeding, feed advancement, management of gastric residuals, gastric tube placement and bolus or continuous feeding; growth; breastmilk buccal colostrum, donor human milk, and risks of cytomegalovirus infection; hydrolyzed protein and osmolality; supplemental bionutrients; and use of breastmilk fortifier. CONCLUSIONS We provide updated ESPGHAN CoN consensus-based conclusions and recommendations on nutrient intakes and nutritional management for preterm infants.
Collapse
Affiliation(s)
| | | | | | - Chris H P van den Akker
- the Department of Pediatrics - Neonatology, Amsterdam UMC - Emma Children's Hospital, University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Virgilio Carnielli
- Polytechnic University of Marche and Division of Neonatology, Ospedali Riuniti, Ancona, Ancona, Italy
| | - Christoph Fusch
- the Department of Pediatrics, Nuremberg General Hospital, Paracelsus Medical School, Nuremberg, Germany
- the Division of Neonatology, Department of Pediatrics, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Konstantinos Gerasimidis
- the Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Johannes B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Nadja Haiden
- the Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Silvia Iacobelli
- the Réanimation Néonatale et Pédiatrique, Néonatologie - CHU La Réunion, Saint-Pierre, France
| | - Mark J Johnson
- the Department of Neonatal Medicine, University Hospital Southampton NHS Trust, Southampton, UK
- the National Institute for Health Research Biomedical Research Centre Southampton, University Hospital Southampton NHS Trust and University of Southampton, Southampton, UK
| | - Sascha Meyer
- the Department of General Paediatrics and Neonatology, University Hospital of Saarland, Homburg, Germany
| | - Walter Mihatsch
- the Department of Pediatrics, Ulm University, Ulm, Germany
- the Department of Health Management, Neu-Ulm University of Applied Sciences, Neu-Ulm, Germany
| | - Miguel Saenz de Pipaon
- the Department of Pediatrics-Neonatology, La Paz University Hospital, Autonoma University of Madrid, Madrid, Spain
| | - Jacques Rigo
- the Neonatal Unit, University of Liège, CHR Citadelle, Liège, Belgium
| | - Gitte Zachariassen
- H.C. Andersen Children's Hospital, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Jiri Bronsky
- the Department of Paediatrics, University Hospital Motol, Prague, Czech Republic
| | - Flavia Indrio
- the Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Jutta Köglmeier
- the Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Barbara de Koning
- the Paediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lorenzo Norsa
- the Paediatric Hepatology, Gastroenterology and Transplantation, ASST Papa Giovanni XXIIII, Bergamo, Italy
| | - Elvira Verduci
- the Department of Health Sciences, University of Milan, Milan, Italy
- the Department of Paediatrics, Ospedale dei Bambini Vittore Buzzi, Milan, Italy
| | - Magnus Domellöf
- the Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Li X, Hu W, Li L, Chen Z, Jiang T, Zhang D, Liu K, Wang H. MiR-133a-3p/Sirt1 epigenetic programming mediates hypercholesterolemia susceptibility in female offspring induced by prenatal dexamethasone exposure. Biochem Pharmacol 2022; 206:115306. [PMID: 36326533 DOI: 10.1016/j.bcp.2022.115306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
Mounting evidence indicates that adverse intrauterine conditions increase offspring's hypercholesterolemia susceptibility in adulthood. This study aimed to confirm prenatal dexamethasone exposure (PDE)-induced hypercholesterolemia susceptibility in female adult offspring rats, and elucidate its intrauterine programming mechanism. Pregnant Wistar rats were injected with dexamethasone subcutaneously (0, 0.1 and 0.2 mg/kg·d) from gestational day (GD) 9 to 20. Serum and liver of the female offspring were collected at GD21 and postnatal week (PW) 12 and 28. PDE offspring showed elevated serum total cholesterol (TCH) levels and a cholesterol phenotype of high cardiovascular disease risk at PW12 and PW28. The histone acetylation levels of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) and its expression were consistently increased in the PDE offspring both in utero and after birth. Moreover, PDE promoted glucocorticoid receptor (GR) nuclear translocation and miR-133a-3p expression and inhibited sirtuin-1 (Sirt1) expression in the fetal liver. In vitro, dexamethasone increased intracellular and supernatant TCH levels and miR-133a-3p expression, decreased SIRT1 expression, and promoted HMGCR histone acetylation and expression in bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and HepG2 cell line. GR siRNA, miR-133a-3p inhibitor or SIRT1 overexpression reversed dexamethasone-induced downstream molecular and phenotypic changes. Furthermore, elevated TCH levels in umbilical cord blood and increased HMGCR expression in peripheral blood mononuclear cells (PBMCs) were observed in human female neonates who had received dexamethasone treatment during pregnancy. In conclusion, PDE can cause persistent enhancement of hepatic cholesterol synthesis function before and after birth through GR/miR-133a-3p/Sirt1 pathway, eventually leading to increased hypercholesterolemia susceptibility in female offspring rats.
Collapse
Affiliation(s)
- Xufeng Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ze Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
13
|
Gurbuz O, Yorgancı A, Ozgu-Erdinc AS, Tasci Y. First trimester screening of serum advanced glycation end products levels of pregnant women who have risk factors for gestational diabetes and their obstetric outcomes: a preliminary case-control study. J OBSTET GYNAECOL 2022; 42:3048-3054. [PMID: 35653797 DOI: 10.1080/01443615.2022.2081796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Advanced glycation end-products (AGE) are complex compounds formed by nonenzymatic glycosylation of proteins, nucleic acids, and lipids with glucose in the blood. We aimed to investigate whether there was a difference in first-trimester serum AGE levels of pregnant women with and without risk factors for gestational diabetes mellitus (GDM) and their obstetric outcomes. There were 44 women in study group who have risk factors for GDM and 44 as controls. Demographic features, serum AGE levels, adverse perinatal and neonatal outcomes were compared between groups. Five patients (11.4%) in the study group and one patient (2.3%) in the control group were diagnosed as GDM (p = .2). The serum AGE values were not statistically different between the study and control groups. There were no statistical differences between groups in terms of adverse perinatal and neonatal outcomes. However, in the group with adverse perinatal outcome (n = 25), AGE values were higher than the control group. The results of our preliminary study suggested that high-risk women for GDM did not have increased serum levels of AGE in the first trimester. Nevertheless, a high first-trimester serum AGE level was found to be associated with adverse perinatal outcomes. IMPACT STATEMENTWhat is already known on this subject? Advanced glycation end products (AGE) are markers that are associated with diabetes and its complications. For pregnant women, a high third trimester serum AGEs levels were found in women who had gestational diabetes.What do the results of this study add? The results of our study revealed that first trimester screening of serum AGE levels of women who had risk factors for gestational diabetes was not discriminate. Nevertheless, a high first trimester serum AGE levels was associated with adverse perinatal outcome.What are the implications of these findings for clinical practice and/or further research? Whether reducing exogenous sources of AGE (western-style diet, smoking) before pregnancy will be associated with better pregnancy outcomes should be investigated in future studies.
Collapse
Affiliation(s)
- Ozge Gurbuz
- Clinics of Obstetrics and Gynecology, Ministry of Health, Gaziantep Şehitkamil State Hospital, Gaziantep, Turkey
| | - Ayçağ Yorgancı
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - A Seval Ozgu-Erdinc
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Yasemin Tasci
- School of Medicine, Department of Obstetrics and Gynecology, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
14
|
Di Renzo L, Marchetti M, Rizzo G, Gualtieri P, Monsignore D, Dominici F, Mappa I, Cavicchioni O, Aguzzoli L, De Lorenzo A. Adherence to Mediterranean Diet and Its Association with Maternal and Newborn Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8497. [PMID: 35886346 PMCID: PMC9321919 DOI: 10.3390/ijerph19148497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022]
Abstract
Background: Pregnancy is a crucial stage in a woman’s life and can be affected by epigenetic and environmental factors. Diet also plays a key role in gestation. This study aimed to evaluate how a greater or lesser adherence to the Mediterranean Diet (MD) influences specific parameters of mother and newborn. Methods: After delivery, the women participating in the study answered a questionnaire: demographic information; anthropometric data (pre-pregnancy weight, height, and gestational weight gain); dietary habits information (adherence to MD before and during pregnancy, using the validated Mediterranean Diet Adherence Screener (MEDAS), quality of protein intake); pregnancy information (onset of complications, cesarean/vaginal delivery, gestational age at birth, birth weight, birth length); and clinical practitioner for personalized dietary patterns during pregnancy. Results: A total of 501 respondents have been included in the study, and 135 were excluded for complications. Women who followed the advice of clinical nutritionists showed better adherence to MD (p = 0.02), and the baby’s birth weight was higher (p = 0.02). Significant differences in gestational weight gain (p < 0.01) between groups with dissimilar diet adherence were demonstrated. Conclusion: Our data demonstrate a significant relationship between adherence to MD and birthweight.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (D.M.); (F.D.); (A.D.L.)
| | - Marco Marchetti
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Giuseppe Rizzo
- Division of Gynecology and Obstetrics, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (G.R.); (I.M.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (D.M.); (F.D.); (A.D.L.)
| | - Diego Monsignore
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (D.M.); (F.D.); (A.D.L.)
| | - Francesca Dominici
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (D.M.); (F.D.); (A.D.L.)
| | - Ilenia Mappa
- Division of Gynecology and Obstetrics, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (G.R.); (I.M.)
- Division of Maternal Fetal Medicine, Ospedale Cristo Re, Tor Vergata University, 00167 Rome, Italy
| | - Ottavia Cavicchioni
- Unit of Obstetrics and Gynecology, Ospedale S. Maria Nuova, 42123 Reggio Emilia, Italy; (O.C.); (L.A.)
| | - Lorenzo Aguzzoli
- Unit of Obstetrics and Gynecology, Ospedale S. Maria Nuova, 42123 Reggio Emilia, Italy; (O.C.); (L.A.)
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (D.M.); (F.D.); (A.D.L.)
| | | |
Collapse
|
15
|
Zhang X, Hasan AA, Wu H, Gaballa MMS, Zeng S, Liu L, Xie L, Jung T, Grune T, Krämer BK, Kleuser B, Li J, Hocher B. High-fat, sucrose and salt-rich diet during rat spermatogenesis lead to the development of chronic kidney disease in the female offspring of the F2 generation. FASEB J 2022; 36:e22259. [PMID: 35294083 DOI: 10.1096/fj.202101789rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Effects of feeding male rats during spermatogenesis a high-fat, high-sucrose and high-salt diet (HFSSD) over two generations (F0 and F1) on renal outcomes are unknown. Male F0 and F1 rats were fed either control diet (F0CD+F1CD) or HFSSD (F0HD+F1HD). The outcomes were glomerular filtration rate and urinary albumin excretion in F1 and F2 offspring. If both outcomes were altered a morphological and molecular assessment was done. F2 offspring of both sexes had a decreased GFR. However, increased urinary albumin excretion was only observed in female F2 F0HD+F1HD offspring compared with controls. F0HD+F1HD female F2 offspring developed glomerulosclerosis (+31%; p < .01) and increased renal interstitial fibrosis (+52%; p < .05). RNA sequencing followed by qRT-PCR validation showed that four genes (Enpp6, Tmem144, Cd300lf, and Actr3b) were differentially regulated in the kidneys of female F2 offspring. lncRNA XR-146683.1 expression decreased in female F0HD+F1HD F2 offspring and its expression was (r = 0.44, p = .027) correlated with the expression of Tmem144. Methylation of CpG islands in the promoter region of the Cd300lf gene was increased (p = .001) in female F2 F0HD+F1HD offspring compared to controls. Promoter CpG island methylation rate of Cd300lf was inversely correlated with Cd300lf mRNA expression in F2 female offspring (r = -0.483, p = .012). Cd300lf mRNA expression was inversely correlated with the urinary albumin-to-creatinine ratio in female F2 offspring (r = -0.588, p = .005). Paternal pre-conceptional unhealthy diet given for two generations predispose female F2 offspring to chronic kidney disease due to epigenetic alterations of renal gene expression. Particularly, Cd300lf gene promotor methylation was inversely associated with Cd300lf mRNA expression and Cd300lf mRNA expression itself was inversely associated with urinary albumin excretion in F2 female offspring whose fathers and grandfathers got a pre-conceptional unhealthy diet.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ahmed A Hasan
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hongwei Wu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mohamed M S Gaballa
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Suimin Zeng
- The First Hospital of Traditional Chinese Medicine, Yiyang, China
| | - Liping Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Li Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jian Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Berthold Hocher
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany
| |
Collapse
|
16
|
Li Y, Pollock CA, Saad S. Aberrant DNA Methylation Mediates the Transgenerational Risk of Metabolic and Chronic Disease Due to Maternal Obesity and Overnutrition. Genes (Basel) 2021; 12:genes12111653. [PMID: 34828259 PMCID: PMC8624316 DOI: 10.3390/genes12111653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is a rapidly evolving universal epidemic leading to acute and long-term medical and obstetric health issues, including increased maternal risks of gestational diabetes, hypertension and pre-eclampsia, and the future risks for offspring's predisposition to metabolic diseases. Epigenetic modification, in particular DNA methylation, represents a mechanism whereby environmental effects impact on the phenotypic expression of human disease. Maternal obesity or overnutrition contributes to the alterations in DNA methylation during early life which, through fetal programming, can predispose the offspring to many metabolic and chronic diseases, such as non-alcoholic fatty liver disease, obesity, diabetes, and chronic kidney disease. This review aims to summarize findings from human and animal studies, which support the role of maternal obesity in fetal programing and the potential benefit of altering DNA methylation to limit maternal obesity related disease in the offspring.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Carol A. Pollock
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
| | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
- Correspondence:
| |
Collapse
|
17
|
Zambrano E, Nathanielsz PW, Rodríguez-González GL. Developmental programming and ageing of male reproductive function. Eur J Clin Invest 2021; 51:e13637. [PMID: 34107063 DOI: 10.1111/eci.13637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Developmental programming predisposes offspring to metabolic, behavioural and reproductive dysfunction in adult life. Evidence is accumulating that ageing phenotype and longevity are in part developmentally programmed in each individual. Unfortunately, there are few studies addressing the effects of developmental programming by maternal nutrition on the rate of ageing of the male reproductive system. This review will discuss effects of foetal exposure to maternal environmental challenges on male offspring fertility and normal ageing of the male reproductive system. We focus on several key factors involved in reproductive ageing such as decreased hormone production, DNA fragmentation, oxidative stress, telomere shortening, epigenetics, maternal lifestyle and nutrition. There is compelling evidence that ageing of the male reproductive system is developmentally programmed. Both maternal over- or undernutrition accelerate ageing of male offspring reproductive function through similar mechanisms such as decreased serum testosterone levels, increase in oxidative stress biomarkers in both the testes and sperm and changes in sperm quality. Importantly, even in adult life, exercise in male offspring of obese mothers improves adverse effects of programming on reproductive function. Maternal consumption of a low-protein diet causes transgenerational effects in progeny via the paternal line. The seminal fluid has effects on the intrauterine environment. Programming by male factors may involve more than just the sperm. Improving knowledge on developmental programming ageing interactions will improve not only male health and life span but also the health of future generations by reducing programming via the paternal line.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| |
Collapse
|
18
|
Zhang Y, Liang J, Liu Q, Fan X, Xu C, Gu A, Zhao W, Hang D. Birth Weight and Adult Obesity Index in Relation to the Risk of Hypertension: A Prospective Cohort Study in the UK Biobank. Front Cardiovasc Med 2021; 8:637437. [PMID: 34222359 PMCID: PMC8245673 DOI: 10.3389/fcvm.2021.637437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives: To investigate the association between birth weight and the risk of hypertension, and to examine the interaction between birth weight and the adult obesity index. Methods: We included 199,893 participants who had birth weight data and no history of hypertension at baseline (2006–2010) from the UK Biobank. A multivariate cubic regression spline was used to visually explore the dose-response relationship. Multivariate Cox proportional hazard regression models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). Results: We observed a nonlinear inverse association between birth weight and hypertension. The risk for hypertension decreased as birth weight increased up to approximately 3.80 kg. Compared with the participants with the fourth quintile of birth weight (3.43–3.80 kg), those with the first quartile of birth weight (<2.88 kg) were associated with a 25% higher risk of hypertension [HR 1.25; 95% CI (1.18–1.32)]. In addition, the participants with birth weight <2.88 kg and body mass index ≥30 kg/m2 had the highest risk [HR 3.54; 95% CI (3.16–3.97); p for interaction <0.0001], as compared with those with birth weight between 3.43–3.80 kg and body mass index between 18.5–25.0 kg/m2. These associations were largely consistent in the stratified and sensitivity analyses. Conclusion: Our findings indicate that lower birth weight is nonlinearly correlated with higher risk of hypertension, and birth weight between 3.43–3.80 kg might represent an intervention threshold. Moreover, lower birth weight may interact with adult obesity to significantly increase hypertension risk.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Xikang Fan
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Wei Zhao
- Jinling Hospital Department of Reproductive Medical Center affiliated School of Medicine, Nanjing University, Nanjing, China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Brunst KJ, Zhang L, Zhang X, Baccarelli AA, Bloomquist T, Wright RJ. Associations Between Maternal Lifetime Stress and Placental Mitochondrial DNA Mutations in an Urban Multiethnic Cohort. Biol Psychiatry 2021; 89:570-578. [PMID: 33229036 PMCID: PMC7889635 DOI: 10.1016/j.biopsych.2020.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disrupted placental functioning due to stress can have lifelong implications. Cumulative stress and trauma are likely to have lasting impacts on maternal physiological functioning and offspring development, resulting in increased risk for later-life complex disorders for which racial disparities exist. METHODS This study examined the association between maternal lifetime stress and placental mitochondrial DNA mutational load in an urban multiethnic cohort. Maternal lifetime exposure to stressful events was assessed using the validated Life Stressor Checklist-Revised. Whole mitochondrial DNA sequencing was performed and mutations were determined for 365 placenta samples with complete exposure and covariate data. Multivariable regression was used to model maternal lifetime stress in relation to placental mitochondrial DNA mutational load. Racial/ethnic differences were examined by cross-product terms and contrast statements. Gene-wise analyses were conducted. RESULTS We identified 13,189 heteroplasmies (Phred score > 10,000, minor allele frequency < 0.5, number of mutant reads > 1). Women experiencing increased psychosocial stress over their lifetime exhibited a higher number of total placental mitochondrial mutations (β = .23, 95% confidence interval = .03 to .42) and heteroplasmic mutations (β = .18, 95% confidence interval = .05 to .31) but not homoplasmic mutations (β = -.008, 95% confidence interval = -.03 to .01); the strongest associations were observed among Black women and genes coding for NADH dehydrogenase and cytochrome c oxidase subunits. CONCLUSIONS Cumulative maternal lifetime stress is associated with a greater mitochondrial mutational load, particularly among Black women. The impact of racial/ethnic differences in mutational load on placental function directly affecting offspring development and/or leading to chronic disease disparities warrants further investigation.
Collapse
Affiliation(s)
- Kelly J. Brunst
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Li Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Xiang Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Andrea A. Baccarelli
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Tessa Bloomquist
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Rosalind J. Wright
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics and Department of Environmental Medicine & Public Health, 1 Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
20
|
Rosenstock S, Ingalls A, Foy Cuddy R, Neault N, Littlepage S, Cohoe L, Nelson L, Shephard-Yazzie K, Yazzie S, Alikhani A, Reid R, Kenney A, Barlow A. Effect of a Home-Visiting Intervention to Reduce Early Childhood Obesity Among Native American Children: A Randomized Clinical Trial. JAMA Pediatr 2021; 175:133-142. [PMID: 33165594 PMCID: PMC7653536 DOI: 10.1001/jamapediatrics.2020.3557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Importance Early childhood obesity disproportionately affects Native American communities. Home visiting is a promising strategy for promoting optimal infant growth in this population. Objective To assess the impact of a brief home-visiting approach, Family Spirit Nurture (FSN), on sugar-sweetened beverage (SSB) consumption, responsive parenting and infant feeding practices, and optimal growth through 12 months post partum. Design, Setting, and Participants This study was a 1:1 randomized clinical trial comparing FSN with an injury prevention education control condition in a reservation-based community. Participants were Navajo mothers 13 years or older with infants younger than 14 weeks recruited between March 22, 2017, and May 18, 2018, and followed up through 12 months post partum. Intent-to-treat analyses were conducted. Interventions The 6-lesson FSN curriculum, delivered 3 to 6 months post partum by Navajo paraprofessionals, targeted optimal responsive and complementary feeding practices and avoidance of SSBs. The control group received 3 injury prevention lessons. Main Outcomes and Measures Primary outcomes established a priori were infant SSB consumption and responsive parenting and complementary feeding practices (responsive feeding scale, age at complementary food introduction, and percentage of mothers who introduced complementary food to infants at 6 months of age or older). The secondary outcome was the effect of the intervention on infant body mass index z scores (zBMIs). Results A total of 134 Navajo mothers of infants younger than 14 weeks were enrolled in the randomized clinical trial, including 68 (mean [SD] maternal age at enrollment, 27.4 [6.4] years) in the intervention group and 66 (mean [SD] maternal age at enrollment, 27.5 [6.1] years) in the control group. Intervention participants reported statistically significantly lower infant SSB consumption through 12 months post partum (mean [SE], 0.56 [0.12] cups per week in the intervention group and 1.78 [0.18] cups per week in the control group; incidence rate ratio, 0.31; 95% CI, 0.19-0.50). Improvements in responsive feeding practices were observed through 9 months post partum (mean [SE], 3.48 [0.07] in the intervention group and 3.22 [0.08] in the control group) (difference, 0.26; 95% CI, 0.06-0.47); statistical significance was lost at 12 months post partum. Age at which the infant was given first food was younger in the intervention group (mean [SE] age, 4.61 [0.21] months in the intervention group and 5.28 [0.23] months in the control group) (difference, -0.67; 95% CI, -0.04 to -1.29). Infants in the intervention group had lower zBMI at 6 and 9 months compared with those in the control group (mean [SE] at 9 months, 0.27 [0.14] in the intervention group and 0.81 [0.14] in the control group; difference, -0.54; 95% CI, -0.94 to -0.14). The 12-month between-group difference was meaningful but not statistically significant (mean [SE], 0.61 [0.16] in the intervention group and 1.07 [0.20] in the control group; difference, -0.46; 95% CI, -0.92 to 0.01). Conclusions and Relevance Infants of Native American mothers who participated in a home-visiting intervention had substantially lower SSB consumption and improvements in responsive feeding practices and infant zBMI scores, suggesting the intervention is effective for promoting healthy infant feeding and growth. Trial Registration ClinicalTrials.gov Identifier: NCT03101943.
Collapse
Affiliation(s)
- Summer Rosenstock
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Allison Ingalls
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Reese Foy Cuddy
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nicole Neault
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Shea Littlepage
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Lisa Cohoe
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Leonela Nelson
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kimberlyn Shephard-Yazzie
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Shaneyka Yazzie
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Anna Alikhani
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Behavioral and Social Science, Brown School of Public Health, Providence, Rhode Island
| | - Raymond Reid
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Anne Kenney
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Allison Barlow
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
21
|
Liu H, He B, Hu W, Liu K, Dai Y, Zhang D, Wang H. Prenatal dexamethasone exposure induces nonalcoholic fatty liver disease in male rat offspring via the miR-122/YY1/ACE2-MAS1 pathway. Biochem Pharmacol 2021; 185:114420. [PMID: 33460628 DOI: 10.1016/j.bcp.2021.114420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that nonalcoholic fatty liver disease (NAFLD) has an intrauterine developmental origin. We aimed to demonstrate that NAFLD is caused by prenatal dexamethasone exposure (PDE) in adult male rat offspring and to investigate the intrauterine programming mechanism. Liver samples were obtained on gestational day (GD) 21 and postnatal week (PW) 28. The effects and epigenetic mechanism of dexamethasone were studied with bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and other cell models. In the PDE group, lipid accumulation increased, triglyceride synthesis-related gene expression increased, and oxidation-related gene expression decreased in livers of adult male rat offspring. In utero, hepatic triglyceride synthesis increased and oxidative function decreased in PDE fetal male rats. Moreover, low hepatic miR-122 expression, high Yin Yang-1 (YY1) expression and angiotensin-converting enzyme 2 (ACE2)-Mas receptor (MAS1) signaling pathway inhibition were observed before and after birth. At the cellular level, dexamethasone (100-2500 nM) elevated the intracellular triglyceride content, increased triglyceride synthesis-related gene expression and decreased oxidation-related gene expression. Dexamethasone treatment also decreased miR-122 expression, increased YY1 expression and inhibited the ACE2-MAS1 signaling pathway. Interference or overexpression of glucocorticoid receptor (GR), miR-122, YY1 and ACE2 could reverse the changes in downstream gene expression. In summary, PDE could induce NAFLD in adult male rat offspring. The programming mechanism included inhibition of miR-122 expression after GR activation, and dexamethasone increased hepatocyte YY1 expression; these effects resulted in ACE2-MAS1 signaling pathway inhibition, which led to increased hepatic triglyceride synthesis and decreased oxidative function. The increased triglyceride synthesis and decreased oxidative function of hepatocytes caused by low miR-122 expression due to dexamethasone could continue postnatally, eventually leading to NAFLD in adult rat offspring.
Collapse
Affiliation(s)
- Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Bo He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
22
|
Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of Early Nutrition, Physical Activity and Sleep on the Fetal Programming of Disease in the Pregnancy: A Narrative Review. Nutrients 2020; 12:nu12123900. [PMID: 33419354 PMCID: PMC7766505 DOI: 10.3390/nu12123900] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Early programming is the adaptation process by which nutrition and environmental factors alter development pathways during prenatal growth, inducing changes in postnatal metabolism and diseases. The aim of this narrative review, is evaluating the current knowledge in the scientific literature on the effects of nutrition, environmental factors, physical activity and sleep on development pathways. If in utero adaptations were incorrect, this would cause a mismatch between prenatal programming and adulthood. Adequate caloric intake, protein, mineral, vitamin, and long-chain fatty acids, have been noted for their relevance in the offspring brain functions and behavior. Fetus undernutrition/malnutrition causes a delay in growth and have detrimental effects on the development and subsequent functioning of the organs. Pregnancy is a particularly vulnerable period for the development of food preferences and for modifications in the emotional response. Maternal obesity increases the risk of developing perinatal complications and delivery by cesarean section and has long-term implications in the development of metabolic diseases. Physical exercise during pregnancy contributes to overall improved health post-partum. It is also interesting to highlight the relevance of sleep problems during pregnancy, which influence adequate growth and fetal development. Taking into account these considerations, we conclude that nutrition and metabolic factors during early life play a key role of health promotion and public health nutrition programs worldwide to improve the health of the offspring and the health costs of hospitalization.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-000 (ext. 20317)
| | - Magdalena Lopez-Frias
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
23
|
Goldstein ND, Palumbo AJ, Bellamy SL, Purtle J, Locke R. State and Local Government Expenditures and Infant Mortality in the United States. Pediatrics 2020; 146:peds.2020-1134. [PMID: 33077541 DOI: 10.1542/peds.2020-1134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Evidence suggests that government expenditures on non-health care services can reduce infant mortality, but it is unclear what types of spending have the greatest impact among groups at highest risk. Thus, we sought to quantify how US state government spending on various services impacted infant mortality rates (IMRs) over time and whether spending differentially reduced mortality in some subpopulations. METHODS A longitudinal, repeated-measures study of US state-level infant mortality and state and local government spending for the years 2000-2016, the most recent data available. Expenditures included spending on education, social services, and environment and housing. Using generalized linear regression models, we assessed how changes in spending impacted infant mortality over time, overall and stratified by race and ethnicity and maternal age group. RESULTS State and local governments spend, on average, $9 per person. A $0.30 per-person increase in environmental spending was associated with a decrease of 0.03 deaths per 1000 live births, and a $0.73 per-person increase in social services spending was associated with a decrease of 0.02 deaths per 1000 live births. Infants born to mothers aged <20 years had the single greatest benefit from an increase in expenditures compared with all other groups. Increased expenditures in public health, housing, parks and recreation, and solid waste management were associated with the greatest reduction in overall IMR. CONCLUSIONS Investment in non-health care services was associated with lower IMRs among certain high-risk populations. Continued investments into improved social and environmental services hold promise for further reducing IMR disparities.
Collapse
Affiliation(s)
| | - Aimee J Palumbo
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | | | - Jonathan Purtle
- Health Management and Policy, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Robert Locke
- Department of Pediatrics, ChristianaCare, Newark, Delaware; and.,Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University and Department of Neonatology, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Abad C, Karahoda R, Kastner P, Portillo R, Horackova H, Kucera R, Nachtigal P, Staud F. Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit During Gestation. Int J Mol Sci 2020; 21:ijms21207578. [PMID: 33066440 PMCID: PMC7589826 DOI: 10.3390/ijms21207578] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/11/2023] Open
Abstract
Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.
Collapse
Affiliation(s)
- Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (P.K.); (R.K.)
| | - Ramon Portillo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (P.K.); (R.K.)
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
- Correspondence: ; Tel.: +420-495-067-407
| |
Collapse
|
25
|
Kumar TR, Reusch JE, Kohrt WM, Regensteiner JG. Sex Differences Across the Lifespan: A Focus on Cardiometabolism. J Womens Health (Larchmt) 2020; 29:899-909. [PMID: 32423340 PMCID: PMC7371550 DOI: 10.1089/jwh.2020.8408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Women's health and sex differences research remain understudied. In 2016, to address the topic of sex differences, the Center for Women' s Health Research (CWHR) at the University of Colorado (cwhr@ucdenver.edu) held its inaugural National Conference, "Sex Differences Across the Lifespan: A Focus on Metabolism" and published a report summarizing the presentations. Two years later, in 2018, CWHR organized the 2nd National Conference. The research presentations and discussions from the 2018 conference also addressed sex differences across the lifespan with a focus on cardiometabolism and expanded the focus by including circadian physiology and effects of sleep on cardiometabolic health. Over 100 participants, including basic scientists, clinicians, policymakers, advocacy group leaders, and federal agency leadership participated. The meeting proceedings reveal that although exciting advances in the area of sex differences have taken place, significant questions and gaps remain about women's health and sex differences in critical areas of health. Identifying these gaps and the subsequent research that will result may lead to important breakthroughs.
Collapse
Affiliation(s)
- T. Rajendra Kumar
- Department of Obstetrics and Gynecology and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane E.B. Reusch
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Administration Eastern Colorado Health Care System, Denver, Colorado, USA
| | - Wendy M. Kohrt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Judith G. Regensteiner
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Sarron E, Pérot M, Barbezier N, Delayre-Orthez C, Gay-Quéheillard J, Anton PM. Early exposure to food contaminants reshapes maturation of the human brain-gut-microbiota axis. World J Gastroenterol 2020; 26:3145-3169. [PMID: 32684732 PMCID: PMC7336325 DOI: 10.3748/wjg.v26.i23.3145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Early childhood growth and development is conditioned by the consecutive events belonging to perinatal programming. This critical window of life will be very sensitive to any event altering programming of the main body functions. Programming of gut function, which is starting right after conception, relates to a very well-established series of cellular and molecular events associating all types of cells present in this organ, including neurons, endocrine and immune cells. At birth, this machinery continues to settle with the establishment of extra connection between enteric and other systemic systems and is partially under the control of gut microbiota activity, itself being under the densification and the diversification of microorganisms' population. As thus, any environmental factor interfering on this pre-established program may have a strong incidence on body functions. For all these reasons, pregnant women, fetuses and infants will be particularly susceptible to environmental factors and especially food contaminants. In this review, we will summarize the actual understanding of the consequences of repeated low-level exposure to major food contaminants on gut homeostasis settlement and on brain/gut axis communication considering the pivotal role played by the gut microbiota during the fetal and postnatal stages and the presumed consequences of these food toxicants on the individuals especially in relation with the risks of developing later in life non-communicable chronic diseases.
Collapse
Affiliation(s)
- Elodie Sarron
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Maxime Pérot
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Nicolas Barbezier
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Jérôme Gay-Quéheillard
- Périnatalité et risques Toxiques, UMR-I-01, Université de Picardie Jules Verne, Amiens 80000, France
| | - Pauline M Anton
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| |
Collapse
|
27
|
Xue Q, Chen F, Zhang H, Liu Y, Chen P, Patterson AJ, Luo J. Maternal high-fat diet alters angiotensin II receptors and causes changes in fetal and neonatal rats†. Biol Reprod 2020; 100:1193-1203. [PMID: 30596890 DOI: 10.1093/biolre/ioy262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/07/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is linked to cardiovascular diseases in postnatal life. The current study tested the hypothesis that maternal HFD causes myocardial changes through angiotensin II receptor (AGTR) expression modulation in fetal and neonatal rat hearts. The control group of pregnant rats was fed a normal diet and the treatment group of pregnant rats was on a HFD (60% kcal fat). Hearts were isolated from embryonic day 21 fetuses (E21) and postnatal day 7 pups (PD7). Maternal HFD decreased the body weight of the offspring in both E21 and PD7. The ratio of heart weight to body weight was increased in E21, but not PD7, when compared to the control group. Transmission electron microscopy revealed disorganized myofibrils and effacement of mitochondria cristae in the treatment group. Maternal HFD decreased S-phase and increased G1-phase of the cellular cycle for fetal and neonatal cardiac cells. Molecular markers of cardiac hypertrophy, such as Nppa and Myh7, were found to be increased in the treatment group. There was an associated increase in Agtr2 mRNA and protein, whereas Agtr1a mRNA and AGTR1 protein were decreased in HFD fetal and neonatal hearts. Furthermore, maternal HFD decreased glucocorticoid receptors (GRs) binding to glucocorticoid response elements at the Agtr1a and Agtr2 promoter, which correlated with downregulation of GR in fetal and neonatal hearts. These findings suggest that maternal HFD may promote premature termination of fetal and neonatal cardiomyocyte proliferation and compensatory hypertrophy through intrauterine modulation of AGTR1 and AGTR2 expression via GR dependent mechanism.
Collapse
Affiliation(s)
- Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fangyuan Chen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haichuan Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yinghua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Pinxian Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Andrew J Patterson
- University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Jiandong Luo
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| |
Collapse
|
28
|
Kanda T, Murai-Takeda A, Kawabe H, Itoh H. Low birth weight trends: possible impacts on the prevalences of hypertension and chronic kidney disease. Hypertens Res 2020; 43:859-868. [PMID: 32393862 DOI: 10.1038/s41440-020-0451-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
Worldwide, hypertension and chronic kidney disease (CKD) are highly prevalent disorders and are strong risk factors for cardiovascular disease and end-stage renal disease (ESRD). The developmental origins of health and disease (DOHAD) concept suggests that undesirable perinatal environmental conditions, such as malnutrition, contribute to disease development in adults. Among the known hypertension and CKD risk factors, DOHAD plays a potential role in determining susceptibility to the onset of these diseases in later adulthood. Since low birth weight (LBW) is a surrogate marker for adverse fetal environmental conditions, the high incidence of LBW in developing countries and its increasing incidence in most developed countries (attributed to multiple pregnancies and prepregnancy maternal factors, such as undernutrition, advanced maternal age, and smoking) is concerning. Thus, LBW is an important public health problem not only because of the associated infant mortality and morbidity but also because it is a risk factor for adult-onset hypertension/CKD. During their reproductive years, pregnant women who were born with LBWs have an increased risk of hypertensive disorders of pregnancy, which contribute to the risk of developing cardiovascular disease and ESRD. The offspring of LBW females are also likely to be LBW, which suggests that susceptibility to hypertension/CKD may reflect transgenerational inheritance. Therefore, there is global concern about the increasing prevalence of LBW-related diseases. This review summarizes the relevance of hypertension and CKD in conjunction with DOHAD and discusses recent studies that have examined the impact of the upward LBW trend on renal function and blood pressure.
Collapse
Affiliation(s)
- Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
29
|
Castro-Rodríguez DC, Rodríguez-González GL, Menjivar M, Zambrano E. Maternal interventions to prevent adverse fetal programming outcomes due to maternal malnutrition: Evidence in animal models. Placenta 2020; 102:49-54. [PMID: 33218579 DOI: 10.1016/j.placenta.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/22/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Animal studies indicate that suboptimal conditions during pregnancy adversely impact both maternal health and offspring phenotype, predisposing offspring to development of later-life diseases including obesity, diabetes, cardiovascular diseases, and behavioral and reproductive dysfunction. Effective interventions during pregnancy and/or lactation are needed to improve both maternal and offspring health. This review addresses the relationship between adverse perinatal insults and its negative impact on offspring development and presents some maternal intervention studies in animal models, such as maternal nutrition (diet modification, antioxidants, omega-3-6 (n-3-6), probiotics) or physical activity, which can prevent or alleviate negative outcomes in both mother and offspring.
Collapse
Affiliation(s)
- Diana C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico; CONACyT-Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Guadalupe L Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Marta Menjivar
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad Académica de Ciencias y Tecnología, Universidad Nacional Autónoma de México-Yucatán, Yucatán, Mexico
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
30
|
Li L, Hu W, Liu K, Zhang D, Liu M, Li X, Wang H. miR-148a/LDLR mediates hypercholesterolemia induced by prenatal dexamethasone exposure in male offspring rats. Toxicol Appl Pharmacol 2020; 395:114979. [PMID: 32234517 DOI: 10.1016/j.taap.2020.114979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
Epidemiology suggests that adverse environmental exposure during pregnancy may predispose children to hypercholesterolemia in adulthood. This study aimed to demonstrate hypercholesterolemia induced by prenatal dexamethasone exposure (PDE) in adult male offspring rats and explore the intrauterine programming mechanisms. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0, 0.1, 0.2, and 0.4 mg/kg∙d) from gestational days (GD) 9 to 21, and the serum and liver of the male offsprings were collected at GD21, postnatal week (PW) 12 and 28. Furthermore, the effects of dexamethasone on the expression of low-density lipoprotein receptor (LDLR) and its epigenetic mechanism was confirmed in the bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and continuous hepatocyte line. PDE could reduce the birth weight of male offsprings, increase the serum total cholesterol (TCH) level in adult rats, and decrease the liver low-density lipoprotein receptor (LDLR) expression. Serum TCH level and liver LDLR expression were decreased in PDE male fetuses in utero (GD21). Moreover, PDE increased the translocation of the glucocorticoid receptor (GR) in the fetal liver, the expression of DiGeorge syndrome critical region 8 gene (DGCR8), the pre- and post-natal expression of miR-148a. The results of PDE offspring in vivo and in vitro exhibited similar changes. These changes could be reversed by overexpressing LDLR, inhibiting miR-148a or GR. PDE caused hypercholesterolemia in male adult offspring rats, which was mediated via dexamethasone activated intrauterine hepatic GR, enhanced the expression of DGCR8 and miR-148a, thereby reducing the expression of LDLR, leading to impaired liver cholesterol reverse transport function, and finally causing hypercholesterolemia in adult rats.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Min Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Xufeng Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
31
|
Ryan CP, Kuzawa CW. Germline epigenetic inheritance: Challenges and opportunities for linking human paternal experience with offspring biology and health. Evol Anthropol 2020; 29:180-200. [DOI: 10.1002/evan.21828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Calen P. Ryan
- Department of AnthropologyNorthwestern University Evanston Illinois USA
| | - Christopher W. Kuzawa
- Department of AnthropologyNorthwestern University Evanston Illinois USA
- Institute for Policy Research Northwestern University Evanston Illinois USA
| |
Collapse
|
32
|
Low birth weight, a risk factor for diseases in later life, is a surrogate of insulin resistance at birth. J Hypertens 2019; 37:2123-2134. [DOI: 10.1097/hjh.0000000000002156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Rodríguez-González GL, Castro-Rodríguez DC, Zambrano E. Pregnancy and Lactation: A Window of Opportunity to Improve Individual Health. Methods Mol Biol 2018; 1735:115-144. [PMID: 29380310 DOI: 10.1007/978-1-4939-7614-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human and animal studies indicate that obesity during pregnancy adversely impacts both maternal health and offspring phenotype predisposing them to chronic diseases later in life including obesity, dyslipidemia, type 2 diabetes mellitus, and hypertension. Effective interventions during human pregnancy and/or lactation are needed to improve both maternal and offspring health. This review addresses the relationship between adverse perinatal insults and its negative impact on offspring development and presents some maternal intervention studies such as diet modification, probiotic consumption, or maternal exercise, to prevent or alleviate the negative outcomes in both the mother and her child.
Collapse
Affiliation(s)
- Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana C Castro-Rodríguez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
34
|
Brunst KJ, Tignor N, Just A, Liu Z, Lin X, Hacker MR, Bosquet Enlow M, Wright RO, Wang P, Baccarelli AA, Wright RJ. Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics 2018; 13:665-681. [PMID: 30001177 DOI: 10.1080/15592294.2018.1497387] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions (i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1, TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.
Collapse
Affiliation(s)
- Kelly J Brunst
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Nicole Tignor
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Allan Just
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Zhonghua Liu
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Xihong Lin
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Michele R Hacker
- e Department of Obstetrics and Gynecology , Beth Israel Deaconess Medical Center , Boston , MA , USA.,f Department of Obstetrics , Gynecology and Reproductive Biology, Harvard Medical School , Boston , MA , USA
| | - Michelle Bosquet Enlow
- g Department of Psychiatry, Program for Behavioral Science, Boston Children's Hospital and Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Robert O Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Pei Wang
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Andrea A Baccarelli
- h Department of Environmental Health Sciences , Mailman School of Public Health, Columbia University , New York , NY , USA
| | - Rosalind J Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA.,i Department of Pediatrics , Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
35
|
Andescavage NN, du Plessis A, McCarter R, Serag A, Evangelou I, Vezina G, Robertson R, Limperopoulos C. Complex Trajectories of Brain Development in the Healthy Human Fetus. Cereb Cortex 2018; 27:5274-5283. [PMID: 27799276 DOI: 10.1093/cercor/bhw306] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/10/2016] [Indexed: 11/13/2022] Open
Abstract
This study characterizes global and hemispheric brain growth in healthy human fetuses during the second half of pregnancy using three-dimensional MRI techniques. We studied 166 healthy fetuses that underwent MRI between 18 and 39 completed weeks gestation. We created three-dimensional high-resolution reconstructions of the brain and calculated volumes for left and right cortical gray matter (CGM), fetal white matter (FWM), deep subcortical structures (DSS), and the cerebellum. We calculated the rate of growth for each tissue class according to gestational age and described patterns of hemispheric growth. Each brain region demonstrated major increases in volume during the second half of gestation, the most pronounced being the cerebellum (34-fold), followed by FWM (22-fold), CGM (21-fold), and DSS (10-fold). The left cerebellar hemisphere, CGM, and DSS had larger volumes early in gestation, but these equalized by term. It has been increasingly recognized that brain asymmetry evolves throughout the human life span. Advanced quantitative MRI provides noninvasive measurements of early structural asymmetry between the left and right fetal brain that may inform functional and behavioral laterality differences seen in children and young adulthood.
Collapse
Affiliation(s)
- Nickie N Andescavage
- Division of Neonatology, Children's National Health System, Washington, DC 20010, USA.,Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Adre du Plessis
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20052, USA.,Division of Fetal and Translational Medicine, Children's National Health System, Washington, DC 20010, USA
| | - Robert McCarter
- Division of Biostatistics and Informatics, Children's National Health System, Washington, DC 20010, USA
| | - Ahmed Serag
- Division of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA
| | - Iordanis Evangelou
- Division of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA
| | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA.,Department of Radiology, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Richard Robertson
- Department of Radiology, Children's Hospital Boston, Boston, MA 02115, USA.,Department of Radiology, Harvard Medical School, Cambridge, MA 02115, USA
| | - Catherine Limperopoulos
- Division of Fetal and Translational Medicine, Children's National Health System, Washington, DC 20010, USA.,Division of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA.,Department of Radiology, George Washington University School of Medicine, Washington, DC 20052, USA
| |
Collapse
|
36
|
Decreased H3K9ac level of StAR mediated testicular dysplasia induced by prenatal dexamethasone exposure in male offspring rats. Toxicology 2018; 408:1-10. [PMID: 29902490 DOI: 10.1016/j.tox.2018.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/05/2018] [Accepted: 06/10/2018] [Indexed: 01/27/2023]
Abstract
Prenatal dexamethasone exposure (PDE) could induce testicular developmental toxicity in adults. The present study aims to confirm its intrauterine origination, and to explore its potential intrauterine programming mechanism. The pregnant rats were respectively injected subcutaneously with 0.2 and 0.8 mg/kg d dexamethasone during gestational days (GD) 9 to 20. The testes and serum of offspring rats were collected on GD20 and postnatal week (PW) 12. In vivo, PDE significantly induced the abnormal testicular morphology in offspring from GD20 to PW12. Moreover, the serum and intratesticular testosterone levels and the expression of testicular steroidogenic acute regulatory protein (StAR) were reduced by PDE. The expression levels of glucocorticoid receptor (GR) and histone deacetylase 7 (HDAC7) were increased in fetal testes. Furthermore, the histone 3 lysine 9 acetylation (H3K9ac) level in the StAR promoter was decreased by PDE from GD20 to PW12. In vitro, mouse Leydig tumour cell line (MLTC-1) cells were treated with dexamethasone (20, 100 and 500 nM), and the testosterone production and StAR expression were reduced. Moreover, dexamethasone increased the expression of HDAC7 by activating GR, which decreased the H3K9ac level in the StAR promoter. Taken together, PDE caused testicular dysplasia before and after birth in male offspring rats, and its mechanism was related to the low-expressional programming of StAR mediated by decreasing H3K9ac level.
Collapse
|
37
|
Paul DA, Goldstein ND, Locke R. Delaware Infant Mortality. Dela J Public Health 2018; 4:24-31. [PMID: 34466974 PMCID: PMC8389118 DOI: 10.32481/djph.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- David A Paul
- Clinical Leader, Women and Children's Service Line; Chair, Pediatrics, Christiana Care Health System; Professor, Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University; Governor Appointed Chair, Delaware Healthy Mother and Infant Consortium
| | - Neal D Goldstein
- Clinical Leader, Women and Children's Service Line; Chair, Pediatrics, Christiana Care Health System; Professor, Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University; Governor Appointed Chair, Delaware Healthy Mother and Infant Consortium
- Infectious Disease Epidemiologist, Christiana Care Health System; Assistant Research Professor, Department of Epidemiology & Biostatistics, Drexel University Dornsife School of Public Health
- Attending Critical Care Neonatologist, Christiana Care Health System; Professor, Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University
| | - Robert Locke
- Attending Critical Care Neonatologist, Christiana Care Health System; Professor, Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University
| |
Collapse
|
38
|
Briana DD, Malamitsi-Puchner A. Developmental origins of adult health and disease: The metabolic role of BDNF from early life to adulthood. Metabolism 2018; 81:45-51. [PMID: 29217485 DOI: 10.1016/j.metabol.2017.11.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that the origins of adult disease may occur during fetal life. Thus, the concept of "developmental programming" has been introduced and supported by epidemiological and experimental data. This concept supports the idea that the nutritional and hormonal status during pregnancy could interfere in metabolism control. The mechanisms responsible for this "developmental programming" remain poorly documented. Current research indicates that neurotrophins and particularly brain-derived neurotrophic factor (BDNF) may play a crucial role in this process. Although mainly expressed in the nervous system, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are immunolocalized in several regions of the human placenta and have important functions during pregnancy. BDNF serves widespread roles in regulating energy homeostasis in both fetuses and adults, by controlling patterns of fetal growth, adult feeding and physical activity, and by regulating glucose metabolism in peripheral tissues. Impaired BDNF signaling may be implicated in the etiopathogenesis of the metabolic syndrome. Novel BDNF-focused interventions are being developed for obesity, diabetes and neurological disorders. The aim of this article is to provide a brief comprehensive literary review regarding the potential implications of BDNF in "developmental programming", through regulation of metabolism and energy balance from early life to adulthood.
Collapse
Affiliation(s)
- Despina D Briana
- Department of Neonatology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
39
|
Iodine as Essential Nutrient during the First 1000 Days of Life. Nutrients 2018; 10:nu10030290. [PMID: 29494508 PMCID: PMC5872708 DOI: 10.3390/nu10030290] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Iodine is an essential micronutrient incorporated into thyroid hormones. Although iodine deficiency can lead to a broad spectrum of disorders throughout life, it is most critical in the early stages of development, as the foetal brain is extremely dependent on iodine supply. During the last two decades, our understanding of thyroid physiology during gestation has substantially improved. Furthermore, thyroid hormone receptors have been identified and characterised in placental and embryonic tissues, allowing us to elucidate the maternal-foetal transfer of thyroid hormones. Experimental studies have demonstrated that the cyto-architecture of the cerebral cortex can be irreversibly disturbed in iodine deficiency causing abnormal neuron migratory patterns which are associated with cognitive impairment in children. In this context, the role of iodine as key factor in the programming of foetal and infant neurodevelopment, needs to be revisited with a special focus on areas of mild to moderate iodine deficiency. The objective of this review is to summarize the available evidence from both animals and human studies, for the effect of iodine deficiency (particularly, of maternal hypothyroxinemia) on brain development and neurological or behavioural disorders, such as lower intelligence quotient (IQ) or attention deficit hyperactivity disorder (ADHD).
Collapse
|
40
|
Stapleton PA, Hathaway QA, Nichols CE, Abukabda AB, Pinti MV, Shepherd DL, McBride CR, Yi J, Castranova VC, Hollander JM, Nurkiewicz TR. Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome. Part Fibre Toxicol 2018; 15:3. [PMID: 29321036 PMCID: PMC5763571 DOI: 10.1186/s12989-017-0239-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 01/19/2023] Open
Abstract
Background The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. Pregnant dams were exposed to nano-titanium dioxide (nano-TiO2) aerosols (10 ± 0.5 mg/m3) for 7-8 days (calculated, cumulative lung deposition = 217 ± 1 μg) and on GD (gestational day) 20 fetal hearts were isolated. DNA was extracted and immunoprecipitated with modified chromatin marks histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3). Following chromatin immunoprecipitation (ChIP), DNA fragments were sequenced. RNA from fetal hearts was purified and prepared for RNA sequencing and transcriptomic analysis. Ingenuity Pathway Analysis (IPA) was then used to identify pathways most modified by gestational ENM exposure. Results The results of the sequencing experiments provide initial evidence that significant epigenetic and transcriptomic changes occur in the cardiac tissue of maternal nano-TiO2 exposed progeny. The most notable alterations in major biologic systems included immune adaptation and organismal growth. Changes in normal physiology were linked with other tissues, including liver and kidneys. Conclusions These results are the first evidence that maternal ENM inhalation impacts the fetal epigenome. Electronic supplementary material The online version of this article (10.1186/s12989-017-0239-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Q A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - C E Nichols
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A B Abukabda
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, USA
| | - M V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - C R McBride
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA
| | - J Yi
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA
| | - V C Castranova
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, USA
| | - J M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - T R Nurkiewicz
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA.
| |
Collapse
|
41
|
Fetal programming and eating disorder risk. J Theor Biol 2017; 428:26-33. [DOI: 10.1016/j.jtbi.2017.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 05/23/2017] [Indexed: 11/23/2022]
|
42
|
Shi X, Li X, Hou Y, Cao X, Zhang Y, Wang H, Wang H, Peng C, Li J, Li Q, Wu C, Xiao X. Paternal hyperglycemia in rats exacerbates the development of obesity in offspring. J Endocrinol 2017; 234:175-186. [PMID: 28533422 DOI: 10.1530/joe-17-0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/25/2022]
Abstract
Parental history with obesity or diabetes will increase the risk for developing metabolic diseases in offspring. However, literatures as to transgenerational inheritance of metabolic dysfunctions through male lineage are relatively scarce. In the current study, we aimed to evaluate influences of paternal hyperglycemia on metabolic phenotypes in offspring. Male SD rats were i.p. injected with streptozotocin (STZ) or citrate buffer (CB, as control). STZ-injected rats with glucose levels higher than 16.7 mM were selected to breed with normal female rats. Offspring from STZ or CB treated fathers (STZ-O and CB-O) were maintained in the identical condition. We monitored body weight and food intake, and tests of glucose and insulin tolerance (GTTs and ITTs), fasting-refeeding and cold exposure were performed. Expression of factors involved in hypothalamic feeding and brown adipose tissue (BAT) thermogenic activity was performed by real-time PCR and Western blot. Adult STZ-O were heavier than CB-O. Impairment of GTTs was observed in STZ-O compared with CB-O at 22 and 32 weeks of age; ITTs results showed decreased insulin sensitivity in STZ-O. Daily food intake and accumulated food intake during 12-h refeeding after fasting were significantly higher in STZ-O. UCP1 levels were downregulated in BAT from STZ-O at room temperature and cold exposure. Finally, STZ-O rats showed suppressed leptin signaling in the hypothalamus as evidenced by upregulated SOCS3, reduced phosphorylation of STAT3, impaired processing POMC and decreased α-MSH production. Our study revealed that paternal hyperglycemia predisposes offspring to developing obesity, which is possibly associated with impaired hypothalamic leptin signaling.
Collapse
Affiliation(s)
- Xiaoqin Shi
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Li
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Hou
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Cao
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuyao Zhang
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Wang
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyin Wang
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jibin Li
- Department of Nutrition and Food HygieneSchool of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Qifu Li
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, Texas, USA
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal MedicineChongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Kuo DZ, Lyle RE, Casey PH, Stille CJ. Care System Redesign for Preterm Children After Discharge From the NICU. Pediatrics 2017; 139:peds.2016-2969. [PMID: 28250024 DOI: 10.1542/peds.2016-2969] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 11/24/2022] Open
Abstract
Approximately 1 in 8 children in the United States are born preterm. Existing guidelines and research examine the cost of prematurity from the NICU stay and developmental surveillance and outcomes after discharge from the NICU. Preterm children are at greater risk for excess hospitalizations, outpatient visits, and societal costs after NICU discharge. Improved delivery of care and health promotion from the community setting, particularly from the patient-centered medical home, may result in improved growth, health, and development, with accompanying reduction of post-NICU discharge costs and encounters. There has been comparatively little focus on how to promote health and wellness for children born preterm, particularly for community-based providers and payers. Accordingly, health care delivery for NICU graduates is often fragmented, with little guidance on medical management beyond tertiary care follow-up. In this article, we use what is known about chronic care and practice transformation models to present a framework for health care system redesign for children born preterm. We discuss the rationale for NICU graduates as a priority population for health system redesign. Promotion of health and wellness for children born preterm who are discharged to the community setting entails population health management from the patient-centered medical home; comanagement, clinical care protocols, and clinical support from the tertiary care-based tertiary care-based center; and a favorable payer strategy that emphasizes support for chronic care management. Practical suggestions are provided for the practicing physician for the child born preterm as health care systems are redesigned.
Collapse
Affiliation(s)
- Dennis Z Kuo
- Department of Pediatrics, University at Buffalo, Buffalo, New York;
| | - Robert E Lyle
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas; and
| | - Patrick H Casey
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas; and
| | | |
Collapse
|
44
|
Kaushik P, Anderson JT. Obesity: epigenetic aspects. Biomol Concepts 2017; 7:145-55. [PMID: 27327133 DOI: 10.1515/bmc-2016-0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.
Collapse
|
45
|
Rozycki H. Maternal Effects on Paediatric Lung Health and Disease. Paediatr Respir Rev 2017; 21:1-2. [PMID: 28040404 DOI: 10.1016/j.prrv.2016.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Henry Rozycki
- Division of Neonatal Medicine, Vice Chair for Research, Children's Hospital of Richmond at VCU, P.O Box 980276, Richmond, VA 23298-0276, United States.
| |
Collapse
|
46
|
Kopec G, Shekhawat PS, Mhanna MJ. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes 2017; 10:285-295. [PMID: 28740412 PMCID: PMC5505541 DOI: 10.2147/dmso.s115890] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is when fetuses and newborn infants have not reached their true growth potential as genetically defined. Fetuses with IUGR develop in a less than ideal environment that leads to epigenetic changes and marks infants' metabolism for the rest of their lives. Epigenetic changes affect insulin-like growth factor-1 (IGF-1) levels and lead to insulin resistance and ultimately to a metabolic syndrome. The metabolic syndrome is a constellation of illnesses that raise one's risk for type 2 diabetes mellitus, coronary artery disease, and ischemic heart disease, including hypertension, dyslipidemia, central obesity, insulin resistance, and inflammation. The association between IUGR or prematurity and long-term insulin resistance, obesity, hypertension, and metabolic syndrome remains unclear. While studies have shown an association, others have not supported such association. If alteration of intrauterine growth can ultimately lead to the development of metabolic derangements in childhood and adulthood, and if such association is true, then early interventions targeting the health of pregnant women will ensure the health of the population to follow.
Collapse
Affiliation(s)
- Gretchen Kopec
- Department of Pediatrics, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, OH, USA
| | - Prem S Shekhawat
- Department of Pediatrics, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, OH, USA
| | - Maroun J Mhanna
- Department of Pediatrics, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, OH, USA
- Correspondence: Maroun J Mhanna, Department of Pediatrics, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA, Tel +1 216 778 1346, Fax +1 216 778 4223, Email
| |
Collapse
|
47
|
Yang HJ. Impact of perinatal environmental tobacco smoke on the development of childhood allergic diseases. KOREAN JOURNAL OF PEDIATRICS 2016; 59:319-27. [PMID: 27610180 PMCID: PMC5014911 DOI: 10.3345/kjp.2016.59.8.319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/24/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
Allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, and food allergy, are most common chronic, noncommunicable diseases in childhood. In the past few decades, the prevalence has increased abruptly worldwide. There are 2 possible explanations for the rising prevalence of allergic diseases worldwide, that an increased disease-awareness of physician, patient, or caregivers, and an abrupt exposure to unknown hazards. Unfortunately, the underlying mechanisms remain largely unknown. Despite the continuing efforts worldwide, the etiologies and rising prevalence remain unclear. Thus, it is important to identify and control risk factors in the susceptible individual for the best prevention and management. Genetic susceptibility or environments may be a potential background for the development of allergic disease, however they alone cannot explain the rising prevalence worldwide. There is growing evidence that epigenetic change depends on the gene, environment, and their interactions, may induce a long-lasting altered gene expression and the consequent development of allergic diseases. In epigenetic mechanisms, environmental tobacco smoke (ETS) exposure during critical period (i.e., during pregnancy and early life) are considered as a potential cause of the development of childhood allergic diseases. However, the causal relationship is still unclear. This review aimed to highlight the impact of ETS exposure during the perinatal period on the development of childhood allergic diseases and to propose a future research direction.
Collapse
Affiliation(s)
- Hyeon-Jong Yang
- Pediatric Allergy and Respiratory Center, Department of Pediatrics, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Martínez-Nadal S, Demestre X, Raspall F, Vila C, Álvarez J, Sala P. Assessment of foetal nutrition status at birth using the CANS score. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.anpede.2015.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Padmanabhan V, Cardoso RC, Puttabyatappa M. Developmental Programming, a Pathway to Disease. Endocrinology 2016; 157:1328-40. [PMID: 26859334 PMCID: PMC4816734 DOI: 10.1210/en.2016-1003] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/30/2016] [Indexed: 02/07/2023]
Abstract
Accumulating evidence suggests that insults occurring during the perinatal period alter the developmental trajectory of the fetus/offspring leading to long-term detrimental outcomes that often culminate in adult pathologies. These perinatal insults include maternal/fetal disease states, nutritional deficits/excess, stress, lifestyle choices, exposure to environmental chemicals, and medical interventions. In addition to reviewing the various insults that contribute to developmental programming and the benefits of animal models in addressing underlying mechanisms, this review focuses on the commonalities in disease outcomes stemming from various insults, the convergence of mechanistic pathways via which various insults can lead to common outcomes, and identifies the knowledge gaps in the field and future directions.
Collapse
Affiliation(s)
- Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109-5718
| | - Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109-5718
| | - Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109-5718
| |
Collapse
|
50
|
Zhang Y, Ren J. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management. Pharmacol Ther 2016; 161:52-66. [PMID: 27013344 DOI: 10.1016/j.pharmthera.2016.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|