1
|
Bass-Stringer S, Bernardo BC, Yildiz GS, Matsumoto A, Kiriazis H, Harmawan CA, Tai CMK, Chooi R, Bottrell L, Ezeani M, Donner DG, D'Elia AA, Ooi JYY, Mellett NA, Luo J, Masterman EI, Janssens K, Olshansky G, Howden EJ, Cross JH, Hagemeyer CE, Lin RCY, Thomas CJ, Magor GW, Perkins AC, Marwick TH, Kawakami H, Meikle PJ, Greening DW, Weeks KL, La Gerche A, Tham YK, McMullen JR. Reduced PI3K(p110α) induces atrial myopathy, and PI3K-related lipids are dysregulated in athletes with atrial fibrillation. JOURNAL OF SPORT AND HEALTH SCIENCE 2025; 14:101023. [PMID: 39826614 PMCID: PMC11978378 DOI: 10.1016/j.jshs.2025.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Elucidating mechanisms underlying atrial myopathy, which predisposes individuals to atrial fibrillation (AF), will be critical for preventing/treating AF. In a serendipitous discovery, we identified atrial enlargement, fibrosis, and thrombi in mice with reduced phosphoinositide 3-kinase (PI3K) in cardiomyocytes. PI3K(p110α) is elevated in the heart with exercise and is critical for exercise-induced ventricular enlargement and protection, but the role in the atria was unknown. Physical inactivity and extreme endurance exercise can increase AF risk. Therefore, our objective was to investigate whether too little and/or too much PI3K alone induces cardiac pathology. METHODS New cardiomyocyte-specific transgenic mice with increased or decreased PI3K(p110α) activity were generated. Multi-omics was conducted in mouse atrial tissue, and lipidomics in human plasma. RESULTS Elevated PI3K led to an increase in heart size with preserved/enhanced function. Reduced PI3K led to atrial dysfunction, fibrosis, arrhythmia, increased susceptibility to atrial enlargement and thrombi, and dysregulation of monosialodihexosylganglioside (GM3), a lipid that regulates insulin-like growth factor-1 (IGF1)-PI3K signaling. Proteomic profiling identified distinct signatures and signaling networks across atria with varying degrees of dysfunction, enlargement, and thrombi, including commonalities with the human AF proteome. PI3K-related lipids were dysregulated in plasma from athletes with AF. CONCLUSION PI3K(p110α) is a critical regulator of atrial biology and function in mice. This work provides a proteomic resource of candidates for further validation as potential new drug targets and biomarkers for atrial myopathy. Further investigation of PI3K-related lipids as markers for identifying individuals at risk of AF is warranted. Dysregulation of PI3K may contribute to the association between increased cardiac risk with physical inactivity and extreme endurance exercise.
Collapse
Affiliation(s)
- Sebastian Bass-Stringer
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gunes S Yildiz
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Celeste M K Tai
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Roger Chooi
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Lauren Bottrell
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Martin Ezeani
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aascha A D'Elia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Jieting Luo
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Emma I Masterman
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Kristel Janssens
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Gavriel Olshansky
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erin J Howden
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jonathon H Cross
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3800, Australia
| | - Ruby C Y Lin
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia; Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC 3086, Australia
| | - Graham W Magor
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3800, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3800, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Menzies Institute for Medical Research, University of TAS, Hobart, TAS 7000, Australia; Department of Cardiology, Royal Hobart Hospital, Hobart, TAS 7001, Australia
| | - Hiroshi Kawakami
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiology, Pulmonology, Hypertension, and Nephrology, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC 3086, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Anatomy & Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - André La Gerche
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yow Keat Tham
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton, VIC 3800, Australia; Heart Research Institute, Newtown, NSW 2042, Australia.
| |
Collapse
|
2
|
Wu M, Chen Z, Zhu J, Lin J, Wu NN, Han X, Wang M, Reiter RJ, Zhang Y, Wu Y, Ren J. Ablation of Akt2 rescues chronic caloric restriction-provoked myocardial remodeling and dysfunction through a CDK1-mediated regulation of mitophagy. Life Sci 2024; 356:123021. [PMID: 39209249 DOI: 10.1016/j.lfs.2024.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Chronic caloric restriction triggers unfavorable alterations in cardiac function albeit responsible scenarios remain unclear. This work evaluated the possible involvement of Akt2 in caloric restriction-evoked cardiac geometric and functional changes and responsible processes focusing on autophagy and mitophagy. Akt2 knockout and WT mice were subjected to caloric restriction for 30 weeks prior to assessment of myocardial homeostasis. Caloric restriction compromised echocardiographic parameters (decreased LV wall thickness, LVEDD, stroke volume, cardiac output, ejection fraction, fractional shortening, and LV mass), cardiomyocyte contractile and intracellular Ca2+ capacity, myocardial atrophy, interstitial fibrosis and mitochondrial injury associated with elevated blood glucocorticoids, autophagy (LC3B, p62, Atg7, Beclin-1), and mitophagy (Pink1, Parkin, TOM20), dampened cardiac ATP levels, mitochondrial protein PGC1α and UCP2, anti-apoptotic protein Bcl2, intracellular Ca2+ governing components Na+-Ca2+ exchanger, phosphorylation of SERCA2a, mTOR (Ser2481) and ULK1 (Ser757), and upregulated Bax, phospholamban, phosphorylation of Akt2, AMPK, and ULK1 (Ser555), the responses except autophagy markers (Beclin-1, Atg7), phosphorylation of AMPK, mTOR and ULK1 were negated by Akt2 ablation. Levels of CDK1 and DRP1 phosphorylation were overtly upregulated with caloric restriction, the response was reversed by Akt2 knockout. Caloric restriction-evoked changes in cardiac remodeling and cardiomyocyte function were alleviated by glucocorticoid receptor antagonism, Parkin ablation and Mdivi-1. In vitro experiment indicated that serum deprivation or glucocorticoids evoked GFP-LC3B accumulation and cardiomyocyte dysfunction, which was negated by inhibition of Akt2, CDK1 or DRP1, whereas mitophagy induction reversed Akt2 ablation-evoked cardioprotection. These observations favor a protective role of Akt2 ablation in sustained caloric restriction-evoked cardiac pathological changes via correction of glucocorticoid-induced mitophagy defect in a CDK1-DRP1-dependent manner.
Collapse
Affiliation(s)
- Min Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Province People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 519041, China
| | - Zhao Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Province People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 519041, China
| | - Jiade Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Province People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 519041, China
| | - Jie Lin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xuefeng Han
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Mengyuan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yijin Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Province People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 519041, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Rubio-Tomás T, Soler-Botija C, Martínez-Estrada O, Villena JA. Transcriptional control of cardiac energy metabolism in health and disease: Lessons from animal models. Biochem Pharmacol 2024; 224:116185. [PMID: 38561091 DOI: 10.1016/j.bcp.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR-70013, Crete, Greece
| | - Carolina Soler-Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBER on Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Wang L, Wan W, Zhang S, Keswani T, Li G, Xiao J. RNA-mediated epigenetic regulation in exercised heart: Mechanisms and opportunities for intervention. Mol Aspects Med 2024; 97:101274. [PMID: 38653129 DOI: 10.1016/j.mam.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Physical exercise has been widely acknowledged as a beneficial lifestyle alteration and a potent non-pharmacological treatment for heart disease. Extensive investigations have revealed the beneficial effects of exercise on the heart and the underlying mechanisms involved. Exercise is considered one of the key factors that can lead to epigenetic alterations. The increasing number of identified molecules in the exercised heart has led to many studies in recent years that have explored the cellular function of ncRNAs and RNA modifications in the heart. Investigating the regulatory role of RNA-mediated epigenetic regulation in exercised hearts will contribute to the development of therapeutic strategies for the management of heart diseases. This review aims to summarize the positive impact of exercise on cardiac health. We will first provide an overview of the mechanisms through which exercise offers protection to the heart. Subsequently, we will delve into the current understanding of ncRNAs, specifically miRNAs, lncRNAs, and circRNAs, as well as RNA modification, focusing on RNA m6A and RNA A-to-I editing, and how they contribute to exercise-induced benefits for the heart. Lastly, we will explore the emerging therapeutic strategies that utilize exercise-mediated RNA epigenetic regulation in the treatment of heart diseases, while also addressing the challenges faced in this field.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shuang Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Li S, Xin Q, Fang G, Deng Y, Yang F, Qiu C, Yang Y, Lan C. Upregulation of mitochondrial telomerase reverse transcriptase mediates the preventive effect of physical exercise on pathological cardiac hypertrophy via improving mitochondrial function and inhibiting oxidative stress. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166859. [PMID: 37643691 DOI: 10.1016/j.bbadis.2023.166859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Physical exercise is a non-pharmacological intervention that helps prevent pathological cardiac hypertrophy. However, the underlying molecular mechanisms remain unclear. Telomerase reverse transcriptase (TERT) has non-telomeric functions such as protection against mitochondrial dysfunction and oxidative stress, and its myocardial expression is upregulated by physical exercise. Here, we found that physical exercise caused myocardial upregulation of mitochondrial TERT and sustenance during transverse aortic constriction (TAC)-induced cardiac hypertrophy. Overexpression of mitochondrial-targeted TERT (mito-TERT) via adeno-associated virus serotype 9 carrying the TERT-coding sequence fused with N-terminal mitochondrial-targeting sequence improved cardiac function and attenuated cardiac hypertrophy. Mechanistically, mito-TERT ameliorated mitochondrial dysfunction and oxidative stress, which were associated with improving the activity and subunit composition of complex I. Remarkably, the telomerase activator TA-65 also exhibited an antihypertrophic effect. Collectively, our results reveal a significant role for mito-TERT in mediating the antihypertrophic effect of physical exercise and demonstrate that TERT is a potential drug target for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Qian Xin
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Guangyao Fang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yi Deng
- Department of General Practice, General Hospital of Western Theater Command, Chengdu, PR China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, PR China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| | - Cong Lan
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| |
Collapse
|
6
|
Zilio F, Di Fusco SA, Flori M, Malvezzi Caracciolo D'Aquino M, Pollarolo L, Ingianni N, Lucà F, Riccio C, Gulizia MM, Gabrielli D, Oliva F, Colivicchi F. Physical activity and the heart: from well-established cardiovascular benefits to possible adverse effects. Trends Cardiovasc Med 2024; 34:18-25. [PMID: 35738324 DOI: 10.1016/j.tcm.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022]
Abstract
The favorable effects of physical activity on the cardiovascular system have been well described in scientific literature. Physical activity reduces cardiovascular morbidity and mortality in both healthy subjects and in patients with cardiovascular disease. However, different intensity levels of physical activity have a different impact on the cardiovascular system. Some data support the hypothesis of a "physical activity paradox": repetitive exposure to vigorous physical activity may induce biological effects that counteract the benefits of moderate intensity levels of physical activity. In this review, we report the main effects of acute and chronic physical activity on the cardiovascular system and we summarize the biochemical mechanisms that may explain these effects.
Collapse
Affiliation(s)
- Filippo Zilio
- Department of Cardiology, Santa Chiara Hospital, APSS, Trento Italy.
| | | | - Marco Flori
- Cardiology Unit, Presidio Ospedaliero Unico Urbino, Urbino, Italy
| | | | - Luigi Pollarolo
- Cardiology Unit, Santo Spirito Hospital, Casale Monferrato, Italy
| | - Nadia Ingianni
- Cardiologo ASP Trapani Distretti Marsala e Castelvetrano, Marsala, Italy
| | - Fabiana Lucà
- Division of Cardiology, Big Metropolitan Hospital, Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Carmine Riccio
- UOSD "Follow up del paziente post acuto", Dipartimento Cardiovascolare, Azienda Ospedaliera Sant'Anna e San Sebastiano, Caserta, Italy
| | - Michele Massimo Gulizia
- Cardiology Division, Garibaldi-Nesima Hospital, Catania, Italy; ANMCO Heart Care Foundation, Florence, Italy
| | - Domenico Gabrielli
- Cardiology/CCU Unit, Cardiovascular Department, San Camillo Hospital, Rome, Italy
| | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, Milano, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital, Rome, Italy
| |
Collapse
|
7
|
Hui W, Wenhua S, Shuojie Z, Lulin W, Panpan Z, Tongtong Z, Xiaoli X, Juhua D. How does NFAT3 regulate the occurrence of cardiac hypertrophy? IJC HEART & VASCULATURE 2023; 48:101271. [PMID: 37753338 PMCID: PMC10518445 DOI: 10.1016/j.ijcha.2023.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Cardiac hypertrophy is initially an adaptive response to physiological and pathological stimuli. Although pathological myocardial hypertrophy is the main cause of morbidity and mortality, our understanding of its mechanism is still weak. NFAT3 (nuclear factor of activated T-cell-3) is a member of the nuclear factor of the activated T cells (NFAT) family. NFAT3 plays a critical role in regulating the expression of cardiac hypertrophy genes by inducing their transcription. Recently, accumulating evidence has indicated that NFAT3 is a potent regulator of the progression of cardiac hypertrophy. This review, for the first time, summarizes the current studies on NFAT3 in cardiac hypertrophy, including the pathophysiological processes and the underlying pathological mechanism, focusing on the nuclear translocation and transcriptional function of NFAT3. This review will provide deep insight into the pathogenesis of cardiac hypertrophy and a theoretical basis for identifying new therapeutic targets in the NFAT3 network.
Collapse
Affiliation(s)
- Wang Hui
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su Wenhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Cardiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhang Shuojie
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wang Lulin
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Panpan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Tongtong
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xie Xiaoli
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dan Juhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
8
|
Lu H, Gong J, Zhang T, Jiang Z, Dong W, Dai J, Ma F. Leonurine pretreatment protects the heart from myocardial ischemia-reperfusion injury. Exp Biol Med (Maywood) 2023; 248:1566-1578. [PMID: 37873701 PMCID: PMC10676124 DOI: 10.1177/15353702231198066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 10/25/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R), an important complication of reperfusion therapy for myocardial infarction, is characterized by hyperactive oxidative stress and inflammatory response. Leonurine (4-guanidino-n-butyl syringate, SCM-198), an alkaloid extracted from Herbaleonuri, was previously found to be highly cardioprotective both in vitro and in vivo. Our current study aimed to investigate the effect of SCM-198 preconditioning on myocardial I/R injury in vitro and in vivo, respectively, as well as to decipher the mechanism involved. Rats were pretreated with SCM-198 before subjected to 45 min of myocardial ischemia, which was followed by 24 h of reperfusion. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were exposed to hypoxia (95% N2 + 5% CO2) for 12 h, and then to 12 h reoxygenation so as to mimic I/R. The enzymatic measurements demonstrated that SCM-198 reduced the release of infarction-related enzymes, and the hemodynamic and echocardiography measurements showed that SCM-198 restored cardiac functions, which suggested that SCM-198 could significantly reduce infarct size, maintaining cardiomyocyte morphology, and that SCM-198 pretreatment could significantly reduce cardiomyocytes apoptosis. Moreover, we demonstrated that SCM-198 could exert a cardioprotective effect by reducing reactive oxygen species (ROS) level and Akt phosphorylation while reducing the phosphorylation of p38 and JNK. In addition, the upregulation of p-Akt, Bcl-2/Bax induced by SCM-198 treatment were blocked by PI3K inhibitor LY294002, and the total protein level of Akt was not affected by SCM-198 pretreatment. Our experimental results indicated that SCM-198 could have a cardioprotective effect on I/R injury, which confirmed the utility of SCM-198 preconditioning as a strategy to prevent I/R injury.
Collapse
Affiliation(s)
- Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tongtong Zhang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhe Jiang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenmin Dong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang 050017, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
9
|
Ock S, Choi SW, Choi SH, Kang H, Kim SJ, Lee WS, Kim J. Insulin signaling is critical for sinoatrial node maintenance and function. Exp Mol Med 2023; 55:965-973. [PMID: 37121973 PMCID: PMC10238478 DOI: 10.1038/s12276-023-00988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 05/02/2023] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) signaling regulate cellular growth and glucose metabolism in the myocardium. However, their physiological role in the cells of the cardiac conduction system has never been explored. Therefore, we sought to determine the spatiotemporal function of insulin/IGF-1 receptors in the sinoatrial node (SAN). We generated cardiac conduction cell-specific inducible IGF-1 receptor (IGF-1R) knockout (KO) (CSIGF1RKO), insulin receptor (IR) KO (CSIRKO), and IR/IGF-1R double-KO (CSDIRKO) mice and evaluated their phenotypes. Telemetric electrocardiography revealed regular sinus rhythm in CSIGF1RKO mice, indicating that IGF-1R is dispensable for normal pacemaking. In contrast, CSIRKO and CSDIRKO mice exhibited profound sinus bradycardia. CSDIRKO mice showed typical sinus node dysfunction characterized by junctional rhythm and sinus pauses on electrocardiography. Interestingly, the lack of an insulin receptor in the SAN cells of CSIRKO and CSDIRKO mice caused sinus nodal fibrosis. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) protein expression significantly decreased in the CSIRKO and CSDIRKO mice relative to the controls. A patch-clamp study of the SAN cells of CSIRKO mice revealed a significant decrease in the funny current, which is responsible for spontaneous diastolic depolarization in the SAN. This result suggested that insulin receptor loss reduces the heart rate via downregulation of the HCN4 channel. Additionally, HCN1 expression was decreased in CSDIRKO mice, explaining their sinus node dysfunction. Our results reveal a previously unrecognized role of insulin/IGF-1 signaling in sinus node structural maintenance and pacemaker function.
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seong Woo Choi
- Departments of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Korea
| | - Seung Hee Choi
- Division of Endocrinology and Metabolism, Departments of Internal Medicine and Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hyun Kang
- Department of Anesthesiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sung Joon Kim
- Departments of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
10
|
Nijholt KT, Voorrips SN, Sánchez-Aguilera PI, Westenbrink BD. Exercising heart failure patients: cardiac protection through preservation of mitochondrial function and substrate utilization? CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
11
|
Interplay between Exercise, Circadian Rhythm, and Cardiac Metabolism and Remodeling. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, Xiao J. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther 2022; 7:306. [PMID: 36050310 PMCID: PMC9437103 DOI: 10.1038/s41392-022-01153-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Exercise training has been widely recognized as a healthy lifestyle as well as an effective non-drug therapeutic strategy for cardiovascular diseases (CVD). Functional and mechanistic studies that employ animal exercise models as well as observational and interventional cohort studies with human participants, have contributed considerably in delineating the essential signaling pathways by which exercise promotes cardiovascular fitness and health. First, this review summarizes the beneficial impact of exercise on multiple aspects of cardiovascular health. We then discuss in detail the signaling pathways mediating exercise's benefits for cardiovascular health. The exercise-regulated signaling cascades have been shown to confer myocardial protection and drive systemic adaptations. The signaling molecules that are necessary for exercise-induced physiological cardiac hypertrophy have the potential to attenuate myocardial injury and reverse cardiac remodeling. Exercise-regulated noncoding RNAs and their associated signaling pathways are also discussed in detail for their roles and mechanisms in exercise-induced cardioprotective effects. Moreover, we address the exercise-mediated signaling pathways and molecules that can serve as potential therapeutic targets ranging from pharmacological approaches to gene therapies in CVD. We also discuss multiple factors that influence exercise's effect and highlight the importance and need for further investigations regarding the exercise-regulated molecules as therapeutic targets and biomarkers for CVD as well as the cross talk between the heart and other tissues or organs during exercise. We conclude that a deep understanding of the signaling pathways involved in exercise's benefits for cardiovascular health will undoubtedly contribute to the identification and development of novel therapeutic targets and strategies for CVD.
Collapse
Affiliation(s)
- Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yihua Bei
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Bei Y, Huang Z, Feng X, Li L, Wei M, Zhu Y, Liu S, Chen C, Yin M, Jiang H, Xiao J. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:466-478. [PMID: 35218948 PMCID: PMC9338339 DOI: 10.1016/j.jshs.2022.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart. Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes. However, it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth. We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth. METHODS Adult C57BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth. Oral treatment with vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor SAR131675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation. Furthermore, human dermal lymphatic endothelial cell (LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy. RESULTS Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1-positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels. VEGFR3 was upregulated in the exercised heart, while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes, which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise. Furthermore, LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulin-like growth factor-1 and the extracellular protein Reelin, while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects. Functional rescue assays further demonstrated that protein kinase B (AKT) activation, as well as reduced CCAAT enhancer-binding protein beta (C/EBPβ) and increased CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)-rich-carboxylterminal domain 4 (CITED4), contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation. CONCLUSION Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPβ-CITED4 axis. These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xing Feng
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lin Li
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Shuqin Liu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chen Chen
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Mingming Yin
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Huimin Jiang
- Clinical Laboratory Center, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Fulghum K, Collins HE, Jones SP, Hill BG. Influence of biological sex and exercise on murine cardiac metabolism. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:479-494. [PMID: 35688382 PMCID: PMC9338340 DOI: 10.1016/j.jshs.2022.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
Although the structural and functional effects of exercise on the heart are well established, the metabolic changes that occur in the heart during and after exercise remain unclear. In this study, we used metabolomics to assess time-dependent changes in the murine cardiac metabolome following 1 session of treadmill exercise. After the exercise bout, we also recorded blood lactate, glucose, and ketone body levels and measured cardiac mitochondrial respiration. In both male and female mice, moderate- and high-intensity exercise acutely increased blood lactate levels. In both sexes, low- and moderate-intensity exercise augmented circulating 3-hydroxybutryrate levels immediately after the exercise bout; however, only in female mice did high-intensity exercise increase 3-hydroxybutyrate levels, with significant increases occurring 1 h after the exercise session. Untargeted metabolomics analyses of sedentary female and male hearts suggest considerable sex-dependent differences in basal cardiac metabolite levels, with female hearts characterized by higher levels of pantothenate, pyridoxamine, homoarginine, tryptophan, and several glycerophospholipid and sphingomyelin species and lower levels of numerous metabolites, including acetyl coenzyme A, glucuronate, gulonate, hydroxyproline, prolyl-hydroxyproline, carnosine, anserine, and carnitinylated and glycinated species, as compared with male hearts. Immediately after a bout of treadmill exercise, both male and female hearts had higher levels of corticosterone; however, female mice showed more extensive exercise-induced changes in the cardiac metabolome, characterized by significant, time-dependent changes in amino acids (e.g., serine, alanine, tyrosine, tryptophan, branched-chain amino acids) and the ketone body 3-hydroxybutyrate. Results from experiments using isolated cardiac mitochondria suggest that high-intensity treadmill exercise does not acutely affect respiration or mitochondrial coupling; however, female cardiac mitochondria demonstrate generally higher adenosine diphosphate sensitivity compared with male cardiac mitochondria. Collectively, these findings in mice reveal key sex-dependent differences in cardiac metabolism and suggest that the metabolic network in the female heart is more responsive to physiological stress caused by exercise.
Collapse
Affiliation(s)
- Kyle Fulghum
- Diabetes and Obesity Center, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Helen E Collins
- Diabetes and Obesity Center, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Steven P Jones
- Diabetes and Obesity Center, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
15
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
16
|
Abstract
ABSTRACT Cardiovascular disease (CVD) remains the leading cause of death worldwide. Therefore, exploring the mechanism of CVDs and critical regulatory factors is of great significance for promoting heart repair, reversing cardiac remodeling, and reducing adverse cardiovascular events. Recently, significant progress has been made in understanding the function of protein kinases and their interactions with other regulatory proteins in myocardial biology. Protein kinases are positioned as critical regulators at the intersection of multiple signals and coordinate nearly every aspect of myocardial responses, regulating contractility, metabolism, transcription, and cellular death. Equally, reconstructing the disrupted protein kinases regulatory network will help reverse pathological progress and stimulate cardiac repair. This review summarizes recent researches concerning the function of protein kinases in CVDs, discusses their promising clinical applications, and explores potential targets for future treatments.
Collapse
|
17
|
Sanchis-Gomar F, Lavie CJ, Marín J, Perez-Quilis C, Eijsvogels TMH, O'Keefe JH, Perez MV, Blair SN. Exercise Effects On Cardiovascular Disease: From Basic Aspects To Clinical Evidence. Cardiovasc Res 2021; 118:2253-2266. [PMID: 34478520 DOI: 10.1093/cvr/cvab272] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular (CV) disease (CVD) remains the leading cause of major morbidity and CVD- and all-cause mortality in most of the world. It is now clear that regular physical activity (PA) and exercise training (ET) induces a wide range of direct and indirect physiologic adaptations and pleiotropic benefits for human general and CV health. Generally, higher levels of PA, ET, and cardiorespiratory fitness (CRF) are correlated with reduced risk of CVD, including myocardial infarction, CVD-related death, and all-cause mortality. Although exact details regarding the ideal doses of ET, including resistance and, especially, aerobic ET, as well as the potential adverse effects of extreme levels of ET, continue to be investigated, there is no question that most of the world's population have insufficient levels of PA/ET, and many also have lower than ideal levels of CRF. Therefore, assessment and promotion of PA, ET, and efforts to improve levels of CRF should be integrated into all health professionals' practices worldwide. In this state-of-the-art review, we discuss the exercise effects on many areas related to CVD, from basic aspects to clinical practice.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Jorge Marín
- Growth, Exercise, Nutrition and Development Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain
| | - Carme Perez-Quilis
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Thijs M H Eijsvogels
- Radboud Institute for Health Science, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James H O'Keefe
- St. Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Marco V Perez
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Steven N Blair
- Department of Exercise Sciences, University of South Carolina, Columbia, USA
| |
Collapse
|
18
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
19
|
Weeks KL, Tham YK, Yildiz SG, Alexander Y, Donner DG, Kiriazis H, Harmawan CA, Hsu A, Bernardo BC, Matsumoto A, DePinho RA, Abel ED, Woodcock EA, McMullen JR. FoxO1 is required for physiological cardiac hypertrophy induced by exercise but not by constitutively active PI3K. Am J Physiol Heart Circ Physiol 2021; 320:H1470-H1485. [PMID: 33577435 DOI: 10.1152/ajpheart.00838.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor 1 receptor (IGF1R) and phosphoinositide 3-kinase p110α (PI3K) are critical regulators of exercise-induced physiological cardiac hypertrophy and provide protection in experimental models of pathological remodeling and heart failure. Forkhead box class O1 (FoxO1) is a transcription factor that regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K activation in vitro, but its role in physiological hypertrophy in vivo was unknown. We generated cardiomyocyte-specific FoxO1 knockout (cKO) mice and assessed the phenotype under basal conditions and settings of physiological hypertrophy induced by 1) swim training or 2) cardiac-specific transgenic expression of constitutively active PI3K (caPI3KTg+). Under basal conditions, male and female cKO mice displayed mild interstitial fibrosis compared with control (CON) littermates, but no other signs of cardiac pathology were present. In response to exercise training, female CON mice displayed an increase (∼21%) in heart weight normalized to tibia length vs. untrained mice. Exercise-induced hypertrophy was blunted in cKO mice. Exercise increased cardiac Akt phosphorylation and IGF1R expression but was comparable between genotypes. However, differences in Foxo3a, Hsp70, and autophagy markers were identified in hearts of exercised cKO mice. Deletion of FoxO1 did not reduce cardiac hypertrophy in male or female caPI3KTg+ mice. Cardiac Akt and FoxO1 protein expressions were significantly reduced in hearts of caPI3KTg+ mice, which may represent a negative feedback mechanism from chronic caPI3K, and negate any further effect of reducing FoxO1 in the cKO. In summary, FoxO1 contributes to exercise-induced hypertrophy. This has important implications when one is considering FoxO1 as a target for treating the diseased heart.NEW & NOTEWORTHY Regulators of exercise-induced physiological cardiac hypertrophy and protection are considered promising targets for the treatment of heart failure. Unlike pathological hypertrophy, the transcriptional regulation of physiological hypertrophy has remained largely elusive. To our knowledge, this is the first study to show that the transcription factor FoxO1 is a critical mediator of exercise-induced cardiac hypertrophy. Given that exercise-induced hypertrophy is protective, this finding has important implications when one is considering FoxO1 as a target for treating the diseased heart.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Yow Keat Tham
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Suzan G Yildiz
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yonali Alexander
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Amy Hsu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes Central Clinical School, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa, Iowa City, Iowa
| | | | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
20
|
Marck PV, Pessoa MT, Xu Y, Kutz LC, Collins DM, Yan Y, King C, Wang X, Duan Q, Cai L, Xie JX, Lingrel JB, Xie Z, Tian J, Pierre SV. Cardiac Oxidative Signaling and Physiological Hypertrophy in the Na/K-ATPase α1 s/sα2 s/s Mouse Model of High Affinity for Cardiotonic Steroids. Int J Mol Sci 2021; 22:ijms22073462. [PMID: 33801629 PMCID: PMC8036649 DOI: 10.3390/ijms22073462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2, and β1 protein content remained unchanged, and the cardiac Na/K-ATPase dose–response curve to ouabain shifted to the left as expected. In males aged 3–6 months, increased α1 sensitivity to CTS resulted in a significant increase in cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio accompanied by an increase in the myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.
Collapse
Affiliation(s)
- Pauline V. Marck
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Marco T. Pessoa
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Yunhui Xu
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Laura C. Kutz
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Dominic M. Collins
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Yanling Yan
- Department of Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25755, USA;
| | - Cierra King
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Qiming Duan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA;
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Jeffrey X. Xie
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jerry B. Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
- Correspondence: ; Tel.: +1-(304)-696-3505
| |
Collapse
|
21
|
Cardiovascular toxicity of PI3Kα inhibitors. Clin Sci (Lond) 2021; 134:2595-2622. [PMID: 33063821 DOI: 10.1042/cs20200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are a family of intracellular lipid kinases that phosphorylate the 3'-hydroxyl group of inositol membrane lipids, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. This results in downstream effects, including cell growth, proliferation, and migration. The heart expresses three PI3K class I enzyme isoforms (α, β, and γ), and these enzymes play a role in cardiac cellular survival, myocardial hypertrophy, myocardial contractility, excitation, and mechanotransduction. The PI3K pathway is associated with various disease processes but is particularly important to human cancers since many gain-of-function mutations in this pathway occur in various cancers. Despite the development, testing, and regulatory approval of PI3K inhibitors in recent years, there are still significant challenges when creating and utilizing these drugs, including concerns of adverse effects on the heart. There is a growing body of evidence from preclinical studies revealing that PI3Ks play a crucial cardioprotective role, and thus inhibition of this pathway could lead to cardiac dysfunction, electrical remodeling, vascular damage, and ultimately, cardiovascular disease. This review will focus on PI3Kα, including the mechanisms underlying the adverse cardiovascular effects resulting from PI3Kα inhibition and the potential clinical implications of treating patients with these drugs, such as increased arrhythmia burden, biventricular cardiac dysfunction, and impaired recovery from cardiotoxicity. Recommendations for future directions for preclinical and clinical work are made, highlighting the possible role of PI3Kα inhibition in the progression of cancer-related cachexia and female sex and pre-existing comorbidities as independent risk factors for cardiac abnormalities after cancer treatment.
Collapse
|
22
|
Su F, Shi M, Zhang J, Li Y, Tian J. Recombinant high‑mobility group box 1 induces cardiomyocyte hypertrophy by regulating the 14‑3‑3η, PI3K and nuclear factor of activated T cells signaling pathways. Mol Med Rep 2021; 23:214. [PMID: 33495819 PMCID: PMC7845624 DOI: 10.3892/mmr.2021.11853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 09/07/2020] [Indexed: 01/20/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is released by necrotic cells and serves an important role in cardiovascular pathology. However, the effects of HMGB1 in cardiomyocyte hypertrophy remain unclear. Therefore, the aim of the present study was to investigate the potential role of HMGB1 in cardiomyocyte hypertrophy and the underlying mechanisms of its action. Neonatal mouse cardiomyocytes (NMCs) were co-cultured with recombinant HMGB1 (rHMGB1). Wortmannin was used to inhibit PI3K activity in cardiomyocytes. Subsequently, atrial natriuretic peptide (ANP), 14-3-3 and phosphorylated-Akt (p-Akt) protein levels were detected using western blot analysis. In addition, nuclear factor of activated T cells 3 (NFAT3) protein levels were measured by western blot analysis and observed in NMCs under a confocal microscope. The results revealed that rHMGB1 increased ANP and p-Akt, and decreased 14-3-3η protein levels. Furthermore, wortmannin abrogated the effects of rHMGB1 on ANP, 14-3-3η and p-Akt protein levels. In addition, rHMGB1 induced nuclear translocation of NFAT3, which was also inhibited by wortmannin pretreatment. The results of this study suggest that rHMGB1 induces cardiac hypertrophy by regulating the 14-3-3η/PI3K/Akt/NFAT3 signaling pathway.
Collapse
Affiliation(s)
- Feifei Su
- Department of Cardiology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Miaoqian Shi
- Department of Cardiology, The Seventh Medical Centre of The People's Liberation Army General Hospital, Beijing 100700, P.R. China
| | - Jian Zhang
- Department of Cardiology, Beijing Chest Hospital Heart Center, Capital Medical University, Beijing 101149, P.R. China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital Affiliated to The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jianwei Tian
- Department of Cardiology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| |
Collapse
|
23
|
Bo B, Zhou Y, Zheng Q, Wang G, Zhou K, Wei J. The Molecular Mechanisms Associated with Aerobic Exercise-Induced Cardiac Regeneration. Biomolecules 2020; 11:biom11010019. [PMID: 33375497 PMCID: PMC7823705 DOI: 10.3390/biom11010019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The leading cause of heart failure is cardiomyopathy and damage to the cardiomyocytes. Adult mammalian cardiomyocytes have the ability to regenerate, but this cannot wholly compensate for myocardial cell loss after myocardial injury. Studies have shown that exercise has a regulatory role in the activation and promotion of regeneration of healthy and injured adult cardiomyocytes. However, current research on the effects of aerobic exercise in myocardial regeneration is not comprehensive. This review discusses the relationships between aerobic exercise and the regeneration of cardiomyocytes with respect to complex molecular and cellular mechanisms, paracrine factors, transcriptional factors, signaling pathways, and microRNAs that induce cardiac regeneration. The topics discussed herein provide a knowledge base for physical activity-induced cardiomyocyte regeneration, in which exercise enhances overall heart function and improves the efficacy of cardiac rehabilitation.
Collapse
Affiliation(s)
- Bing Bo
- School of Physical Education, Henan University, Kaifeng 475001, Henan, China; (B.B.); (Y.Z.); (Q.Z.); (G.W.); (K.Z.)
- Sports Reform and Development Research Center, Henan University, Kaifeng 475001, Henan, China
- School of Life Sciences, Henan University, Kaifeng 475001, Henan, China
| | - Yang Zhou
- School of Physical Education, Henan University, Kaifeng 475001, Henan, China; (B.B.); (Y.Z.); (Q.Z.); (G.W.); (K.Z.)
| | - Qingyun Zheng
- School of Physical Education, Henan University, Kaifeng 475001, Henan, China; (B.B.); (Y.Z.); (Q.Z.); (G.W.); (K.Z.)
- Sports Reform and Development Research Center, Henan University, Kaifeng 475001, Henan, China
| | - Guandong Wang
- School of Physical Education, Henan University, Kaifeng 475001, Henan, China; (B.B.); (Y.Z.); (Q.Z.); (G.W.); (K.Z.)
| | - Ke Zhou
- School of Physical Education, Henan University, Kaifeng 475001, Henan, China; (B.B.); (Y.Z.); (Q.Z.); (G.W.); (K.Z.)
- Sports Reform and Development Research Center, Henan University, Kaifeng 475001, Henan, China
| | - Jianshe Wei
- School of Life Sciences, Henan University, Kaifeng 475001, Henan, China
- Correspondence: ; Tel.: +86-13938625812
| |
Collapse
|
24
|
Rudzik R, Dziedziejko V, Rać ME, Sawczuk M, Maciejewska-Skrendo A, Safranow K, Pawlik A. Polymorphisms in GP6, PEAR1A, MRVI1, PIK3CG, JMJD1C, and SHH Genes in Patients with Unstable Angina. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207506. [PMID: 33076381 PMCID: PMC7602592 DOI: 10.3390/ijerph17207506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Coronary artery disease (CAD) is a significant public health problem because it is one of the major causes of death worldwide. Several studies have investigated the associations between CAD and polymorphisms in genes connected with platelet aggregation and the risk of venous thromboembolism. AIM In this study, we examined the associations between polymorphisms in GP6 (rs1671152), PEAR1A (rs12566888), MRVI1 (rs7940646), PIK3CG (rs342286), JMJD1C (rs10761741), SHH (rs2363910), and CAD in the form of unstable angina as well as selected clinical and biochemical parameters. The study enrolled 246 patients with diagnosed unstable angina and 189 healthy controls. RESULTS There were no significant differences in the distribution of the studied polymorphisms between the patients with unstable angina and the controls. In patients with the GP6 rs1671152 GG genotype, we observed increased BMI values and an increased frequency of type 2 diabetes diagnosis. CONCLUSIONS The results of this study suggest a lack of association between GP6 (rs1671152), PEAR1A (rs12566888), MRVI1 (rs7940646), PIK3CG (rs342286), JMJD1C (rs10761741), SHH (rs2363910), and unstable angina. The results indicate an association between GP6 (rs1671152) and type 2 diabetes.
Collapse
Affiliation(s)
- Rafał Rudzik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (M.E.R.); (K.S.)
| | - Monika Ewa Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (M.E.R.); (K.S.)
| | - Marek Sawczuk
- Insitute of Physical Culture Sciences, University of Szczecin, 70-111 Szczecin, Poland;
| | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (M.E.R.); (K.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
- Correspondence: ; Tel.: +48-91-466-1611
| |
Collapse
|
25
|
Xiang K, Qin Z, Zhang H, Liu X. Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Front Pharmacol 2020; 11:1133. [PMID: 32848751 PMCID: PMC7403221 DOI: 10.3389/fphar.2020.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Physiologic hypertrophy of the heart preserves or enhances systolic function without interstitial fibrosis or cell death. As a unique form of physiological stress, regular exercise training can trigger the adaptation of cardiac muscle to cause physiological hypertrophy, partly due to its ability to improve cardiac metabolism. In heart failure (HF), cardiac dysfunction is closely associated with early initiation of maladaptive metabolic remodeling. A large amount of clinical and experimental evidence shows that metabolic homeostasis plays an important role in exercise training, which is conducive to the treatment and recovery of cardiovascular diseases. Potential mechanistic targets for modulation of cardiac metabolism have become a hot topic at present. Thus, exploring the energy metabolism mechanism in exercise-induced physiologic cardiac hypertrophy may produce new therapeutic targets, which will be helpful to design novel effective strategies. In this review, we summarize the changes of myocardial metabolism (fatty acid metabolism, carbohydrate metabolism, and mitochondrial adaptation), metabolically-related signaling molecules, and probable regulatory mechanism of energy metabolism during exercise-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Kefa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Wang L, Wang J, Li G, Xiao J. Non-coding RNAs in Physiological Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:149-161. [PMID: 32285410 DOI: 10.1007/978-981-15-1671-9_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Non-coding RNA (ncRNA) is a class of RNAs that are not act as translational protein templates. They are involved in the regulation of gene transcription, RNA maturation and protein translation, participating in a variety of physiological and physiological processes. NcRNAs have important functions, and are recently one of the hotspots in biomedical research. Cardiac hypertrophy is classified into physiological cardiac hypertrophy and pathological cardiac hypertrophy. Different from pathological cardiac hypertrophy, physiological cardiac hypertrophy usually developed during exercise, pregnancy, normal postnatal growth, accompanied with preservation or improvement of systolic function, while no cardiac fibrosis. In this chapter, we will briefly introduce the definition, characteristics, and functions of ncRNAs, including miRNAs, lncRNAs, and circRNAs, as well as a summary of the existing bioinformatics online databases which commonly used in the study of ncRNAs. Specially, this chapter will be focused on the characteristics and the underlying mechanisms about physiological cardiac hypertrophy. Furthermore, the regulatory mechanism of ncRNAs in physiological hypertrophy and the latest research progress will be summarized. Taken together, exploring physiologic cardiac hypertrophy-specific ncRNAs might be a unique research perspective that provides new point of view for interventions in heart failure and other cardiovascular diseases.
Collapse
Affiliation(s)
- Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Jiaqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
27
|
Rezaei Nasab H, Habibi AH, Nikbakht M, Rashno M, Shakerian S. Changes in Serum Levels and Gene Expression of PGC-1α in The Cardiac Muscle of Diabetic Rats: The Effect of Dichloroacetate and Endurance Training. CELL JOURNAL 2020; 22:425-430. [PMID: 32347035 PMCID: PMC7211283 DOI: 10.22074/cellj.2021.6942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
Objective Physical activity leads to changes in the level of gene expression in different kinds of cells, including
changes in mitochondrial biogenesis in the myocardium in diabetic patients. Peroxisome proliferator-activated receptor
γ coactivator 1α (PGC-1α) is a gene that plays an important role in regulating mitochondrial biogenesis. The purpose
of this study was to investigate changes in serum levels and cardiac muscle expression of PGC-1α in diabetic rats in
response to the administration of dichloroacetate (DCA) and endurance training.
Materials and Methods In this experimental study, 64 male Wistar rats were selected and randomly divided into eight
groups after induction of diabetes with streptozotocin (STZ). The endurance training protocol was performed on a
treadmill for 6 weeks. Intraperitoneal injection of DCA of 50 mg/ kg body weight was used for the inhibition of Pyruvate
Dehydrogenase Kinase 4 (PDK4) in the myocardium. Gene expression were measured using real-time polymerase
chain reaction (PCR). One-way ANOVA and Tukey’s test were used to statistically analyze the data.
Results The results of the study showed that PDK4 gene expression in the endurance training group, diabetes+endurance
training group, diabetes+endurance training+DCA group and endurance training+DCA group was higher compared to
the control group. Expression of PGC-1α was higher in the endurance training group compared to the control group
but was lower compared to the control group in diabetes+endurance training+DCA group and diabetes+DCA group
(P<0.05).
Conclusion Considering that PGC-1α plays an important role in mitochondrial biogenesis, it is likely that by inhibiting
PDK4 and subsequently controlling oxidation of fatty acid (FA) in the heart tissue, oxidative stress in the heart tissue of
diabetic patients will be reduced and cardiac efficiency will be increased.
Collapse
Affiliation(s)
- Hamed Rezaei Nasab
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic Address:
| | - Abdol Hamid Habibi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoud Nikbakht
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Shakerian
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
28
|
Buchanan CM, Lee KL, Shepherd PR. For Better or Worse: The Potential for Dose Limiting the On-Target Toxicity of PI 3-Kinase Inhibitors. Biomolecules 2019; 9:biom9090402. [PMID: 31443495 PMCID: PMC6770514 DOI: 10.3390/biom9090402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
The hyper-activation of the phosphoinositide (PI) 3-kinase signaling pathway is a hallmark of many cancers and overgrowth syndromes, and as a result, there has been intense interest in the development of drugs that target the various isoforms of PI 3-kinase. Given the key role PI 3-kinases play in many normal cell functions, there is significant potential for the disruption of essential cellular functions by PI 3-kinase inhibitors in normal tissues; so-called on-target drug toxicity. It is, therefore, no surprise that progress within the clinical development of PI 3-kinase inhibitors as single-agent anti-cancer therapies has been slowed by the difficulty of identifying a therapeutic window. The aim of this review is to place the cellular, tissue and whole-body effects of PI 3-kinase inhibition in the context of understanding the potential for dose limiting on-target toxicities and to introduce possible strategies to overcome these.
Collapse
Affiliation(s)
- Christina M Buchanan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kate L Lee
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
29
|
Cardiac adaptation to exercise training in health and disease. Pflugers Arch 2019; 472:155-168. [PMID: 31016384 DOI: 10.1007/s00424-019-02266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
The heart is the primary pump that circulates blood through the entire cardiovascular system, serving many important functions in the body. Exercise training provides favorable anatomical and physiological changes that reduce the risk of heart disease and failure. Compared with pathological cardiac hypertrophy, exercise-induced physiological cardiac hypertrophy leads to an improvement in heart function. Exercise-induced cardiac remodeling is associated with gene regulatory mechanisms and cellular signaling pathways underlying cellular, molecular, and metabolic adaptations. Exercise training also promotes mitochondrial biogenesis and oxidative capacity leading to a decrease in cardiovascular disease. In this review, we summarized the exercise-induced adaptation in cardiac structure and function to understand cellular and molecular signaling pathways and mechanisms in preclinical and clinical trials.
Collapse
|
30
|
Al-Horani RA, Al-Trad B, Haifawi S. Modulation of cardiac vascular endothelial growth factor and PGC-1α with regular postexercise cold-water immersion of rats. J Appl Physiol (1985) 2019; 126:1110-1116. [PMID: 30676864 DOI: 10.1152/japplphysiol.00918.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myocardial mitochondrial biogenesis and vascular angiogenesis biomarker responses to postexercise cold-water immersion (CWI) have not been reported. Therefore, to determine those cardiac adaptations, adult male Sprague-Dawley rats were divided into three groups: postexercise CWI (CWI; n = 13), exercise only (Ex; n = 12), and untreated control (CON; n = 10). CWI and Ex were trained for 10 wk, 5 sessions/wk, 30-60 min/session. CWI rats were immersed after each session in cold water (15 min at ~12°C). CON remained sedentary. Left ventricle tissue was obtained 48 h after the last exercise session and analyzed for peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), vascular endothelial growth factor (VEGF), and heat shock protein 70 kDa (Hsp70) protein content and mRNA expression levels. In addition, superoxide dismutase activity and mRNA and malondialdehyde levels were evaluated. Ex and CWI induced higher PGC-1α protein content compared with CON (1.8 ± 0.6-fold, P < 0.001), which was significantly higher in CWI than Ex rats (P = 0.01). VEGF protein (4.3 ± 3.7-fold) and mRNA (10.1 ± 1.1-fold) were markedly increased only in CWI (P < 0.001) relative to CON. CWI and Ex augmented cardiac Hsp70 protein to a similar level relative to CON (P < 0.05); however, Hsp70 mRNA increased only in Ex (P = 0.002). No further differences were observed between groups. These results suggest that postexercise CWI may further enhance cardiac oxidative capacity by increasing the angiogenic and mitochondrial biogenic factors. In addition, CWI does not seem to worsen exercise-induced cardioprotection and oxidative stress. NEW & NOTEWORTHY A regular postexercise cold-water immersion for 10 wk of endurance training augmented the myocardial mitochondrial biogenesis and vascular angiogenesis coactivators peroxisome proliferator-activated receptor γ coactivator-1α and vascular endothelial growth factor, respectively. In addition, postexercise cold-water immersion did not attenuate the exercise-induced increase in the cardioprotective biomarker heat shock protein 70 kDa or increase exercise-induced oxidative stress.
Collapse
Affiliation(s)
| | - Bahaa Al-Trad
- Department of Biological Sciences, Yarmouk University , Irbid , Jordan
| | - Saja Haifawi
- Department of Biological Sciences, Yarmouk University , Irbid , Jordan
| |
Collapse
|
31
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
32
|
Sun J, Zhang C, Kim M, Su Y, Qin L, Dong J, Zhou Y, Ding S. Early potential effects of resveratrol supplementation on skeletal muscle adaptation involved in exercise-induced weight loss in obese mice. BMB Rep 2018. [PMID: 29519293 PMCID: PMC5933216 DOI: 10.5483/bmbrep.2018.51.4.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exercise and resveratrol supplementation exhibit anti-obesity functions in the long term but have not been fully investigated yet in terms of their early potential effectiveness. Mice fed with high-fat diet were categorized into control (Cont), exercise (Ex), resveratrol supplementation (Res), and exercise combined with resveratrol supplementation (Ex + Res) groups. In the four-week period of weight loss, exercise combined with resveratrol supplementation exerted no additional effects on body weight loss but significantly improved whole-body glucose and lipid homeostasis. The combined treatment significantly decreased intrahepatic lipid content but did not affect intramyocellular lipid content. Moreover, the treatment significantly increased the contents of mtDNA and cytochrome c, the expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and its downstream transcription factors, and the activities of ATPase and citrate synthase. However, exercise, resveratrol, and their combination did not promote myofiber specification toward slow-twitch type. The effects of exercise combined with resveratrol supplementation on weight loss could be partly due to enhanced mitochondrial biogenesis and not to fiber-type shift in skeletal muscle tissues.
Collapse
Affiliation(s)
- Jingyu Sun
- Sports and Health Research Center, Tongji University Department of Physical Education, Shanghai 200092, China
| | - Chen Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - MinJeong Kim
- Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Yajuan Su
- Tongji University School of Life Sciences and Technology, Shanghai 200092, China
| | - Lili Qin
- Sports and Health Research Center, Tongji University Department of Physical Education, Shanghai 200092, China
| | - Jingmei Dong
- Sports and Health Research Center, Tongji University Department of Physical Education, Shanghai 200092, China
| | - Yunhe Zhou
- Sports and Health Research Center, Tongji University Department of Physical Education, Shanghai 200092, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, East China Normal University, Shanghai 200241, China
| |
Collapse
|
33
|
Martins VF, Tahvilian S, Kang JH, Svensson K, Hetrick B, Chick WS, Schenk S, McCurdy CE. Calorie Restriction-Induced Increase in Skeletal Muscle Insulin Sensitivity Is Not Prevented by Overexpression of the p55α Subunit of Phosphoinositide 3-Kinase. Front Physiol 2018; 9:789. [PMID: 29997524 PMCID: PMC6030672 DOI: 10.3389/fphys.2018.00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/06/2018] [Indexed: 01/26/2023] Open
Abstract
Introduction: The Phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in skeletal muscle insulin-stimulated glucose uptake. While whole-body and tissue specific knockout (KO) of individual or combinations of the regulatory subunits of PI3K (p85α, p55α, and p50α or p85β); increase insulin sensitivity, no study has examined whether increasing the expression of the individual regulatory subunits would inhibit insulin action in vivo. Therefore, the objective of this study was to determine whether skeletal muscle-specific overexpression of the p55α regulatory subunit of PI3K impairs skeletal muscle insulin sensitivity, or prevents its enhancement by caloric restriction. Methods: We developed a novel "floxed" mouse that, through the Cre-LoxP approach, allows for tamoxifen (TMX)-inducible and skeletal muscle-specific overexpression of the p55α subunit of PI3K (referred to as, 'p55α-mOX'). Beginning at 10 weeks of age, p55α-mOX mice and their floxed littermates (referred to as wildtype [WT]) either continued with free access to food (ad libitum; AL), or were switched to a calorie restricted diet (CR; 60% of AL intake) for 20 days. We measured body composition, whole-body energy expenditure, oral glucose tolerance and ex vivo skeletal muscle insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake method. Results: p55α mRNA and protein expression was increased ∼2 fold in muscle from p55α-mOX versus WT mice. There were no differences in energy expenditure, total activity, or food intake of AL-fed mice between genotypes. Body weight, fat and lean mass, tissue weights, and fasting glucose and insulin were comparable between p55α-mOX and WT mice on AL, and were decreased equally by CR. Interestingly, overexpression of p55α did not impair oral glucose tolerance or skeletal muscle insulin signaling or sensitivity, nor did it impact the ability of CR to enhance these parameters. Conclusion: Skeletal muscle-specific overexpression of p55α does not impact skeletal muscle insulin action, suggesting that p85α and/or p50α may be more important regulators of skeletal muscle insulin signaling and sensitivity.
Collapse
Affiliation(s)
- Vitor F. Martins
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, United States
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Ji H. Kang
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Wallace S. Chick
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, United States
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
34
|
Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, Tsimpiktsioglou A, Stampouloglou PK, Oikonomou E, Mourouzis K, Philippou A, Vavuranakis M, Stefanadis C, Tousoulis D, Papavassiliou AG. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:256. [PMID: 30069458 DOI: 10.21037/atm.2018.06.21] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are the source of cellular energy production and are present in different types of cells. However, their function is especially important for the heart due to the high demands in energy which is achieved through oxidative phosphorylation. Mitochondria form large networks which regulate metabolism and the optimal function is achieved through the balance between mitochondrial fusion and mitochondrial fission. Moreover, mitochondrial function is upon quality control via the process of mitophagy which removes the damaged organelles. Mitochondrial dysfunction is associated with the development of numerous cardiac diseases such as atherosclerosis, ischemia-reperfusion (I/R) injury, hypertension, diabetes, cardiac hypertrophy and heart failure (HF), due to the uncontrolled production of reactive oxygen species (ROS). Therefore, early control of mitochondrial dysfunction is a crucial step in the therapy of cardiac diseases. A number of anti-oxidant molecules and medications have been used but the results are inconsistent among the studies. Eventually, the aim of future research is to design molecules which selectively target mitochondrial dysfunction and restore the capacity of cellular anti-oxidant enzymes.
Collapse
Affiliation(s)
- Gerasimos Siasos
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.,Division of Cardiovascular, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasiliki Tsigkou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marinos Kosmopoulos
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimosthenis Theodosiadis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Spyridon Simantiris
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nikoletta Maria Tagkou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Tsimpiktsioglou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiota K Stampouloglou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Mourouzis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Anastasios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Manolis Vavuranakis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Dimitris Tousoulis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
35
|
|
36
|
Whitehead N, Gill JF, Brink M, Handschin C. Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart. Front Physiol 2018; 9:242. [PMID: 29618980 PMCID: PMC5871735 DOI: 10.3389/fphys.2018.00242] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with a decline in cardiac function due to a decreased myocardial reserve. This adverse cardiac remodeling comprises of a variety of changes, including a reduction in mitochondrial function and a decline in the expression of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a central regulator of mitochondrial biogenesis and metabolic adaptation in the myocardium. To study the etiological involvement of PGC-1α in cardiac aging, we used mouse models mimicking the modest down- and upregulation of this coactivator in the old and the exercised heart, respectively. Young mice with reduced cardiac expression of PGC-1α recapitulated part of the age-related impairment in mitochondrial gene expression, but otherwise did not aggravate the aging process. Inversely however, moderate overexpression of PGC-1α counteracts numerous key age-related remodeling changes, e.g., by improving blood pressure, age-associated apoptosis, and collagen accumulation, as well as in the expression of many, but not all cardiac genes involved in mitochondrial biogenesis, dynamics, metabolism, calcium handling and contractility. Thus, while the reduction of PGC-1α in the heart is insufficient to cause an aging phenotype, moderate overexpression reduces pathological remodeling of older hearts and could thereby contribute to the beneficial effects of exercise on cardiac function in aging.
Collapse
Affiliation(s)
| | | | - Marijke Brink
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
37
|
Angelini A, Pi X, Xie L. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Front Physiol 2017; 8:1044. [PMID: 29311974 PMCID: PMC5732914 DOI: 10.3389/fphys.2017.01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Xinchun Pi
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Liang Xie
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
38
|
Li YG, Dong ZF, Chen KK, He YP, Dai XY, Li S, Li JB, Zhu W, Wei M. Insulin upregulates GRIM-19 and protects cardiac mitochondrial morphology in type 1 diabetic rats partly through PI3K/AKT signaling pathway. Biochem Biophys Res Commun 2017; 493:611-617. [PMID: 28867181 DOI: 10.1016/j.bbrc.2017.08.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
Insulin is involved in the development of diabetic heart disease and is important in the activities of mitochondrial complex I. However, the effect of insulin on cardiac mitochondrial nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 subunit of retinoic-interferon-induced mortality 19 (GRIM-19) has not been characterized. The aim of this study was to investigate the effect of insulin on the mitochondrial GRIM-19 in the hearts of rats with streptozotocin (STZ)-induced type 1 diabetes. Protein changes of GRIM-19 were evaluated by western blotting and reverse transcription-quantitative polymerase chain reaction. Furthermore, the effects of insulin on mitochondrial complex I were detected in HeLa cells and H9C2 cardiac myocytes. During the development of diabetic heart disease, the cardiac function did not change within the 8 weeks, but the mitochondrial morphology was altered. The hearts from the rats with STZ-induced diabetes exhibited reduced expression of GRIM-19. Prior to the overt cardiac dilatation, mitochondrial alterations were already present. Following subcutaneous insulin injection, it was demonstrated that GRIM-19 protein was altered, as well as the mitochondrial morphology. The phosphoinositide 3-kinase inhibitor LY294002 had an effect on insulin signaling in H9C2 cardiacmyocytes, and decreased the level of GRIM-19 by half compared with that in the insulin group. The results indicate that insulin is essential for the control of cardiac mitochondrial morphology and the GRIM-19 expression partly via PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Yong-Guang Li
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China.
| | - Zhi-Feng Dong
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Kan-Kai Chen
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Ya-Ping He
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Xiao-Yan Dai
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Shuai Li
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jing-Bo Li
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Wei Zhu
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Meng Wei
- Department of Cardiovascular Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China.
| |
Collapse
|
39
|
Burgos JI, Yeves AM, Barrena JP, Portiansky EL, Vila-Petroff MG, Ennis IL. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training. J Mol Cell Cardiol 2017; 112:16-26. [DOI: 10.1016/j.yjmcc.2017.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
40
|
Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E. Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Heart Circ Physiol 2017; 313:H1054-H1062. [DOI: 10.1152/ajpheart.00382.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/03/2023]
Abstract
Exercise training is a potent therapeutic approach in obesity and diabetes that exerts protective effects against the development of diabetic cardiomyopathy and ischemic injury. Acute increases in circulating fatty acids (FAs) during an ischemic insult can challenge the heart, since high FA load is considered to have adverse cardiac effects. In the present study, we tested the hypothesis that exercise-induced cardiac effects in diet-induced obese mice are abrogated by an acute high FA load. Diet-induced obese mice were fed a high-fat diet (HFD) for 20 wk. They were exercised using moderate- and/or high-intensity exercise training (MIT and HIT, respectively) for 10 or 3 wk, and isolated perfused hearts from these mice were exposed to a high FA load. Sedentary HFD mice served as controls. Ventricular function and myocardial O2 consumption were assessed after 10 wk of HIT and MIT, and postischemic functional recovery and infarct size were examined after 3 wk of HIT. In addition to improving aerobic capacity and reducing obesity and insulin resistance, long-term exercise ameliorated the development of diet-induced cardiac dysfunction. This was associated with improved mechanical efficiency because of reduced myocardial oxygen consumption. Although to a lesser extent, 3-wk HIT also increased aerobic capacity and decreased obesity and insulin resistance. HIT also improved postischemic functional recovery and reduced infarct size. Event upon the exposure to a high FA load, short-term exercise induced an oxygen-sparing effect. This study therefore shows that exercise-induced cardioprotective effects are present under hyperlipidemic conditions and highlights the important role of myocardial energetics during ischemic stress. NEW & NOTEWORTHY The exercise-induced cardioprotective effects in obese hearts are present under hyperlipidemic conditions, comparable to circulating levels of FA occurring with an ischemic insult. Myocardial oxygen sparing is associated with this effect, despite the general notion that high fat can decrease cardiac efficiency. This highlights the role of myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- Neoma T. Boardman
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anne D. Hafstad
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jim Lund
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
41
|
Mutikainen M, Tuomainen T, Naumenko N, Huusko J, Smirin B, Laidinen S, Kokki K, Hynynen H, Ylä-Herttuala S, Heinäniemi M, Ruas JL, Tavi P. Peroxisome proliferator-activated receptor-γ coactivator 1 α1 induces a cardiac excitation-contraction coupling phenotype without metabolic remodelling. J Physiol 2017; 594:7049-7071. [PMID: 27716916 DOI: 10.1113/jp272847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Transcriptional co-activator PGC-1α1 has been shown to regulate energy metabolism and to mediate metabolic adaptations in pathological and physiological cardiac hypertrophy but other functional implications of PGC-1α1 expression are not known. Transgenic PGC-1α1 overexpression within the physiological range in mouse heart induces purposive changes in contractile properties, electrophysiology and calcium signalling but does not induce substantial metabolic remodelling. The phenotype of the PGC-1α1 transgenic mouse heart recapitulates most of the functional modifications usually associated with the exercise-induced heart phenotype, but does not protect the heart against load-induced pathological hypertrophy. Transcriptional effects of PGC-1α1 show clear dose-dependence with diverse changes in genes in circadian clock, heat shock, excitability, calcium signalling and contraction pathways at low overexpression levels, while metabolic genes are recruited at much higher PGC-1α1 expression levels. These results imply that the physiological role of PGC-1α1 is to promote a beneficial excitation-contraction coupling phenotype in the heart. ABSTRACT The transcriptional coactivator PGC-1α1 has been identified as a central factor mediating metabolic adaptations of the heart. However, to what extent physiological changes in PGC-1α1 expression levels actually contribute to the functional adaptation of the heart is still mostly unresolved. The aim of this study was to characterize the transcriptional and functional effects of physiologically relevant, moderate PGC-1α1 expression in the heart. In vivo and ex vivo physiological analysis shows that expression of PGC-1α1 within a physiological range in mouse heart does not induce the expected metabolic alterations, but instead induces a unique excitation-contraction (EC) coupling phenotype recapitulating features typically seen in physiological hypertrophy. Transcriptional screening of PGC-1α1 overexpressing mouse heart and myocyte cultures with higher, acute adenovirus-induced PGC-1α1 expression, highlights PGC-1α1 as a transcriptional coactivator with a number of binding partners in various pathways (such as heat shock factors and the circadian clock) through which it acts as a pleiotropic transcriptional regulator in the heart, to both augment and repress the expression of its target genes in a dose-dependent fashion. At low levels of overexpression PGC-1α1 elicits a diverse transcriptional response altering the expression state of circadian clock, heat shock, excitability, calcium signalling and contraction pathways, while metabolic targets of PGC-1α1 are recruited at higher PGC-1α1 expression levels. Together these findings demonstrate that PGC-1α1 elicits a dual effect on cardiac transcription and phenotype. Further, our results imply that the physiological role of PGC-1α1 is to promote a beneficial EC coupling phenotype in the heart.
Collapse
Affiliation(s)
- Maija Mutikainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Tuomainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nikolay Naumenko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Boris Smirin
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Svetlana Laidinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Krista Kokki
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hynynen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
42
|
Aghanoori MR, Smith DR, Roy Chowdhury S, Sabbir MG, Calcutt NA, Fernyhough P. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats. Exp Neurol 2017; 297:148-157. [PMID: 28803751 DOI: 10.1016/j.expneurol.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/02/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023]
Abstract
Diabetic neuropathy affects approximately 50% of diabetic patients. Down-regulation of mitochondrial gene expression and function has been reported in both human tissues and in dorsal root ganglia (DRG) from animal models of type 1 and type 2 diabetes. We hypothesized that loss of direct insulin signaling in diabetes contributes to loss of mitochondrial function in DRG neurons and to development of neuropathy. Sensory neurons obtained from age-matched adult control or streptozotocin (STZ)-induced type 1 diabetic rats were cultured with or without insulin before determining mitochondrial respiration and expression of mitochondrial respiratory chain and insulin signaling-linked proteins. For in vivo studies age-matched control rats and diabetic rats with or without trace insulin supplementation were maintained for 5months before DRG were analyzed for respiratory chain gene expression and cytochrome c oxidase activity. Insulin (10nM) significantly (P<0.05) increased phosphorylation of Akt and P70S6K by 4-fold and neurite outgrowth by 2-fold in DRG cultures derived from adult control rats. Insulin also augmented the levels of selective mitochondrial respiratory chain proteins and mitochondrial bioenergetics parameters in DRG cultures from control and diabetic rats, with spare respiratory capacity increased by up to 3-fold (P<0.05). Insulin-treated diabetic animals exhibited improved thermal sensitivity in the hind paw and had increased dermal nerve density compared to untreated diabetic rats, despite no effect on blood glucose levels. In DRG of diabetic rats there was suppressed expression of mitochondrial respiratory chain proteins and cytochrome c oxidase activity that was corrected by insulin therapy. Insulin elevates mitochondrial respiratory chain protein expression and function in sensory neurons and this is associated with enhanced neurite outgrowth and protection against indices of neuropathy.
Collapse
Affiliation(s)
- Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Subir Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
43
|
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab 2017; 25:1012-1026. [PMID: 28467921 PMCID: PMC5512429 DOI: 10.1016/j.cmet.2017.04.025] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.
Collapse
Affiliation(s)
- Rick B Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - John P Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Daniel P Kelly
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
44
|
Wang Q, Li C, Zhang Q, Wang Y, Shi T, Lu L, Zhang Y, Wang Y, Wang W. The effect of Chinese herbs and its effective components on coronary heart disease through PPARs-PGC1α pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:514. [PMID: 27955667 PMCID: PMC5153825 DOI: 10.1186/s12906-016-1496-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022]
Abstract
Background DanQi pill (DQP) is prescribed widely in China and has definite cardioprotective effect on coronary heart disease. Our previous studies proved that DQP could effectively regulate plasma levels of high density lipoprotein (HDL) and low density lipoprotein (LDL). However, the regulatory mechanisms of DQP and its major components Salvianolic acids and Panax notoginseng saponins (DS) on lipid metabolism disorders haven’t been comprehensively studied so far. Methods Rat model of coronary heart disease was induced by left anterior descending (LAD) artery ligation operations. Rats were divided into sham, model, DQP treated, DS treated and positive drug (clofibrate) treated groups. At 28 days after surgery, cardiac functions were assessed by echocardiography. Expressions of transcription factors and key molecules in energy metabolism pathway were measured by reverse transcriptase polymerase chain reaction or western blotting. Results In ischemic heart model, cardiac functions were severely injured but improved by treatments of DQP and DS. Expression of LPL was down-regulated in model group. Both DQP and DS could up-regulate the mRNA expression of LPL. Membrane proteins involved in lipid transport and uptake, such as FABP4 and CPT-1A, were down-regulated in ischemic heart tissues. Treatment with DQP and DS regulated lipid metabolisms by up-regulating expressions of FABP4 and CPT-1A. DQP and DS also suppressed expression of cytochrome P450. Furthermore, transcriptional factors, such as PPARα, PPARγ, RXRA and PGC-1α, were down-regulated in ischemic model group. DQP and DS could up-regulate expressions of these factors. However, DS showed a better efficacy than DQP on PGC-1α, a coactivator of PPARs. Key molecules in signaling pathways such as AKT1/2, ERK and PI3K were also regulated by DQP and DS simultaneously. Conclusions Salvianolic acids and Panax notoginseng are the major effective components of DanQi pill in improving lipid metabolism in ischemic heart model. The effects may be mediated by regulating transcriptional factors such as PPARs, RXRA and PGC-1α.
Collapse
|
45
|
Abstract
Exercise-induced cardiac remodeling is typically an adaptive response associated with cardiac myocyte hypertrophy and renewal, increased cardiac myocyte contractility, sarcomeric remodeling, cell survival, metabolic and mitochondrial adaptations, electrical remodeling, and angiogenesis. Initiating stimuli/triggers of cardiac remodeling include increased hemodynamic load, increased sympathetic activity, and the release of hormones and growth factors. Prolonged and strenuous exercise may lead to maladaptive exercise-induced cardiac remodeling including cardiac dysfunction and arrhythmia. In addition, this article describes novel therapeutic approaches for the treatment of heart failure that target mechanisms responsible for adaptive exercise-induced cardiac remodeling, which are being developed and tested in preclinical models.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker IDI Heart and Diabetes Institute, Cardiac Hypertrophy Laboratory, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Julie R McMullen
- Baker IDI Heart and Diabetes Institute, Cardiac Hypertrophy Laboratory, PO Box 6492, Melbourne, VIC 3004, Australia; Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia; Department of Physiology, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
46
|
Abstract
Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed.
Collapse
Affiliation(s)
- Christian Riehle
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - E Dale Abel
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
47
|
Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium 2016; 60:88-101. [PMID: 27130902 PMCID: PMC4996709 DOI: 10.1016/j.ceca.2016.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic and responsive organelles that respond to environmental cues with fission and fusion. They undergo mitophagy and biogenesis, and are subject to extensive post-translational modifications. Calcium plays an important role in regulating mitochondrial functions. Mitochondria play a central role in metabolism of glucose, fatty acids, and amino acids, and generate ATP with effects on redox poise, oxidative stress, pH, and other metabolites including acetyl-CoA and NAD(+) which in turn have effects on chromatin remodeling. The complex interplay of mitochondria, cytosolic factors, and the nucleus ensure a well-coordinated response to environmental stresses.
Collapse
Affiliation(s)
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) and the Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
48
|
Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes. J Mol Cell Cardiol 2016; 97:70-81. [DOI: 10.1016/j.yjmcc.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 11/19/2022]
|
49
|
Westermeier F, Riquelme JA, Pavez M, Garrido V, Díaz A, Verdejo HE, Castro PF, García L, Lavandero S. New Molecular Insights of Insulin in Diabetic Cardiomyopathy. Front Physiol 2016; 7:125. [PMID: 27148064 PMCID: PMC4828458 DOI: 10.3389/fphys.2016.00125] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a highly prevalent disease worldwide. Cardiovascular disorders generated as a consequence of T2DM are a major cause of death related to this disease. Diabetic cardiomyopathy (DCM) is characterized by the morphological, functional and metabolic changes in the heart produced as a complication of T2DM. This cardiac disorder is characterized by constant high blood glucose and lipids levels which eventually generate oxidative stress, defective calcium handling, altered mitochondrial function, inflammation and fibrosis. In this context, insulin is of paramount importance for cardiac contractility, growth and metabolism and therefore, an impaired insulin signaling plays a critical role in the DCM development. However, the exact pathophysiological mechanisms leading to DCM are still a matter of study. Despite the numerous questions raised in the study of DCM, there have also been important findings, such as the role of micro-RNAs (miRNAs), which can not only have the potential of being important biomarkers, but also therapeutic targets. Furthermore, exosomes also arise as an interesting variable to consider, since they represent an important inter-cellular communication mechanism and therefore, they may explain many aspects of the pathophysiology of DCM and their study may lead to the development of therapeutic agents capable of improving insulin signaling. In addition, adenosine and adenosine receptors (ARs) may also play an important role in DCM. Moreover, the possible cross-talk between insulin and ARs may provide new strategies to reverse its defective signaling in the diabetic heart. This review focuses on DCM, the role of insulin in this pathology and the discussion of new molecular insights which may help to understand its underlying mechanisms and generate possible new therapeutic strategies.
Collapse
Affiliation(s)
- Francisco Westermeier
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Jaime A Riquelme
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Mario Pavez
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Valeria Garrido
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Ariel Díaz
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Hugo E Verdejo
- Faculty of Medicine, Advanced Center for Chronic Diseases, Pontifical Catholic University of ChileSantiago, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontifical Catholic University of ChileSantiago, Chile
| | - Pablo F Castro
- Faculty of Medicine, Advanced Center for Chronic Diseases, Pontifical Catholic University of ChileSantiago, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontifical Catholic University of ChileSantiago, Chile
| | - Lorena García
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of ChileSantiago, Chile; Department of Internal Medicine (Division of Cardiology), University of Texas Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
50
|
Noh J, Wende AR, Olsen CD, Kim B, Bevins J, Zhu Y, Zhang QJ, Riehle C, Abel ED. Phosphoinositide dependent protein kinase 1 is required for exercise-induced cardiac hypertrophy but not the associated mitochondrial adaptations. J Mol Cell Cardiol 2015; 89:297-305. [PMID: 26476238 DOI: 10.1016/j.yjmcc.2015.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 01/17/2023]
Abstract
Phosphoinositide-dependent protein kinase-1 (PDPK1) is an important mediator of phosphatidylinositol 3-kinase (PI3K) signaling. We previously reported that PI3K but not Akt signaling mediates the increase in mitochondrial oxidative capacity following physiological cardiac hypertrophy. To determine if PDPK1 regulates these metabolic adaptations we examined mice with cardiomyocyte-specific heterozygous knockout of PDPK1 (cPDPK1(+/-)) after 5 wk. exercise swim training. Akt phosphorylation at Thr308 increased by 43% in wildtype (WT) mice but not in cPDPK1(+/-) mice following exercise training. Ventricular contractile function was not different between WT and cPDPK1(+/-) mice at baseline. In addition, exercise did not influence ventricular function in WT or cPDPK1(+/-) mice. Heart weight normalized to tibia length ratios increased by 13.8% in WT mice (6.2±0.2 vs. 7.1±0.2, P=0.001), but not in cPDPK1(+/-) (6.2±0.3 vs. 6.5±0.2, P=0.20) mice after swim training. Diastolic LV dimension increased in WT mice (3.7±0.1 vs. 4.0±0.1 mm, P=0.01) but not in cPDPK1(+/-) (3.8±0.1 vs. 3.7±0.1 mm, P=0.56) following swim training. Maximal mitochondrial oxygen consumption (VADP, nmol/min/mg) using palmitoyl carnitine as a substrate was significantly increased in mice of all genotypes following swim training (WT: 13.6±0.6 vs.16.1±0.9, P=0.04; cPDPK1(+/-): 12.4±0.6 vs.15.9±1.2, P=0.04). These findings suggest that PDPK1 is required for exercise-induced cardiac hypertrophy but does not contribute to exercise-induced increases in mitochondrial function.
Collapse
Affiliation(s)
- Junghyun Noh
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Division of Endocrinology and Metabolism, College of Medicine, Inje University, Goyang, South Korea
| | - Adam R Wende
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Curtis D Olsen
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bumjun Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jack Bevins
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yi Zhu
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Touchstone Diabetes Center, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Quan-Jiang Zhang
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christian Riehle
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Hannover Medical School, Department of Cardiology and Angiology, Carl-Neuberg-Str., 130625 Hannover, Germany
| | - E Dale Abel
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|