1
|
Tamashiro H, Ishikawa K, Sadotomo K, Ogasawara E, Nakada K. Mitochondrial Respiratory Dysfunction Is Not Correlated With Mitochondrial Genotype in Premature Aging Mice. Aging Cell 2025:e70085. [PMID: 40318128 DOI: 10.1111/acel.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/07/2025] Open
Abstract
mtDNA mutator mice (Polgmut/mut mice) have reinforced the mitochondrial theory of aging. These mice accumulate multiple mutations in mtDNA with age due to a homozygous proofreading-deficient mutation in mtDNA polymerase gamma (Polg), resulting in mitochondrial respiratory dysfunction and premature aging phenotypes. However, whether the accumulation of multiple mutations in Polgmut/mut mice induces mitochondrial respiratory dysfunction remains unclear. Here, we determined the accurate mtDNA genotype, including the frequency of total mutations and the number of non-synonymous substitutions and pathogenic mutations, using next-generation sequencing in the progeny of all three genotypes obtained from the mating of heterozygous mtDNA mutator mice (Polg+/mut mice) and examined their correlation with mitochondrial respiratory activity. Although Polg+/mut mice showed equivalent mtDNA genotype to Polg+/+ (wild-type) mice, the mitochondrial respiratory activity in the Polg+/mut mice was mildly reduced. To further investigate the causal relationship between mtDNA genotype and mitochondrial respiratory activity, we experimentally varied the mtDNA genotype in Polg mice. However, mitochondrial respiratory activity was mildly reduced in Polg+/mut mice and severely reduced in Polgmut/mut mice, regardless of the mtDNA genotype. Moreover, by varying the mtDNA genotype, some Polg+/+ mice showed mtDNA genotype equivalent to those of Polgmut/mut mice, but mitochondrial respiratory activity in Polg+/+ mice was normal. These results indicate that the mitochondrial respiratory dysfunction observed in mice with proofreading-deficient mutation in Polg is correlated with the nuclear genotype of Polg rather than the mtDNA genotype. Thus, the mitochondrial theory of aging in Polgmut/mut mice needs further re-examination.
Collapse
Affiliation(s)
- Hiroaki Tamashiro
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Koichi Sadotomo
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Emi Ogasawara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Stańczyk M, Szubart N, Maslanka R, Zadrag-Tecza R. Mitochondrial Dysfunctions: Genetic and Cellular Implications Revealed by Various Model Organisms. Genes (Basel) 2024; 15:1153. [PMID: 39336744 PMCID: PMC11431519 DOI: 10.3390/genes15091153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the energy status and redox homeostasis of eukaryotic cells. They are responsible for the metabolic efficiency of cells, providing both ATP and intermediate metabolic products. They also regulate cell survival and death under stress conditions by controlling the cell response or activating the apoptosis process. This functional diversity of mitochondria indicates their great importance for cellular metabolism. Hence, dysfunctions of these structures are increasingly recognized as an element of the etiology of many human diseases and, therefore, an extremely promising therapeutic target. Mitochondrial dysfunctions can be caused by mutations in both nuclear and mitochondrial DNA, as well as by stress factors or replication errors. Progress in knowledge about the biology of mitochondria, as well as the consequences for the efficiency of the entire organism resulting from the dysfunction of these structures, is achieved through the use of model organisms. They are an invaluable tool for analyzing complex cellular processes, leading to a better understanding of diseases caused by mitochondrial dysfunction. In this work, we review the most commonly used model organisms, discussing both their advantages and limitations in modeling fundamental mitochondrial processes or mitochondrial diseases.
Collapse
Affiliation(s)
| | | | | | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (M.S.); (N.S.); (R.M.)
| |
Collapse
|
3
|
Sprason C, Tucker T, Clancy D. MtDNA deletions and aging. FRONTIERS IN AGING 2024; 5:1359638. [PMID: 38425363 PMCID: PMC10902006 DOI: 10.3389/fragi.2024.1359638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Aging is the major risk factor in most of the leading causes of mortality worldwide, yet its fundamental causes mostly remain unclear. One of the clear hallmarks of aging is mitochondrial dysfunction. Mitochondria are best known for their roles in cellular energy generation, but they are also critical biosynthetic and signaling organelles. They also undergo multiple changes with organismal age, including increased genetic errors in their independent, circular genome. A key group of studies looking at mice with increased mtDNA mutations showed that premature aging phenotypes correlated with increased deletions but not point mutations. This generated an interest in mitochondrial deletions as a potential fundamental cause of aging. However, subsequent studies in different models have yielded diverse results. This review summarizes the research on mitochondrial deletions in various organisms to understand their possible roles in causing aging while identifying the key complications in quantifying deletions across all models.
Collapse
Affiliation(s)
| | | | - David Clancy
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
4
|
Shabalina IG, Edgar D, Gibanova N, Kalinovich AV, Petrovic N, Vyssokikh MY, Cannon B, Nedergaard J. Enhanced ROS Production in Mitochondria from Prematurely Aging mtDNA Mutator Mice. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:279-298. [PMID: 38622096 DOI: 10.1134/s0006297924020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 04/17/2024]
Abstract
An increase in mitochondrial DNA (mtDNA) mutations and an ensuing increase in mitochondrial reactive oxygen species (ROS) production have been suggested to be a cause of the aging process ("the mitochondrial hypothesis of aging"). In agreement with this, mtDNA-mutator mice accumulate a large amount of mtDNA mutations, giving rise to defective mitochondria and an accelerated aging phenotype. However, incongruously, the rates of ROS production in mtDNA mutator mitochondria have generally earlier been reported to be lower - not higher - than in wildtype, thus apparently invalidating the "mitochondrial hypothesis of aging". We have here re-examined ROS production rates in mtDNA-mutator mice mitochondria. Using traditional conditions for measuring ROS (succinate in the absence of rotenone), we indeed found lower ROS in the mtDNA-mutator mitochondria compared to wildtype. This ROS mainly results from reverse electron flow driven by the membrane potential, but the membrane potential reached in the isolated mtDNA-mutator mitochondria was 33 mV lower than that in wildtype mitochondria, due to the feedback inhibition of succinate oxidation by oxaloacetate, and to a lower oxidative capacity in the mtDNA-mutator mice, explaining the lower ROS production. In contrast, in normal forward electron flow systems (pyruvate (or glutamate) + malate or palmitoyl-CoA + carnitine), mitochondrial ROS production was higher in the mtDNA-mutator mitochondria. Particularly, even during active oxidative phosphorylation (as would be ongoing physiologically), higher ROS rates were seen in the mtDNA-mutator mitochondria than in wildtype. Thus, when examined under physiological conditions, mitochondrial ROS production rates are indeed increased in mtDNA-mutator mitochondria. While this does not prove the validity of the mitochondrial hypothesis of aging, it may no longer be said to be negated in this respect. This paper is dedicated to the memory of Professor Vladimir P. Skulachev.
Collapse
Affiliation(s)
- Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Daniel Edgar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Natalia Gibanova
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Mikhail Yu Vyssokikh
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden.
| |
Collapse
|
5
|
Wang H, Lu J, Stevens T, Roberts A, Mandel J, Avula R, Ma B, Wu Y, Wang J, Land CV, Finkel T, Vockley JE, Airik M, Airik R, Muzumdar R, Gong Z, Torbenson MS, Prochownik EV. Premature aging and reduced cancer incidence associated with near-complete body-wide Myc inactivation. Cell Rep 2023; 42:112830. [PMID: 37481724 PMCID: PMC10591215 DOI: 10.1016/j.celrep.2023.112830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
MYC proto-oncogene dysregulation alters metabolism, translation, and other functions in ways that support tumor induction and maintenance. Although Myc+/- mice are healthier and longer-lived than control mice, the long-term ramifications of more complete Myc loss remain unknown. We now describe the chronic consequences of body-wide Myc inactivation initiated postnatally. "MycKO" mice acquire numerous features of premature aging, including altered body composition and habitus, metabolic dysfunction, hepatic steatosis, and dysregulation of gene sets involved in functions that normally deteriorate with aging. Yet, MycKO mice have extended lifespans that correlate with a 3- to 4-fold lower lifetime cancer incidence. Aging tissues from normal mice and humans also downregulate Myc and gradually alter many of the same Myc target gene sets seen in MycKO mice. Normal aging and its associated cancer predisposition are thus highly linked via Myc.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alexander Roberts
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jordan Mandel
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Raghunandan Avula
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Bingwei Ma
- Tongji University School of Medicine, Shanghai, China
| | - Yijen Wu
- Department of Developmental Biology, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Jinglin Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Central South University, Xiangya School of Medicine, Changsha, Hunan 410013, P.R. China
| | - Clinton Van't Land
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Toren Finkel
- Division of Cardiology, The Department of Internal Medicine and the UPMC Aging Institute, Pittsburgh, PA 15224, USA
| | - Jerry E Vockley
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Merlin Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rannar Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Radhika Muzumdar
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zhenwei Gong
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Michel S Torbenson
- Division of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, MN 55905, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15261, USA; Hillman Cancer Center of UPMC, Pittsburgh, PA 15232, USA; Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Warren EB, Gordon-Lipkin EM, Cheung F, Chen J, Mukherjee A, Apps R, Tsang JS, Jetmore J, Schlein ML, Kruk S, Lei Y, West AP, McGuire PJ. Inflammatory and interferon gene expression signatures in patients with mitochondrial disease. J Transl Med 2023; 21:331. [PMID: 37208779 DOI: 10.1186/s12967-023-04180-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyper-responsiveness to pathogens and neurodegeneration. We sought to examine transcriptional changes between MtD patients and healthy controls to identify common gene signatures of immune dysregulation in MtD. METHODS We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. RESULTS Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1β and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. CONCLUSIONS Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Emily B Warren
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eliza M Gordon-Lipkin
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Foo Cheung
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - Jinguo Chen
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - Amrita Mukherjee
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - Richard Apps
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - John S Tsang
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Jillian Jetmore
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa L Schlein
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shannon Kruk
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Bryan, TX, USA
| | - A Phillip West
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Bryan, TX, USA.
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
8
|
Wang X, Zhang H, Wang Y, Bramasole L, Guo K, Mourtada F, Meul T, Hu Q, Viteri V, Kammerl I, Konigshoff M, Lehmann M, Magg T, Hauck F, Fernandez IE, Meiners S. DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity. EMBO J 2023; 42:e110597. [PMID: 36912165 PMCID: PMC10106989 DOI: 10.15252/embj.2022110597] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
The immunoproteasome is a specialized type of proteasome involved in MHC class I antigen presentation, antiviral adaptive immunity, autoimmunity, and is also part of a broader response to stress. Whether the immunoproteasome is regulated by DNA stress, however, is not known. We here demonstrate that mitochondrial DNA stress upregulates the immunoproteasome and MHC class I antigen presentation pathway via cGAS/STING/type I interferon signaling resulting in cell autonomous activation of CD8+ T cells. The cGAS/STING-induced adaptive immune response is also observed in response to genomic DNA and is conserved in epithelial and mesenchymal cells of mice and men. In patients with idiopathic pulmonary fibrosis, chronic activation of the cGAS/STING-induced adaptive immune response in aberrant lung epithelial cells concurs with CD8+ T-cell activation in diseased lungs. Genetic depletion of the immunoproteasome and specific immunoproteasome inhibitors counteract DNA stress induced cytotoxic CD8+ T-cell activation. Our data thus unravel cytoplasmic DNA sensing via the cGAS/STING pathway as an activator of the immunoproteasome and CD8+ T cells. This represents a novel potential pathomechanism for pulmonary fibrosis that opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Huabin Zhang
- Neurosurgical Research, Department of Neurosurgery, University Hospital and Walter-Brendel-Centre of Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.,The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Wang
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Laylan Bramasole
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Fatima Mourtada
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Qianjiang Hu
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Valeria Viteri
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Ilona Kammerl
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Melanie Konigshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany.,Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Department of Medicine V, University Hospital, LMU Munich, Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
9
|
Warren E, Gordon-Lipkin EM, Cheung F, Chen J, Mukherjee A, Apps R, Tsang JS, Jetmore J, Kruk S, Lei Y, West AP, McGuire PJ. Inflammatory and interferon gene expression signatures in patients with mitochondrial disease. RESEARCH SQUARE 2023:rs.3.rs-2612547. [PMID: 36909538 PMCID: PMC10002836 DOI: 10.21203/rs.3.rs-2612547/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Background: People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyperresponsiveness to pathogens and neurodegeneration. Methods: We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. Results: Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1β and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. Conclusions: Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.
Collapse
|
10
|
Brischigliaro M, Fernandez-Vizarra E, Viscomi C. Mitochondrial Neurodegeneration: Lessons from Drosophila melanogaster Models. Biomolecules 2023; 13:378. [PMID: 36830747 PMCID: PMC9953451 DOI: 10.3390/biom13020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernandez-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Centre for the Study of Neurodegeneration (CESNE), University of Padova, 35131 Padova, Italy
| |
Collapse
|
11
|
Maiti P, Fontanesi F. Metabolic Labeling of Mitochondrial Translation Products in Whole Cells and Isolated Organelles. Methods Mol Biol 2023; 2661:193-215. [PMID: 37166639 DOI: 10.1007/978-1-0716-3171-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondria retain their own genome and translational apparatus that is highly specialized in the synthesis of a handful of proteins, essential components of the oxidative phosphorylation system. During evolution, the players and mechanisms involved in mitochondrial translation have acquired some unique features, which we have only partially disclosed. The study of the mitochondrial translation process has been historically hampered by the lack of an in vitro translational system and has largely relied on the analysis of the incorporation rate of radiolabeled amino acids into mitochondrial proteins in cellulo or in organello. In this chapter, we describe methods to monitor mitochondrial translation by labeling newly synthesized mitochondrial polypeptides with [S35]-methionine in either yeast or mammalian whole cells or isolated mitochondria.
Collapse
Affiliation(s)
- Priyanka Maiti
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
12
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Gherardi G, Corbioli G, Ruzza F, Rizzuto R. CoQ 10 and Resveratrol Effects to Ameliorate Aged-Related Mitochondrial Dysfunctions. Nutrients 2022; 14:4326. [PMID: 36297010 PMCID: PMC9611139 DOI: 10.3390/nu14204326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria participate in the maintenance of cellular homeostasis. Firstly, mitochondria regulate energy metabolism through oxidative phosphorylation. In addition, they are involved in cell fate decisions by activating the apoptotic intrinsic pathway. Finally, they work as intracellular signaling hubs as a result of their tight regulation of ion and metabolite concentrations and other critical signaling molecules such as ROS. Aging is a multifactorial process triggered by impairments in different cellular components. Among the various molecular pathways involved, mitochondria are key regulators of longevity. Indeed, mitochondrial deterioration is a critical signature of the aging process. In this scenario, we will focus specifically on the age-related decrease in CoQ levels, an essential component of the electron transport chain (ETC) and an antioxidant, and how CoQ supplementation could benefit the aging process. Generally, any treatment that improves and sustains mitochondrial functionality is a good candidate to counteract age-related mitochondrial dysfunctions. In recent years, heightened attention has been given to natural compounds that modulate mitochondrial function. One of the most famous is resveratrol due to its ability to increase mitochondrial biogenesis and work as an antioxidant agent. This review will discuss recent clinical trials and meta-analyses based on resveratrol and CoQ supplementation, focusing on how these compounds could improve mitochondrial functionality during aging.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Giovanni Corbioli
- Solgar Italia Multinutrient Spa, Via Prima Strada 23/3, 35129 Padova, Italy
| | - Filippo Ruzza
- Solgar Italia Multinutrient Spa, Via Prima Strada 23/3, 35129 Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
14
|
Yu T, Slone J, Liu W, Barnes R, Opresko PL, Wark L, Mai S, Horvath S, Huang T. Premature aging is associated with higher levels of 8-oxoguanine and increased DNA damage in the Polg mutator mouse. Aging Cell 2022; 21:e13669. [PMID: 35993394 PMCID: PMC9470903 DOI: 10.1111/acel.13669] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the aging process. However, the mechanism by which this dysfunction causes aging is not fully understood. The accumulation of mutations in the mitochondrial genome (or "mtDNA") has been proposed as a contributor. One compelling piece of evidence in support of this hypothesis comes from the PolgD257A/D257A mutator mouse (Polgmut/mut ). These mice express an error-prone mitochondrial DNA polymerase that results in the accumulation of mtDNA mutations, accelerated aging, and premature death. In this paper, we have used the Polgmut/mut model to investigate whether the age-related biological effects observed in these mice are triggered by oxidative damage to the DNA that compromises the integrity of the genome. Our results show that mutator mouse has significantly higher levels of 8-oxoguanine (8-oxoGua) that are correlated with increased nuclear DNA (nDNA) strand breakage and oxidative nDNA damage, shorter average telomere length, and reduced mtDNA integrity. Based on these results, we propose a model whereby the increased level of reactive oxygen species (ROS) associated with the accumulation of mtDNA mutations in Polgmut/mut mice results in higher levels of 8-oxoGua, which in turn lead to compromised DNA integrity and accelerated aging via increased DNA fragmentation and telomere shortening. These results suggest that mitochondrial play a central role in aging and may guide future research to develop potential therapeutics for mitigating aging process.
Collapse
Affiliation(s)
- Tenghui Yu
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Human Aging Research Institute, School of Life ScienceNanchang UniversityNanchangChina,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jesse Slone
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Wensheng Liu
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA
| | - Ryan Barnes
- Department of Environmental and Occupational HealthUniversity of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Patricia L. Opresko
- Department of Environmental and Occupational HealthUniversity of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Landon Wark
- CancerCare Manitoba Research Institute, The Genomic Center for Cancer Research & DiagnosisUniversity of ManitobaWinnipegManitobaCanada
| | - Sabine Mai
- CancerCare Manitoba Research Institute, The Genomic Center for Cancer Research & DiagnosisUniversity of ManitobaWinnipegManitobaCanada
| | - Steve Horvath
- Human Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Taosheng Huang
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
15
|
Abstract
Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
The Role of Oxidative Stress in the Aging Heart. Antioxidants (Basel) 2022; 11:antiox11020336. [PMID: 35204217 PMCID: PMC8868312 DOI: 10.3390/antiox11020336] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Medical advances and the availability of diagnostic tools have considerably increased life expectancy and, consequently, the elderly segment of the world population. As age is a major risk factor in cardiovascular disease (CVD), it is critical to understand the changes in cardiac structure and function during the aging process. The phenotypes and molecular mechanisms of cardiac aging include several factors. An increase in oxidative stress is a major player in cardiac aging. Reactive oxygen species (ROS) production is an important mechanism for maintaining physiological processes; its generation is regulated by a system of antioxidant enzymes. Oxidative stress occurs from an imbalance between ROS production and antioxidant defenses resulting in the accumulation of free radicals. In the heart, ROS activate signaling pathways involved in myocyte hypertrophy, interstitial fibrosis, contractile dysfunction, and inflammation thereby affecting cell structure and function, and contributing to cardiac damage and remodeling. In this manuscript, we review recent published research on cardiac aging. We summarize the aging heart biology, highlighting key molecular pathways and cellular processes that underlie the redox signaling changes during aging. Main ROS sources, antioxidant defenses, and the role of dysfunctional mitochondria in the aging heart are addressed. As metabolism changes contribute to cardiac aging, we also comment on the most prevalent metabolic alterations. This review will help us to understand the mechanisms involved in the heart aging process and will provide a background for attractive molecular targets to prevent age-driven pathology of the heart. A greater understanding of the processes involved in cardiac aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and promote healthy cardiac aging.
Collapse
|
17
|
Wang P, Wu B, You S, Lu S, Xiong S, Zou Y, Jia P, Guo X, Zhang Y, Cao L, Sun Y, Zhang N. DNA Polymerase Gamma Recovers Mitochondrial Function and Inhibits Vascular Calcification by Interacted with p53. Int J Biol Sci 2022; 18:409-425. [PMID: 34975341 PMCID: PMC8692132 DOI: 10.7150/ijbs.65030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase gamma (PolG) is the major polymerase of mitochondrial DNA (mtDNA) and essential for stabilizing mitochondrial function. Vascular calcification (VC) is common senescence related degenerative pathology phenomenon in the end-stage of multiple chronic diseases. Mitochondrial dysfunction was often observed in calcified vessels, but the function and mechanism of PolG in the calcification process was still unknown. The present study found PolGD257A/D257A mice presented more severe calcification of aortas than wild type (WT) mice with vitamin D3 (Vit D3) treatment, and this phenomenon was also confirmed in vitro. Mechanistically, PolG could enhance the recruitment and interaction of p53 in calcification condition to recover mitochondrial function and eventually to resist calcification. Meanwhile, we found the mutant PolG (D257A) failed to achieve the same rescue effects, suggesting the 3'-5' exonuclease activity guarantee the enhanced interaction of p53 and PolG in response to calcification stimulation. Thus, we believed that it was PolG, not mutant PolG, could maintain mitochondrial function and attenuate calcification in vitro and in vivo. And PolG could be a novel potential therapeutic target against calcification, providing a novel insight to clinical treatment.
Collapse
Affiliation(s)
- Pengbo Wang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Shilong You
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Saien Lu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Shengjun Xiong
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, 110122, Liaoning Province, People Republic of China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| |
Collapse
|
18
|
Morganti C, Ito K. Mitochondrial Contributions to Hematopoietic Stem Cell Aging. Int J Mol Sci 2021; 22:11117. [PMID: 34681777 PMCID: PMC8537916 DOI: 10.3390/ijms222011117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
19
|
Verbascoside Protects Gingival Cells against High Glucose-Induced Oxidative Stress via PKC/HMGB1/RAGE/NFκB Pathway. Antioxidants (Basel) 2021; 10:antiox10091445. [PMID: 34573077 PMCID: PMC8464661 DOI: 10.3390/antiox10091445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Impaired wound healing often occurs in patients with diabetes and causes great inconvenience to them. Aside from the presence of prolonged inflammation, the accumulation of oxidative stress is also implicated in the delayed wound healing. In the present study, we tested the effect of verbascoside, a caffeoyl phenylethanoid glycoside, on the improvement of cell viability and wound healing capacity of gingival epithelial cells under high glucose condition. We showed that verbascoside attenuated the high glucose-induced cytotoxicity and impaired healing, which may be associated with the downregulation of oxidative stress. Our results demonstrated that verbascoside increased the activity of the antioxidant enzyme SOD and reduced the oxidative stress indicator, 8-OHdG, as well as apoptosis. Moreover, verbascoside upregulated the PGC1-α and NRF1 expression and promoted mitochondrial biogenesis, which was mediated by suppression of PKC/HMGB1/RAGE/NFκB signaling. Likewise, we showed the inhibitory effect of verbascoside on oxidative stress was via repression of PKC/HMGB1/RAGE/NFκB activation. Also, our data suggested that the PKC-mediated oxidative stress may lead to the elevated production of inflammatory cytokines, IL-6 and IL-1β. Collectively, we demonstrated that verbascoside may be beneficial to ameliorate impaired oral wound healing for diabetic patients.
Collapse
|
20
|
Mesquita T, Lin Y, Ibrahim A. Chronic low-grade inflammation in heart failure with preserved ejection fraction. Aging Cell 2021; 20:e13453. [PMID: 34382743 PMCID: PMC8441359 DOI: 10.1111/acel.13453] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently the predominant form of HF with a dramatic increase in risk with age. Low-grade inflammation, as occurs with aging (termed "inflammaging"), is a common feature of HFpEF pathology. Suppression of proinflammatory pathways has been associated with attenuated HFpEF disease severity and better outcomes. From this perspective, inflammasome signaling plays a central role in mediating chronic inflammation and cardiovascular disease progression. However, the causal link between the inflammasome-immune signaling axis on the age-dependent progression of HFpEF remains conjectural. In this review, we summarize the current understanding of the role of inflammatory pathways in age-dependent cardiac function decline. We will also evaluate recent advances and evidence regarding the inflammatory pathway in the pathophysiology of HFpEF, with special attention to inflammasome signaling.
Collapse
Affiliation(s)
- Thassio Mesquita
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| | - Yen‐Nien Lin
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
- Division of Cardiovascular MedicineDepartment of MedicineChina Medical University and HospitalTaichungTaiwan
| | - Ahmed Ibrahim
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| |
Collapse
|
21
|
Gerou M, Hall B, Woof R, Allsop J, Kolb SJ, Meyer K, Shaw PJ, Allen SP. Amyotrophic lateral sclerosis alters the metabolic aging profile in patient derived fibroblasts. Neurobiol Aging 2021; 105:64-77. [PMID: 34044197 PMCID: PMC8346650 DOI: 10.1016/j.neurobiolaging.2021.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Aging is a major risk factor for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). As metabolic alterations are a hallmark of aging and have previously been observed in ALS, it is important to examine the effect of aging in the context of ALS metabolic function. Here, using a newly established phenotypic metabolic approach, we examined the effect of aging on the metabolic profile of fibroblasts derived from ALS cases compared to controls. We found that ALS fibroblasts have an altered metabolic profile, which is influenced by age. In control cases, we found significant increases with age in NADH metabolism in the presence of several metabolites including lactic acid, trehalose, uridine and fructose, which was not recapitulated in ALS cases. Conversely, we found a reduction of NADH metabolism with age of biopsy, age of onset and age of death in the presence of glycogen in the ALS cohort. Furthermore, we found that NADH production correlated with disease progression rates in relation to a number of metabolites including inosine and α-ketoglutaric acid. Inosine or α-ketoglutaric acid supplementation in ALS fibroblasts was bioenergetically favourable. Overall, we found aging related defects in energy substrates that feed carbon into glycolysis at various points as well as the tricarboxylic acid (TCA) cycle in ALS fibroblasts, which was validated in induced neuronal progenitor cell derived iAstrocytes. Our results suggest that supplementing those pathways may protect against age related metabolic dysfunction in ALS.
Collapse
Affiliation(s)
- Margarita Gerou
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Benjamin Hall
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Ryan Woof
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Jessica Allsop
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Centre, Columbus, OH, USA
| | - Kathrin Meyer
- Centre for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P Allen
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
22
|
Wang Y, Guo X, Ye K, Orth M, Gu Z. Accelerated expansion of pathogenic mitochondrial DNA heteroplasmies in Huntington's disease. Proc Natl Acad Sci U S A 2021; 118:e2014610118. [PMID: 34301881 PMCID: PMC8325154 DOI: 10.1073/pnas.2014610118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction is found in the brain and peripheral tissues of patients diagnosed with Huntington's disease (HD), an irreversible neurodegenerative disease of which aging is a major risk factor. Mitochondrial function is encoded by not only nuclear DNA but also DNA within mitochondria (mtDNA). Expansion of mtDNA heteroplasmies (coexistence of mutated and wild-type mtDNA) can contribute to age-related decline of mitochondrial function but has not been systematically investigated in HD. Here, by using a sensitive mtDNA-targeted sequencing method, we studied mtDNA heteroplasmies in lymphoblasts and longitudinal blood samples of HD patients. We found a significant increase in the fraction of mtDNA heteroplasmies with predicted pathogenicity in lymphoblasts from 1,549 HD patients relative to lymphoblasts from 182 healthy individuals. The increased fraction of pathogenic mtDNA heteroplasmies in HD lymphoblasts also correlated with advancing HD stages and worsened disease severity measured by HD motor function, cognitive function, and functional capacity. Of note, elongated CAG repeats in HTT promoted age-dependent expansion of pathogenic mtDNA heteroplasmies in HD lymphoblasts. We then confirmed in longitudinal blood samples of 169 HD patients that expansion of pathogenic mtDNA heteroplasmies was correlated with decline in functional capacity and exacerbation of HD motor and cognitive functions during a median follow-up of 6 y. The results of our study indicate accelerated decline of mtDNA quality in HD, and highlight monitoring mtDNA heteroplasmies longitudinally as a way to investigate the progressive decline of mitochondrial function in aging and age-related diseases.
Collapse
Affiliation(s)
- Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Xiaoxian Guo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kaixiong Ye
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Michael Orth
- Department of Neurology, Ulm University Hospital, D-89081 Ulm, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
23
|
Mitochondrial Regulation of the 26S Proteasome. Cell Rep 2021; 32:108059. [PMID: 32846138 DOI: 10.1016/j.celrep.2020.108059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
The proteasome is the main proteolytic system for targeted protein degradation in the cell and is fine-tuned according to cellular needs. Here, we demonstrate that mitochondrial dysfunction and concomitant metabolic reprogramming of the tricarboxylic acid (TCA) cycle reduce the assembly and activity of the 26S proteasome. Both mitochondrial mutations in respiratory complex I and treatment with the anti-diabetic drug metformin impair 26S proteasome activity. Defective 26S assembly is reversible and can be overcome by supplementation of aspartate or pyruvate. This metabolic regulation of 26S activity involves specific regulation of proteasome assembly factors via the mTORC1 pathway. Of note, reducing 26S activity by metformin confers increased resistance toward the proteasome inhibitor bortezomib, which is reversible upon pyruvate supplementation. Our study uncovers unexpected consequences of defective mitochondrial metabolism for proteasomal protein degradation in the cell, which has important pathophysiological and therapeutic implications.
Collapse
|
24
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
25
|
Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021; 11:242. [PMID: 33804034 PMCID: PMC7999509 DOI: 10.3390/life11030242] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Gaia Tioli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
26
|
Müller‐Nedebock AC, Westhuizen FH, Kõks S, Bardien S. Nuclear Genes Associated with Mitochondrial
DNA
Processes as Contributors to Parkinson's Disease Risk. Mov Disord 2021; 36:815-831. [DOI: 10.1002/mds.28475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amica C. Müller‐Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | | | - Sulev Kõks
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch Western Australia Australia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
27
|
Izzo C, Vitillo P, Di Pietro P, Visco V, Strianese A, Virtuoso N, Ciccarelli M, Galasso G, Carrizzo A, Vecchione C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life (Basel) 2021; 11:60. [PMID: 33467601 PMCID: PMC7829951 DOI: 10.3390/life11010060] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paolo Vitillo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Andrea Strianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| |
Collapse
|
28
|
Szczepanowska K, Trifunovic A. Tune instead of destroy: How proteolysis keeps OXPHOS in shape. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148365. [PMID: 33417924 DOI: 10.1016/j.bbabio.2020.148365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are highly dynamic and stress-responsive organelles that are renewed, maintained and removed by a number of different mechanisms. Recent findings bring more evidence for the focused, defined, and regulatory function of the intramitochondrial proteases extending far beyond the traditional concepts of damage control and stress responses. Until recently, the macrodegradation processes, such as mitophagy, were promoted as the major regulator of OXPHOS remodelling and turnover. However, the spatiotemporal dynamics of the OXPHOS system can be greatly modulated by the intrinsic mitochondrial mechanisms acting apart from changes in the global mitochondrial dynamics. This, in turn, may substantially contribute to the shaping of the metabolic status of the cell.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| |
Collapse
|
29
|
Mitochondrial Dysfunction in Parkinson's Disease: Focus on Mitochondrial DNA. Biomedicines 2020; 8:biomedicines8120591. [PMID: 33321831 PMCID: PMC7763033 DOI: 10.3390/biomedicines8120591] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although their direct impact on mitochondrial function/dysfunction needs further investigation, results of various studies performed using cells isolated from PD patients or their mitochondria (cybrids) suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated the importance of mtDNA deletions, which could also originate from abnormalities induced by mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However, proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were downregulated in various PD models. This suggests nuclear suppression of the mitochondrial defects, which obviously involve cross-talk between nuclear and mitochondrial genomes for maintenance of mitochondrial functioning.
Collapse
|
30
|
Karakaidos P, Rampias T. Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity. Life (Basel) 2020; 10:life10090173. [PMID: 32878185 PMCID: PMC7555762 DOI: 10.3390/life10090173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
In eukaryotic cells, mitochondria originated in an α-proteobacterial endosymbiont. Although these organelles harbor their own genome, the large majority of genes, originally encoded in the endosymbiont, were either lost or transferred to the nucleus. As a consequence, mitochondria have become semi-autonomous and most of their processes require the import of nuclear-encoded components to be functional. Therefore, the mitochondrial-specific translation has evolved to be coordinated by mitonuclear interactions to respond to the energetic demands of the cell, acquiring unique and mosaic features. However, mitochondrial-DNA-encoded genes are essential for the assembly of the respiratory chain complexes. Impaired mitochondrial function due to oxidative damage and mutations has been associated with numerous human pathologies, the aging process, and cancer. In this review, we highlight the unique features of mitochondrial protein synthesis and provide a comprehensive insight into the mitonuclear crosstalk and its co-evolution, as well as the vulnerabilities of the animal mitochondrial genome.
Collapse
|
31
|
Age-Related Deterioration of Mitochondrial Function in the Intestine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4898217. [PMID: 32922652 PMCID: PMC7453234 DOI: 10.1155/2020/4898217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Aging is an important and inevitable biological process in human life, associated with the onset of chronic disease and death. The mechanisms behind aging remain unclear. However, changes in mitochondrial function and structure, including reduced activity of the mitochondrial respiratory chain and increased production of reactive oxygen species—thus oxidative damage—are believed to play a major role. Mitochondria are the main source of cellular energy, producing adenosine triphosphate (ATP) via oxidative phosphorylation. Accumulation of damaged cellular components reduces a body's capacity to preserve tissue homeostasis and affects biological aging and all age-related chronic conditions. This includes the onset and progression of classic degenerative diseases such as cardiovascular disease, kidney failure, neurodegenerative diseases, and cancer. Clinical manifestations of intestinal disorders, such as mucosal barrier dysfunction, intestinal dysmotility, and chronic obstipation, are highly prevalent in the elderly population and have been shown to be associated with an age-dependent decline of mitochondrial function. This review summarizes our current understanding of the role of mitochondrial dysfunction in intestinal aging.
Collapse
|
32
|
Arbeithuber B, Hester J, Cremona MA, Stoler N, Zaidi A, Higgins B, Anthony K, Chiaromonte F, Diaz FJ, Makova KD. Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues. PLoS Biol 2020; 18:e3000745. [PMID: 32667908 PMCID: PMC7363077 DOI: 10.1371/journal.pbio.3000745] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations create genetic variation for other evolutionary forces to operate on and cause numerous genetic diseases. Nevertheless, how de novo mutations arise remains poorly understood. Progress in the area is hindered by the fact that error rates of conventional sequencing technologies (1 in 100 or 1,000 base pairs) are several orders of magnitude higher than de novo mutation rates (1 in 10,000,000 or 100,000,000 base pairs per generation). Moreover, previous analyses of germline de novo mutations examined pedigrees (and not germ cells) and thus were likely affected by selection. Here, we applied highly accurate duplex sequencing to detect low-frequency, de novo mutations in mitochondrial DNA (mtDNA) directly from oocytes and from somatic tissues (brain and muscle) of 36 mice from two independent pedigrees. We found mtDNA mutation frequencies 2- to 3-fold higher in 10-month-old than in 1-month-old mice, demonstrating mutation accumulation during the period of only 9 mo. Mutation frequencies and patterns differed between germline and somatic tissues and among mtDNA regions, suggestive of distinct mutagenesis mechanisms. Additionally, we discovered a more pronounced genetic drift of mitochondrial genetic variants in the germline of older versus younger mice, arguing for mtDNA turnover during oocyte meiotic arrest. Our study deciphered for the first time the intricacies of germline de novo mutagenesis using duplex sequencing directly in oocytes, which provided unprecedented resolution and minimized selection effects present in pedigree studies. Moreover, our work provides important information about the origins and accumulation of mutations with aging/maturation and has implications for delayed reproduction in modern human societies. Furthermore, the duplex sequencing method we optimized for single cells opens avenues for investigating low-frequency mutations in other studies.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James Hester
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nicholas Stoler
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Arslan Zaidi
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bonnie Higgins
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kate Anthony
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca Chiaromonte
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- EMbeDS, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Francisco J. Diaz
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
33
|
A salvage pathway maintains highly functional respiratory complex I. Nat Commun 2020; 11:1643. [PMID: 32242014 PMCID: PMC7118099 DOI: 10.1038/s41467-020-15467-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of the turnover of complex I (CI), the largest mitochondrial respiratory chain complex, remains enigmatic despite huge advancement in understanding its structure and the assembly. Here, we report that the NADH-oxidizing N-module of CI is turned over at a higher rate and largely independently of the rest of the complex by mitochondrial matrix protease ClpXP, which selectively removes and degrades damaged subunits. The observed mechanism seems to be a safeguard against the accumulation of dysfunctional CI arising from the inactivation of the N-module subunits due to attrition caused by its constant activity under physiological conditions. This CI salvage pathway maintains highly functional CI through a favorable mechanism that demands much lower energetic cost than de novo synthesis and reassembly of the entire CI. Our results also identify ClpXP activity as an unforeseen target for therapeutic interventions in the large group of mitochondrial diseases characterized by the CI instability. Maintenance and quality control of the mitochondrial respiratory chain complexes responsible for bulk energy production are unclear. Here, the authors show that the mitochondrial protease ClpXP is required for the rapid turnover of the core N-module of respiratory complex I, which happens independently of other modules in the complex.
Collapse
|
34
|
Changes in the expression of oxidative phosphorylation complexes in the aging intestinal mucosa. Exp Gerontol 2020; 135:110924. [PMID: 32173460 DOI: 10.1016/j.exger.2020.110924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Mitochondria produce cellular energy via oxidative phosphorylation (OXPHOS), mediated by respiratory chain complexes I to IV and ATP synthase (complex V). Mitochondrial respiratory complexes have been shown to decline with age in several tissues. As the intestinal epithelium is a tissue with a high energy demand, the aim of the present study was to establish whether the expression profile of OXPHOS subunits in the intestinal mucosa changes during the aging process. DESIGN Biopsies of intestinal mucosa with no evidence of endoscopic or histomorphologic abnormalities, taken from 55 patients (mean age 42 years, age range 4-82 years; 62% female), were divided into four age groups (4-19, 20-39, 40-59, ≥60 years). Sections from different intestinal segments (terminal ileum, ascending colon, and sigmoid colon/rectum) were stained immunohistochemically (IHC) for subunits of OXPHOS complexes I-V and the voltage-dependent anion-selective channel 1 protein (VDAC1, porin), a marker of mitochondrial mass. Scores for IHC staining were determined by multiplication of the staining intensity and the percentage of positive cells. In addition, the numbers of intestinal crypts staining positive, partly positive, and negative were assessed. RESULTS The average protein expression levels of OXPHOS subunits increased continuously from childhood onward, peaked in persons aged 20 to 59 years, and declined thereafter. This was seen for complexes II to V in the terminal ileum, complexes I to V in the ascending colon, and complexes I to IV in the sigmoid colon/rectum. Across all age groups, no effect of age on expression of the porin subunit VDAC1 was detected. The number of complex I- and IV-negative crypts in different intestinal segments increased with age. CONCLUSION The protein expression levels of OXPHOS complexes increases from childhood onward and declines in elderly individuals, while the numbers of crypts with partial or complete loss of expression of complexes I and IV increase continuously with age. These data suggest that the continued reductions in the levels of mitochondrial OXPHOS complexes in crypts might be compensated in adulthood, but that, ultimately, reduced expression levels occur in persons aged 60 years and older. These findings raise two important questions: first, can the process of aging could be delayed through (pharmacological) intervention of mitochondrial pathways, and second, pathophysiologically, are these findings associated with disorders of the intestinal mucosa, e.g. inflammation?
Collapse
|
35
|
Oliveira MT, Pontes CDB, Ciesielski GL. Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genet Mol Biol 2020; 43:e20190069. [PMID: 32141473 PMCID: PMC7197994 DOI: 10.1590/1678-4685-gmb-2019-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial
diseases. Mutations in the genes encoding components of the mitochondrial
replisome, such as DNA polymerase gamma (Pol γ) and the mtDNA helicase Twinkle,
have been associated with the accumulation of such deletions and the development
of pathological conditions in humans. Recently, we demonstrated that changes in
the level of wild-type Twinkle promote mtDNA deletions, which implies that not
only mutations in, but also dysregulation of the stoichiometry between the
replisome components is potentially pathogenic. The mechanism(s) by which
alterations to the replisome function generate mtDNA deletions is(are) currently
under debate. It is commonly accepted that stalling of the replication fork at
sites likely to form secondary structures precedes the deletion formation. The
secondary structural elements can be bypassed by the replication-slippage
mechanism. Otherwise, stalling of the replication fork can generate single- and
double-strand breaks, which can be repaired through recombination leading to the
elimination of segments between the recombination sites. Here, we discuss
aberrances of the replisome in the context of the two debated outcomes, and
suggest new mechanistic explanations based on replication restart and template
switching that could account for all the deletion types reported for
patients.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | | | | |
Collapse
|
36
|
McLaughlin KL, Kew KA, McClung JM, Fisher-Wellman KH. Subcellular proteomics combined with bioenergetic phenotyping reveals protein biomarkers of respiratory insufficiency in the setting of proofreading-deficient mitochondrial polymerase. Sci Rep 2020; 10:3603. [PMID: 32107436 PMCID: PMC7046634 DOI: 10.1038/s41598-020-60536-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 11/23/2022] Open
Abstract
The mitochondrial mutator mouse is a well-established model of premature aging. In addition to accelerated aging, these mice develop hypertrophic cardiomyopathy at ~13 months of age, presumably due to overt mitochondrial dysfunction. Despite evidence of bioenergetic disruption within heart mitochondria, there is little information about the underlying changes to the mitochondrial proteome that either directly underly or predict respiratory insufficiency in mutator mice. Herein, nLC-MS/MS was used to interrogate the mitochondria-enriched proteome of heart and skeletal muscle of aged mutator mice. The mitochondrial proteome from heart tissue was then correlated with respiratory conductance data to identify protein biomarkers of respiratory insufficiency. The majority of downregulated proteins in mutator mitochondria were subunits of respiratory complexes I and IV, including both nuclear and mitochondrial-encoded proteins. Interestingly, the mitochondrial-encoded complex V subunits, were unchanged or upregulated in mutator mitochondria, suggesting a robustness to mtDNA mutation. Finally, the proteins most strongly correlated with respiratory conductance were PPM1K, NDUFB11, and C15orf61. These results suggest that mitochondrial mutator mice undergo a specific loss of mitochondrial complexes I and IV that limit their respiratory function independent of an upregulation of complex V. Additionally, the role of PPM1K in responding to mitochondrial stress warrants further exploration.
Collapse
Affiliation(s)
- Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Kimberly A Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.,Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA. .,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
37
|
Cellular cross-talks in the diseased and aging heart. J Mol Cell Cardiol 2020; 138:136-146. [DOI: 10.1016/j.yjmcc.2019.11.152] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
|
38
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
39
|
The Signaling of Cellular Senescence in Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7495629. [PMID: 31687085 PMCID: PMC6794967 DOI: 10.1155/2019/7495629] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy is the leading cause of chronic kidney disease (CKD) in western countries. Notably, it has a rapidly rising prevalence in China. The patients, commonly complicated with cardiovascular diseases and neurologic disorders, are at high risk to progress into end-stage renal disease (ESRD) and death. However, the pathogenic mechanisms of diabetic nephropathy have not been determined. Cellular senescence, which recently has gained broad attention, is thought to be an important player in the onset and development of diabetic nephropathy. In this issue, we generally review the mechanisms of cellular senescence in diabetic nephropathy, which involve telomere attrition, DNA damage, epigenetic alterations, mitochondrial dysfunction, loss of Klotho, Wnt/β-catenin signaling activation, persistent inflammation, and accumulation of uremic toxins. Moreover, we highlight the potential therapeutic targets of cellular senescence in diabetic nephropathy and provide important clues for clinical strategies.
Collapse
|
40
|
Müller-Nedebock AC, Brennan RR, Venter M, Pienaar IS, van der Westhuizen FH, Elson JL, Ross OA, Bardien S. The unresolved role of mitochondrial DNA in Parkinson's disease: An overview of published studies, their limitations, and future prospects. Neurochem Int 2019; 129:104495. [PMID: 31233840 PMCID: PMC6702091 DOI: 10.1016/j.neuint.2019.104495] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, has long been associated with mitochondrial dysfunction in both sporadic and familial forms of the disease. Mitochondria are crucial for maintaining cellular homeostasis, and their dysfunction is detrimental to dopaminergic neurons. These neurons are highly dependent on mitochondrial adenosine triphosphate (ATP) and degenerate in PD. Mitochondria contain their own genomes (mtDNA). The role of mtDNA has been investigated in PD on the premise that it encodes vital components of the ATP-generating oxidative phosphorylation (OXPHOS) complexes and accumulates somatic variation with age. However, the association between mtDNA variation and PD remains controversial. Herein, we provide an overview of previously published studies on the role of inherited as well as somatic (acquired) mtDNA changes in PD including point mutations, deletions and depletion. We outline limitations of previous investigations and the difficulties associated with studying mtDNA, which have left its role unresolved in the context of PD. Lastly, we highlight the potential for further research in this field and provide suggestions for future studies. Overall, the mitochondrial genome is indispensable for proper cellular function and its contribution to PD requires further, more extensive investigation.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | | | - Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom; Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
41
|
Andreazza S, Samstag CL, Sanchez-Martinez A, Fernandez-Vizarra E, Gomez-Duran A, Lee JJ, Tufi R, Hipp MJ, Schmidt EK, Nicholls TJ, Gammage PA, Chinnery PF, Minczuk M, Pallanck LJ, Kennedy SR, Whitworth AJ. Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nat Commun 2019; 10:3280. [PMID: 31337756 PMCID: PMC6650417 DOI: 10.1038/s41467-019-10857-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Somatic mutations in the mitochondrial genome (mtDNA) have been linked to multiple disease conditions and to ageing itself. In Drosophila, knock-in of a proofreading deficient mtDNA polymerase (POLG) generates high levels of somatic point mutations and also small indels, but surprisingly limited impact on organismal longevity or fitness. Here we describe a new mtDNA mutator model based on a mitochondrially-targeted cytidine deaminase, APOBEC1. mito-APOBEC1 acts as a potent mutagen which exclusively induces C:G>T:A transitions with no indels or mtDNA depletion. In these flies, the presence of multiple non-synonymous substitutions, even at modest heteroplasmy, disrupts mitochondrial function and dramatically impacts organismal fitness. A detailed analysis of the mutation profile in the POLG and mito-APOBEC1 models reveals that mutation type (quality) rather than quantity is a critical factor in impacting organismal fitness. The specificity for transition mutations and the severe phenotypes make mito-APOBEC1 an excellent mtDNA mutator model for ageing research.
Collapse
Affiliation(s)
- Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Colby L Samstag
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Erika Fernandez-Vizarra
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Aurora Gomez-Duran
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Roberta Tufi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Michael J Hipp
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | | | - Thomas J Nicholls
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Payam A Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Leo J Pallanck
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
42
|
Hood WR, Williams AS, Hill GE. An Ecologist’s Guide to Mitochondrial DNA Mutations and Senescence. Integr Comp Biol 2019; 59:970-982. [DOI: 10.1093/icb/icz097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Longevity plays a key role in the fitness of organisms, so understanding the processes that underlie variance in senescence has long been a focus of ecologists and evolutionary biologists. For decades, the performance and ultimate decline of mitochondria have been implicated in the demise of somatic tissue, but exactly why mitochondrial function declines as individual’s age has remained elusive. A possible source of decline that has been of intense debate is mutations to the mitochondrial DNA. There are two primary sources of such mutations: oxidative damage, which is widely discussed by ecologists interested in aging, and mitochondrial replication error, which is less familiar to most ecologists. The goal of this review is to introduce ecologists and evolutionary biologists to the concept of mitochondrial replication error and to review the current status of research on the relative importance of replication error in senescence. We conclude by detailing some of the gaps in our knowledge that currently make it difficult to deduce the relative importance of replication error in wild populations and encourage organismal biologists to consider this variable both when interpreting their results and as viable measure to include in their studies.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ashley S Williams
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
43
|
Nutrient Sensing and Redox Balance: GCN2 as a New Integrator in Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5730532. [PMID: 31249645 PMCID: PMC6556294 DOI: 10.1155/2019/5730532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/21/2019] [Indexed: 02/05/2023]
Abstract
Aging is a complex process in which the accumulation of molecular, cellular, and organism dysfunction increases the probability of death. Several pieces of evidence have revealed a contribution of stress responses in aging and in aging-related diseases, in particular, the key role of signaling pathways associated to nutritional stress. Here, we review the possible interplay between amino acid sensing and redox balance maintenance mediated by the nutritional sensor general control nonderepressive 2 (GCN2). We discuss this new dimension of nutritional stress sensing consequences, standing out GCN2 as a central coordinator of key cellular processes that assure healthy homeostasis in the cell, raising GCN2 as a novel interesting target, that when activated, could imply pleiotropic benefits, particularly GCN2 intervention and its new unexplored therapeutic role as a player in the aging process.
Collapse
|
44
|
Abstract
Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging. [BMB Reports 2019; 52(1): 13-23].
Collapse
Affiliation(s)
- Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA; Biomedical Science, Graduate School, Ajou University, Suwon 16499, Korea
| |
Collapse
|
45
|
Ishikawa K, Kobayashi K, Yamada A, Umehara M, Oka T, Nakada K. Concentration of mitochondrial DNA mutations by cytoplasmic transfer from platelets to cultured mouse cells. PLoS One 2019; 14:e0213283. [PMID: 30830936 PMCID: PMC6398856 DOI: 10.1371/journal.pone.0213283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/18/2019] [Indexed: 01/11/2023] Open
Abstract
Accumulation of mutations in mitochondrial DNA (mtDNA) is thought to be responsible for mitochondrial, and other, diseases and biological phenomena, such as diabetes, cancer, neurodegenerative diseases, and aging. Mouse models may elucidate the relationship between mutations in mtDNA and these abnormalities. However, because of the difficulty of mtDNA manipulation, generation of mouse models has not sufficiently progressed to enable such studies. To overcome this difficulty and to establish a source of diverse mtDNA mutations, we here generated cultured mouse cells containing mtDNA derived from an mtDNA mutator mouse that accumulates random mtDNA mutations with age. Mutation analysis of the obtained transmitochondrial cytoplasmic hybrid cells (cybrids) revealed that the cells harbored diverse mtDNA mutations occurring at a higher frequency than in mouse tissues, and exhibited severe respiration defects that would be lethal in tissues or organs. Abnormal respiratory complex formation and high stress on the mitochondrial protein quality control system appeared to be involved in these severe respiration defects. The mutation rates of the majority of highly accumulated mutations converged to either approximately 5%, 10%, or 40%, suggesting that these mutations are linked on the respective mtDNA molecules, and mtDNA in cybrid cells likely consisted of mtDNA molecules clonally expanded from the small population of introduced mtDNAs. Thus, the linked mutations in these cybrid cells cannot be evaluated individually. In addition, mtDNA mutations homologous to confirmed pathogenic mutations in human were rarely observed in our generated cybrids. However, the transmitochondrial cybrids constitute a useful tool for concentrating pathogenic mtDNA mutations and as a source of diverse mtDNA mutations to elucidate the relationship between mtDNA mutations and diseases.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail: (KI); (KN)
| | - Kohei Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Akihito Yamada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Moe Umehara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail: (KI); (KN)
| |
Collapse
|
46
|
Nissanka N, Minczuk M, Moraes CT. Mechanisms of Mitochondrial DNA Deletion Formation. Trends Genet 2019; 35:235-244. [PMID: 30691869 DOI: 10.1016/j.tig.2019.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes a subset of genes which are essential for oxidative phosphorylation. Deletions in the mtDNA can ablate a number of these genes and result in mitochondrial dysfunction, which is associated with bona fide mitochondrial disorders. Although mtDNA deletions are thought to occur as a result of replication errors or following double-strand breaks, the exact mechanism(s) behind deletion formation have yet to be determined. In this review we discuss the current knowledge about the fate of mtDNA following double-strand breaks, including the molecular players which mediate the degradation of linear mtDNA fragments and possible mechanisms of recircularization. We propose that mtDNA deletions formed from replication errors versus following double-strand breaks can be mediated by separate pathways.
Collapse
Affiliation(s)
- Nadee Nissanka
- Department of Neurology, University of Miami, Miller School of Medicine, FL 33136, USA
| | - Michal Minczuk
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Carlos T Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, FL 33136, USA.
| |
Collapse
|
47
|
Ma L, Shen Q, Yang S, Xie X, Xiao Q, Yu C, Cao L, Fu Z. Effect of chronic corticosterone-induced depression on circadian rhythms and age-related phenotypes in mice. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1236-1246. [PMID: 30395149 DOI: 10.1093/abbs/gmy132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/18/2022] Open
Abstract
Disrupted circadian rhythms are a recognized effect of depression, and our previous article demonstrated an association between depression and premature aging, but the underlying mechanisms are not well understood. In the present study, we used a mouse model of chronic corticosterone (CORT)-treated depression to elucidate a mechanism by which depression may be associated with the circadian clock and mediate age-related phenotypes. Mice received a daily injection of 20 mg/kg CORT for 21 consecutive days, and the depression-like behaviors of mice were identified by the sucrose intake test, tail suspension test and open field test. Our findings indicated that CORT injection may be correlated with the circadian clock by impairing circadian rhythms or shifting the phase values of clock genes. We also showed that CORT-treated mice exhibited a significant gradual reduction in body weight gain with increased oxidative stress, including reduced activity of antioxidant-related enzymes, reduced glutathione:glutathione disulfide ratio and cytochrome (Cyt)-C level, and elevated reactive oxygen species content. Moreover, chronic CORT injection affected inflammatory responses, the production of mitochondrial ATP and telomere shortening, which may be associated with the Sirtuin 3 (SIRT3) signaling pathway. Additionally, chronic CORT injection disrupted the circadian rhythms of some indexes of aging phenotypes and altered the phase values of these indexes. Our findings suggest that psychologically stressful conditions such as depression are linked to changes in circadian rhythms and age-related phenotypes.
Collapse
Affiliation(s)
- Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qichen Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Song Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qingfeng Xiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chuanan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lisha Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
48
|
Majidinia M, Reiter RJ, Shakouri SK, Yousefi B. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 2018; 47:198-213. [PMID: 30092361 DOI: 10.1016/j.arr.2018.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Biological ageing is generally accompanied by a gradual loss of cellular functions and physiological integrity of organ systems, the consequential enhancement of vulnerability, senescence and finally death. Mechanisms which underlie ageing are primarily attributed to an array of diverse but related factors including free radical-induced damage, dysfunction of mitochondria, disruption of circadian rhythms, inflammaging, genomic instability, telomere attrition, loss of proteostasis, deregulated sensing of nutrients, epigenetic alterations, altered intercellular communication, and decreased capacity for tissue repair. Melatonin, a prime regulator of human chronobiological and endocrine physiology, is highly reputed as an antioxidant, immunomodulatory, antiproliferative, oncostatic, and endocrine-modulatory molecule. Interestingly, several recent reports support melatonin as an anti-ageing agent whose multifaceted functions may lessen the consequences of ageing. This review depicts four categories of melatonin's protective effects on ageing-induced molecular and structural alterations. We also summarize recent findings related to the function of melatonin during ageing in various tissues and organs.
Collapse
|
49
|
Abstract
Mutations of mtDNA accumulate in aging humans and other mammals to cause mitochondrial dysfunction in a subset of cells in various tissues. Furthermore, experimental induction of mtDNA mutations causes a premature aging syndrome in the mouse. To study if mitochondrial dysfunction is universally involved in shortening life span in metazoans, we generated a series of fruit fly lines with varying levels of mtDNA mutations. Unexpectedly, we report that fruit flies are remarkably tolerant to mtDNA mutations, as exemplified by their lack of effect on physiology and lifespan. Only an artificially induced, very drastic increase of the mtDNA mutation load will lead to reduced lifespan, showing that mtDNA mutations are unlikely to limit lifespan in natural fruit fly populations. Mammals develop age-associated clonal expansion of somatic mtDNA mutations resulting in severe respiratory chain deficiency in a subset of cells in a variety of tissues. Both mathematical modeling based on descriptive data from humans and experimental data from mtDNA mutator mice suggest that the somatic mutations are formed early in life and then undergo mitotic segregation during adult life to reach very high levels in certain cells. To address whether mtDNA mutations have a universal effect on aging metazoans, we investigated their role in physiology and aging of fruit flies. To this end, we utilized genetically engineered flies expressing mutant versions of the catalytic subunit of mitochondrial DNA polymerase (DmPOLγA) as a means to introduce mtDNA mutations. We report here that lifespan and health in fruit flies are remarkably tolerant to mtDNA mutations. Our results show that the short lifespan and wide genetic bottleneck of fruit flies are limiting the extent of clonal expansion of mtDNA mutations both in individuals and between generations. However, an increase of mtDNA mutations to very high levels caused sensitivity to mechanical and starvation stress, intestinal stem cell dysfunction, and reduced lifespan under standard conditions. In addition, the effects of dietary restriction, widely considered beneficial for organismal health, were attenuated in flies with very high levels of mtDNA mutations.
Collapse
|
50
|
Ma H, Lee Y, Hayama T, Van Dyken C, Marti-Gutierrez N, Li Y, Ahmed R, Koski A, Kang E, Darby H, Gonmanee T, Park Y, Wolf DP, Jai Kim C, Mitalipov S. Germline and somatic mtDNA mutations in mouse aging. PLoS One 2018; 13:e0201304. [PMID: 30040856 PMCID: PMC6057648 DOI: 10.1371/journal.pone.0201304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
The accumulation of acquired mitochondrial genome (mtDNA) mutations with aging in somatic cells has been implicated in mitochondrial dysfunction and linked to age-onset diseases in humans. Here, we asked if somatic mtDNA mutations are also associated with aging in the mouse. MtDNA integrity in multiple organs and tissues in young and old (2-34 months) wild type (wt) mice was investigated by whole genome sequencing. Remarkably, no acquired somatic mutations were detected in tested tissues. However, we identified several non-synonymous germline mtDNA variants whose heteroplasmy levels (ratio of normal to mutant mtDNA) increased significantly with aging suggesting clonal expansion of inherited mtDNA mutations. Polg mutator mice, a model for premature aging, exhibited both germline and somatic mtDNA mutations whose numbers and heteroplasmy levels increased significantly with age implicating involvement in premature aging. Our results suggest that, in contrast to humans, acquired somatic mtDNA mutations do not accompany the aging process in wt mice.
Collapse
Affiliation(s)
- Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Yeonmi Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Riffat Ahmed
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Eunju Kang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Thanasup Gonmanee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Younjung Park
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Don P. Wolf
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chong Jai Kim
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|