1
|
Zhang M, Yang L, Mi X, Hu G, Lu Y, Wang C, Yang J, Sun X, Niu M, Li X, Wang S, Zhang J, Yu H, Wang Y, Yu M, Li N, Zhou Y. GHS-R1a signaling drives anxiety-related behavior by shaping excitability of ventromedial hypothalamic neurons. Nat Commun 2025; 16:3858. [PMID: 40274845 PMCID: PMC12022087 DOI: 10.1038/s41467-025-59116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
The neural substrates of anxiety are poorly understood, which hinders treatment of anxiety disorders. Here we found, αCaMKII+ neurons in the ventral medial hypothalamic nucleus (VMH) responded to stressors with increased activity in male mice, both under physiological conditions and after repeated restraint stress. Activation of VMH αCaMKII+ neurons were necessary and sufficient to ameliorate stress-induced anxiety. The peripheral metabolic hormone ghrelin and receptor GHS-R1a play a complex role in emotion regulation; however, the mechanism is uncertain. A delayed increase in GHS-R1a expression in VMH αCaMKII+ neurons coincided with the development of stress-induced enhancement of anxiety-related behavior. GHS-R1a expression in VMH αCaMKII+ neurons promoted anxiety-related behavior, whereas GHS-R1a knockdown had the opposite effect. GHS-R1a upregulation inhibited the excitability of VMH αCaMKII+ neurons. We conclude that GHSR1a signaling drives stress-induced anxiety by shaping the activity of VMH αCaMKII+ neurons. GHS-R1a may be a therapeutic target for treating anxiety disorders such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Meng Zhang
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Gonghui Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yingchang Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Chen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Dongying No.1 Middle School, Dongying, Shandong, 257000, China
| | - Xiaomin Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Qingdao West Coast New Area No. 9 Senior High School, Qingdao, Shandong, 266500, China
| | - Minglu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Qingdao Endocrine diabetes Hospital, Qingdao, Shandong, 266000, China
| | - Xianchao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Sihan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jingsai Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Hanbing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Ming Yu
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China
| | - Nan Li
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China
| | - Yu Zhou
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Lin Z, Xuan Y, Zhang Y, Zhou Q, Qiu W. Hypothalamus and brainstem circuits in the regulation of glucose homeostasis. Am J Physiol Endocrinol Metab 2025; 328:E588-E598. [PMID: 40047236 DOI: 10.1152/ajpendo.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/03/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The central nervous system (CNS) senses and integrates blood glucose status, regulating its levels through communication with peripheral organs. Since traditional wisdom holds that the hypothalamus primarily controls glucose homeostasis, the brainstem, although less studied, has been emerging as a key player in blood glucose metabolism. Although the brainstem is reciprocally wired with the hypothalamus, their interactions are crucial for glucose control. Here, we focus on classic discoveries and recent advancements of hypothalamic and brainstem nodes that regulate glucose homeostasis. Based on the current progress and development for central regulation of blood sugar, we propose that the circuitry and cellular mechanisms for how hypothalamus and brainstem coordinate in blood sugar regulation are crucial; hence, a deeper understanding of both nuclei could shed light on a future cure for diabetes.
Collapse
Affiliation(s)
- Zitian Lin
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yunxin Xuan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yingshi Zhang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Qirui Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Weiwei Qiu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| |
Collapse
|
3
|
Li YA, Yao J, Li X, Hu KH. Arousal-promoting effect of the parabrachial nucleus and the underlying mechanisms: Recent advances. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111226. [PMID: 39710104 DOI: 10.1016/j.pnpbp.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The parabrachial nucleus (PBN) is responsible for integrating both internal and external sensory information and controlling/regulating a wide range of physiological processes, such as feeding, thermogenesis, nociceptive and pruritic sensations, and respiration. Recently, the PBN has been found to be involved in mediating wakefulness maintenance, sleep-wake transition, exogenous neuromodulation of awakening, and arousal-promoting process triggered by drastic changes in the internal environments, such as hypercapnia, hypoxia, and hypertension. Multiple neural pathways and subpopulations of neurons are responsible for arousal-promoting effects of the PBN. The medial PBN seems to be more important for the maintenance of physiological arousal, while the lateral PBN are more crucial in mediating interoception-driven arousal. Glutamatergic projection from the PBN to the basal forebrain (BF) and GABAergic projection from the BF to the cerebral cortex GABAergic neurons are the most pivotal neural pathways for awareness-promotion. Here, we review the relevant literature in this field in recent years and emphasize the potential prospects of PBN stimulation in translational medicine for the rehabilitation of disorders of consciousness.
Collapse
Affiliation(s)
- Yang-An Li
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing 629000, China
| | - Juan Yao
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Ke-Hui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing 629000, China.
| |
Collapse
|
4
|
Li H, Liang H, Gao X, Zeng X, Zheng S, Wang L, Yuan F, Xu S, Yin Z, Hu G. Cholecystokinin (CCK) Is a Mediator Between Nutritional Intake and Gonadal Development in Teleosts. Cells 2025; 14:78. [PMID: 39851506 PMCID: PMC11763773 DOI: 10.3390/cells14020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Nutritional intake is closely linked to gonadal development, although the mechanisms by which food intake affects gonadal development are not fully understood. Cholecystokinin (CCK) is a satiety neuropeptide derived from the hypothalamus, and the present study observed that hypothalamic CCK expression is significantly influenced by food intake, which is mediated through blood glucose levels. Interestingly, CCK and its receptors were observed to exhibit a high expression in the hypothalamus-pituitary-gonad (HPG) axis of grass carp (Ctenopharyngodon idellus), suggesting that CCK is potentially involved in regulating fish reproduction through the HPG axis. Further investigations revealed that CCK could significantly stimulate the expression of gonadotropin-releasing hormone-3 (GnRH3) in the hypothalamus. In addition, single-cell RNA sequencing showed that cckrb was highly enriched in pituitary follicle-stimulating hormone (FSH) cells. Further study confirmed that CCK can significantly induce FSH synthesis and secretion in primary cultured pituitary cells. Additionally, with primary cultured ovary cells as a model, the in vitro experiment demonstrated that CCK directly induces the expression of lhr, fshr, and cyp19a1a mRNA. This indicates that hypothalamic CCK may act as a nutrient sensor involved in regulating gonadal development in teleosts.
Collapse
Affiliation(s)
- Hangyu Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Hongwei Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China
| | - Xiaowen Gao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Xiangtong Zeng
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Shuo Zheng
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Linlin Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Faming Yuan
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Shaohua Xu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Zhan Yin
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guangfu Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| |
Collapse
|
5
|
Mirzadeh Z, Faber C. Brain Defense of Glycemia in Health and Diabetes. Diabetes 2024; 73:1952-1966. [PMID: 39401393 PMCID: PMC11579547 DOI: 10.2337/dbi24-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 11/22/2024]
Abstract
The brain coordinates the homeostatic defense of multiple metabolic variables, including blood glucose levels, in the context of ever-changing external and internal environments. The biologically defended level of glycemia (BDLG) is the net result of brain modulation of insulin-dependent mechanisms in cooperation with the islet, and insulin-independent mechanisms through direct innervation and neuroendocrine control of glucose effector tissues. In this article, we highlight evidence from animal and human studies to develop a framework for the brain's core homeostatic functions-sensory/afferent, integration/processing, and motor/efferent-that contribute to the normal BDLG in health and its elevation in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Chelsea Faber
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| |
Collapse
|
6
|
Sapkota S, Roy SC, Briski KP. Dorsomedial Ventromedial Hypothalamic Nucleus Growth Hormone-Releasing Hormone Neuron Steroidogenic Factor-1 Gene Targets in Female Rat. ASN Neuro 2024; 16:2403345. [PMID: 39401164 PMCID: PMC11792125 DOI: 10.1080/17590914.2024.2403345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
The prospect that the ventromedial hypothalamic nucleus (VMN) transcription factor steroidogenic factor-1/NR5A1 (SF-1) may exert sex-dimorphic control of glucose counterregulation is unresolved. Recent studies in male rats show that SF-1 regulates transcription of co-expressed hypoglycemia-sensitive neurochemicals in dorsomedial VMN growth hormone-releasing hormone (Ghrh) neurons. Gene knockdown and laser-catapult-microdissection/single-cell multiplex qPCR techniques were used here in a female rat model to determine if SF-1 control of Ghrh neuron transmitter marker, energy sensor, and estrogen receptor (ER) variant mRNAs varies according to sex. Data show that in females, hypoglycemia elicits a gain of SF-1 inhibitory control of VMNdm Ghrh neuron Ghrh and Ghrh-receptor gene profiles and loss of augmentation of glutaminase transcription; SF-1 gene silencing diminished eu- and hypoglycemic patterns of neuronal nitric oxide gene transcription. SF-1 imposes divergent control of baseline and hypoglycemic glutamate decarboxylase65 (GAD)-1 (stimulatory) versus GAD2 (inhibitory) mRNAs in that sex. SF-1 stimulates baseline VMNdm Ghrh neuron PRKAA1/AMPKα1 and PRKAA2/AMPKα2 gene expression, yet causes opposite changes in these gene profiles during hypoglycemia. SF-1 exerts glucose-dependent control of ER-alpha and G-protein-coupled ER-1 transcription, but blunts ER-beta gene profiles during eu- and hypoglycemia. In females, SF-1 knockdown did not affect hypercorticosteronemia or hyperglucagonemia, but blunted hypoglycemic suppression of growth hormone secretion. Results show that SF-1 expression is critical for female rat VMNdm Ghrh neuron counterregulatory neurochemical, AMPK catalytic subunit, and ER gene transcription responses to hypoglycemia. Sex differences in direction of SF-1 control of distinctive gene profiles may result in observed disparities in SF-1 regulation of counterregulatory hormone secretion between sexes.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
7
|
Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiol Rev 2024; 104:1461-1486. [PMID: 38661565 DOI: 10.1152/physrev.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet β-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Sormunen E, Tolvanen A, Salokangas RKR, Koutsouleris N, Tuominen L, Hietala J. Longitudinal study on hippocampal subfields and glucose metabolism in early psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:66. [PMID: 39085221 PMCID: PMC11291638 DOI: 10.1038/s41537-024-00475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
Collapse
Grants
- Turun Yliopistollisen Keskussairaalan Koulutus- ja Tutkimussäätiö (TYKS-säätiö)
- Alfred Kordelinin Säätiö (Alfred Kordelin Foundation)
- Finnish Cultural Foundation | Varsinais-Suomen Rahasto (Varsinais-Suomi Regional Fund)
- Suomalainen Lääkäriseura Duodecim (Finnish Medical Society Duodecim)
- Turun Yliopisto (University of Turku)
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Armio received personal funding from Doctoral Programme in Clinical Research at the University of Turku, grants from State Research Funding, Turunmaa Duodecim Society, Finnish Psychiatry Research Foundation, Finnish University Society of Turku (Valto Takala Foundation), Tyks-foundation, The Finnish Medical Foundation (Maija and Matti Vaskio fund), University of Turku, The Alfred Kordelin Foundation, Finnish Cultural Foundation (Terttu Enckell fund and Ritva Helminen fund) and The Alfred Kordelin foundation. Further, Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, 20520, Turku, Finland.
- Department of Psychiatry, University of Turku, 20700, Turku, Finland.
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | - Maija Walta
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Elina Sormunen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Arvi Tolvanen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | | | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, D-80336, Munich, Germany
| | - Lauri Tuominen
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| |
Collapse
|
9
|
Sapkota S, Roy SC, Shrestha R, Briski KP. Steroidogenic Factor-1 Regulation of Dorsomedial Ventromedial Hypothalamic Nucleus Ghrh Neuron Transmitter Marker and Estrogen Receptor Gene Expression in Male Rat. ASN Neuro 2024; 16:2368382. [PMID: 39024550 PMCID: PMC11262038 DOI: 10.1080/17590914.2024.2368382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ventromedial hypothalamic nucleus (VMN) growth hormone-releasing hormone (Ghrh) neurotransmission shapes counterregulatory hormone secretion. Dorsomedial VMN Ghrh neurons express the metabolic-sensitive transcription factor steroidogenic factor-1/NR5A1 (SF-1). In vivo SF-1 gene knockdown tools were used here to address the premise that in male rats, SF-1 may regulate basal and/or hypoglycemic patterns of Ghrh, co-transmitter biosynthetic enzyme, and estrogen receptor (ER) gene expression in these neurons. Single-cell multiplex qPCR analyses showed that SF-1 regulates basal profiles of mRNAs that encode Ghrh and protein markers for neurochemicals that suppress (γ-aminobutyric acid) or enhance (nitric oxide; glutamate) counterregulation. SF-1 siRNA pretreatment respectively exacerbated or blunted hypoglycemia-associated inhibition of glutamate decarboxylase67 (GAD67/GAD1) and -65 (GAD65/GAD2) transcripts. Hypoglycemia augmented or reduced nitric oxide synthase and glutaminase mRNAs, responses that were attenuated by SF-1 gene silencing. Ghrh and Ghrh receptor transcripts were correspondingly refractory to or increased by hypoglycemia, yet SF-1 knockdown decreased both gene profiles. Hypoglycemic inhibition of ER-alpha and G protein-coupled-ER gene expression was amplified by SF-1 siRNA pretreatment, whereas as ER-beta mRNA was amplified. SF-1 knockdown decreased (corticosterone) or elevated [glucagon, growth hormone (GH)] basal counterregulatory hormone profiles, but amplified hypoglycemic hypercorticosteronemia and -glucagonemia or prevented elevated GH release. Outcomes document SF-1 control of VMN Ghrh neuron counterregulatory neurotransmitter and ER gene transcription. SF-1 likely regulates Ghrh nerve cell receptivity to estradiol and release of distinctive neurochemicals during glucose homeostasis and systemic imbalance. VMN Ghrh neurons emerge as a likely substrate for SF-1 control of glucose counterregulation in the male rat.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Rami Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
10
|
Roy SC, Sapkota S, Pasula MB, Katakam S, Shrestha R, Briski KP. Glucose transporter-2 regulation of VMN GABA neuron metabolic sensor and transmitter gene expression. Sci Rep 2024; 14:14220. [PMID: 38902332 PMCID: PMC11190205 DOI: 10.1038/s41598-024-64708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Glucose transporter-2 (GLUT2) monitors cellular glucose uptake. Astrocyte GLUT2 controls glucose counterregulatory hormone secretion. In vivo gene silencing and laser-catapult-microdissection tools were used here to investigate whether ventromedial hypothalamic nucleus (VMN) GLUT2 may regulate dorsomedial (VMNdm) and/or ventrolateral (VMNvl) γ-aminobutyric acid (GABA) neurotransmission to control this endocrine outflow in female rats. VMN GLUT2 gene knockdown suppressed or stimulated hypoglycemia-associated glutamate decarboxylase (GAD)1 and GAD2 mRNA expression in VMNdm versus VMNvl GABAergic neurons, respectively. GLUT2 siRNA pretreatment also modified co-expressed transmitter marker gene profiles in each cell population. VMNdm GABA neurons exhibited GLUT2 knockdown-sensitive up-regulated 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) transcripts during hypoglycemia. Hypoglycemic augmentation of VMNvl GABA neuron AMPKα2 was refractory to GLUT2 siRNA. GLUT2 siRNA blunted (VMNdm) or exacerbated (VMNvl) hypoglycemic stimulation of GABAergic neuron steroidogenic factor-1 (SF-1) mRNA. Results infer that VMNdm and VMNvl GABA neurons may exhibit divergent, GLUT2-dependent GABA neurotransmission patterns in the hypoglycemic female rat. Data also document differential GLUT2 regulation of VMNdm versus VMNvl GABA nerve cell SF-1 gene expression. Evidence for intensification of hypoglycemic hypercorticosteronemia and -glucagonemia by GLUT2 siRNA infers that VMN GLUT2 function imposes an inhibitory tone on these hormone profiles in this sex.
Collapse
Affiliation(s)
- Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Sushma Katakam
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Rami Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
11
|
Hao RH, Zhang TP, Jiang F, Liu JH, Dong SS, Li M, Guo Y, Yang TL. Revealing brain cell-stratified causality through dissecting causal variants according to their cell-type-specific effects on gene expression. Nat Commun 2024; 15:4890. [PMID: 38849352 PMCID: PMC11161590 DOI: 10.1038/s41467-024-49263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
The human brain has been implicated in the pathogenesis of several complex diseases. Taking advantage of single-cell techniques, genome-wide association studies (GWAS) have taken it a step further and revealed brain cell-type-specific functions for disease loci. However, genetic causal associations inferred by Mendelian randomization (MR) studies usually include all instrumental variables from GWAS, which hampers the understanding of cell-specific causality. Here, we developed an analytical framework, Cell-Stratified MR (csMR), to investigate cell-stratified causality through colocalizing GWAS signals with single-cell eQTL from different brain cells. By applying to obesity-related traits, our results demonstrate the cell-type-specific effects of GWAS variants on gene expression, and indicate the benefits of csMR to identify cell-type-specific causal effect that is often hidden from bulk analyses. We also found csMR valuable to reveal distinct causal pathways between different obesity indicators. These findings suggest the value of our approach to prioritize target cells for extending genetic causation studies.
Collapse
Affiliation(s)
- Ruo-Han Hao
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tian-Pei Zhang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Feng Jiang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jun-Hui Liu
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shan-Shan Dong
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Yan Guo
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| | - Tie-Lin Yang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
| |
Collapse
|
12
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. J Comp Neurol 2024; 532:e25629. [PMID: 39031887 PMCID: PMC11819615 DOI: 10.1002/cne.25629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 07/22/2024]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S, NPS) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray, then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known already about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts roles in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Joel C. Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| |
Collapse
|
13
|
Hashsham A, Kodur N, Su J, Tomlinson AJ, Yacawych WT, Flak JN, Lewis KT, Oles LR, Mori H, Bozadjieva-Kramer N, Turcu AF, MacDougald OA, Myers MG, Affinati AH. Control of Physiologic Glucose Homeostasis via the Hypothalamic Modulation of Gluconeogenic Substrate Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594873. [PMID: 38826340 PMCID: PMC11142065 DOI: 10.1101/2024.05.20.594873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The brain augments glucose production during fasting, but the mechanisms are poorly understood. Here, we show that Cckbr-expressing neurons in the ventromedial hypothalamic nucleus (VMNCckbr cells) prevent low blood glucose during fasting through sympathetic nervous system (SNS)-mediated augmentation of adipose tissue lipolysis and substrate release. Activating VMNCckbr neurons mobilized gluconeogenic substrates without altering glycogenolysis or gluconeogenic enzyme expression. Silencing these cells (CckbrTetTox animals) reduced fasting blood glucose, impaired lipolysis, and decreased circulating glycerol (but not other gluconeogenic substrates) despite normal insulin, counterregulatory hormones, liver glycogen, and liver gluconeogenic gene expression. Furthermore, β3-adrenergic adipose tissue stimulation in CckbrTetTox animals restored lipolysis and blood glucose. Hence, VMNCckbr neurons impact blood glucose not by controlling islet or liver physiology, but rather by mobilizing gluconeogenic substrates. These findings establish a central role for hypothalamic and SNS signaling during normal glucose homeostasis and highlight the importance of gluconeogenic substrate mobilization during physiologic fasting.
Collapse
Affiliation(s)
- Abdullah Hashsham
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Nandan Kodur
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jiaao Su
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | | | - Warren T. Yacawych
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Jon N. Flak
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Kenneth T. Lewis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Lily R. Oles
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Nadejda Bozadjieva-Kramer
- Veterans Affairs Ann Arbor Healthcare System; Research Service, Ann Arbor, MI
- University of Michigan, Department of Surgery; Ann Arbor, MI
| | - Adina F. Turcu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Ormond A. MacDougald
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Martin G. Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
14
|
Borgmann D, Fenselau H. Vagal pathways for systemic regulation of glucose metabolism. Semin Cell Dev Biol 2024; 156:244-252. [PMID: 37500301 DOI: 10.1016/j.semcdb.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Physical Activity Research (CFAS), Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
15
|
Nardone S, De Luca R, Zito A, Klymko N, Nicoloutsopoulos D, Amsalem O, Brannigan C, Resch JM, Jacobs CL, Pant D, Veregge M, Srinivasan H, Grippo RM, Yang Z, Zeidel ML, Andermann ML, Harris KD, Tsai LT, Arrigoni E, Verstegen AMJ, Saper CB, Lowell BB. A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution. Nat Commun 2024; 15:1966. [PMID: 38438345 PMCID: PMC10912765 DOI: 10.1038/s41467-024-45907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard ( http://harvard.heavy.ai:6273/ ) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.
Collapse
Affiliation(s)
- Stefano Nardone
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roberto De Luca
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Antonino Zito
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Nataliya Klymko
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | | | - Oren Amsalem
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Cory Brannigan
- HEAVY.AI, 100 Montgomery St Fl 5, San Francisco, California, 94104, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center. University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Christopher L Jacobs
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepti Pant
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Molly Veregge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Harini Srinivasan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan M Grippo
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Zongfang Yang
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Mark L Andermann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Linus T Tsai
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Anne M J Verstegen
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Wang H, Wang Q, Cui L, Feng X, Dong P, Tan L, Lin L, Lian H, Cao S, Huang H, Cao P, Li XM. A molecularly defined amygdala-independent tetra-synaptic forebrain-to-hindbrain pathway for odor-driven innate fear and anxiety. Nat Neurosci 2024; 27:514-526. [PMID: 38347199 DOI: 10.1038/s41593-023-01562-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/14/2023] [Indexed: 03/08/2024]
Abstract
Fear-related disorders (for example, phobias and anxiety) cause a substantial public health problem. To date, studies of the neural basis of fear have mostly focused on the amygdala. Here we identify a molecularly defined amygdala-independent tetra-synaptic pathway for olfaction-evoked innate fear and anxiety in male mice. This pathway starts with inputs from the olfactory bulb mitral and tufted cells to pyramidal neurons in the dorsal peduncular cortex that in turn connect to cholecystokinin-expressing (Cck+) neurons in the superior part of lateral parabrachial nucleus, which project to tachykinin 1-expressing (Tac1+) neurons in the parasubthalamic nucleus. Notably, the identified pathway is specifically involved in odor-driven innate fear. Selective activation of this pathway induces innate fear, while its inhibition suppresses odor-driven innate fear. In addition, the pathway is both necessary and sufficient for stress-induced anxiety-like behaviors. These findings reveal a forebrain-to-hindbrain neural substrate for sensory-triggered fear and anxiety that bypasses the amygdala.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine / Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Qin Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liuzhe Cui
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Feng
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Dong
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liheng Tan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Lian
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxia Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqian Huang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences / Nanhu Brain-Computer Interface Institute, Hangzhou, China.
| |
Collapse
|
17
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 2024; 29:175-200. [PMID: 38331164 PMCID: PMC10939077 DOI: 10.1016/j.cstres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
19
|
Matsuda T, Kobayashi K, Kobayashi K, Noda M. Two parabrachial Cck neurons involved in the feedback control of thirst or salt appetite. Cell Rep 2024; 43:113619. [PMID: 38157299 DOI: 10.1016/j.celrep.2023.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Thirst and salt appetite are temporarily suppressed after water and salt ingestion, respectively, before absorption; however, the underlying neural mechanisms remain unclear. The parabrachial nucleus (PBN) is the relay center of ingestion signals from the digestive organs. We herein identify two distinct neuronal populations expressing cholecystokinin (Cck) mRNA in the lateral PBN that are activated in response to water and salt intake, respectively. The two Cck neurons in the dorsal-lateral compartment of the PBN project to the median preoptic nucleus and ventral part of the bed nucleus of the stria terminalis, respectively. The optogenetic stimulation of respective Cck neurons suppresses thirst or salt appetite under water- or salt-depleted conditions. The combination of optogenetics and in vivo Ca2+ imaging during ingestion reveals that both Cck neurons control GABAergic neurons in their target nuclei. These findings provide the feedback mechanisms for the suppression of thirst and salt appetite after ingestion.
Collapse
Affiliation(s)
- Takashi Matsuda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1295, Japan
| | - Masaharu Noda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
20
|
Ameroso D, Rios M. Synaptic plasticity and the role of astrocytes in central metabolic circuits. WIREs Mech Dis 2024; 16:e1632. [PMID: 37833830 PMCID: PMC10842964 DOI: 10.1002/wsbm.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
21
|
Nardone S, De Luca R, Zito A, Klymko N, Nicoloutsopoulos D, Amsalem O, Brannigan C, Resch JM, Jacobs CL, Pant D, Veregge M, Srinivasan H, Grippo RM, Yang Z, Zeidel ML, Andermann ML, Harris KD, Tsai LT, Arrigoni E, Verstegen AMJ, Saper CB, Lowell BB. A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558047. [PMID: 38014113 PMCID: PMC10680649 DOI: 10.1101/2023.09.18.558047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed many neuronal subtypes' unique marker genes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard (http://harvard.heavy.ai:6273/) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.
Collapse
Affiliation(s)
- Stefano Nardone
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roberto De Luca
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Antonino Zito
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Nataliya Klymko
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | | | - Oren Amsalem
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Cory Brannigan
- HEAVY.AI, 100 Montgomery St Fl 5, San Francisco, California, 94104, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center. University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Christopher L Jacobs
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepti Pant
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Molly Veregge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Harini Srinivasan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan M Grippo
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Zongfang Yang
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Mark L Andermann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Linus T Tsai
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Anne M J Verstegen
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Golubic R, Hussein Ismail M, Josipovic M, Kennet J, Galderisi A, Evans ML. Sumatriptan, a serotonin 5HT 1B receptor agonist, acutely reduces insulin secretion and sensitivity and glucose effectiveness in overweight humans: A double-blinded placebo-controlled cross-over trial. Diabetes Obes Metab 2023; 25:3059-3063. [PMID: 37312648 DOI: 10.1111/dom.15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
AIM Evidence from mouse models suggests that brain serotonergic pathways control blood glucose. We hypothesized that sumatriptan (5HT1B -receptor agonist) would alter glucose homeostasis in humans. MATERIALS AND METHODS We conducted a two-visit random-order double-blinded placebo-controlled cross-over trial in 10 overweight adults that were otherwise healthy. Participants received sumatriptan (single dose, 100 mg) or placebo before undergoing a 60-min intravenous glucose tolerance test, followed by a 120-min hyperinsulinaemic euglycaemic clamp. RESULTS Glucose excursion was greater during intravenous glucose tolerance test with sumatriptan compared with placebo [iAUC0-60 min 316 (268-333) vs. 251 (197-319) min/mmol/L p = .047]. This was probably explained by a combination of reduced circulating insulin levels [iAUC0-10 min 1626 (1103-2733) vs. 2336 (1702-3269) min/pmol/L, p = .005], reduced insulin sensitivity [M/I-value 2.11 (1.15, 4.05) vs. 3.03 (1.14, 4.90) mg/kg/min per pmol/L, p = .010] and glucose effectiveness [SG 0.17 (0.12, 0.21) vs. 0.22 (0.18, 0.65)/min, p = .027]. CONCLUSIONS 5HT1B receptors have a glucoregulatory role in humans, probably acting on insulin secretion, insulin sensitivity and glucose effectiveness.
Collapse
Affiliation(s)
- Rajna Golubic
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | | - Masa Josipovic
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane Kennet
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Alfonso Galderisi
- Pediatric Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark L Evans
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Meng A, Ameroso D, Rios M. mGluR5 in Astrocytes in the Ventromedial Hypothalamus Regulates Pituitary Adenylate Cyclase-Activating Polypeptide Neurons and Glucose Homeostasis. J Neurosci 2023; 43:5918-5935. [PMID: 37507231 PMCID: PMC10436691 DOI: 10.1523/jneurosci.0193-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The ventromedial hypothalamus (VMH) is a functionally heterogeneous nucleus critical for systemic energy, glucose, and lipid balance. We showed previously that the metabotropic glutamate receptor 5 (mGluR5) plays essential roles regulating excitatory and inhibitory transmission in SF1+ neurons of the VMH and facilitating glucose and lipid homeostasis in female mice. Although mGluR5 is also highly expressed in VMH astrocytes in the mature brain, its role there influencing central metabolic circuits is unknown. In contrast to the glucose intolerance observed only in female mice lacking mGluR5 in VMH SF1 neurons, selective depletion of mGluR5 in VMH astrocytes enhanced glucose tolerance without affecting food intake or body weight in both adult female and male mice. The improved glucose tolerance was associated with elevated glucose-stimulated insulin release. Astrocytic mGluR5 male and female mutants also exhibited reduced adipocyte size and increased sympathetic tone in gonadal white adipose tissue. Diminished excitatory drive and synaptic inputs onto VMH Pituitary adenylate cyclase-activating polypeptide (PACAP+) neurons and reduced activity of these cells during acute hyperglycemia underlie the observed changes in glycemic control. These studies reveal an essential role of astrocytic mGluR5 in the VMH regulating the excitatory drive onto PACAP+ neurons and activity of these cells facilitating glucose homeostasis in male and female mice.SIGNIFICANCE STATEMENT Neuronal circuits within the VMH play chief roles in the regulation of whole-body metabolic homeostasis. It remains unclear how astrocytes influence neurotransmission in this region to facilitate energy and glucose balance control. Here, we explored the role of the metabotropic glutamate receptor, mGluR5, using a mouse model with selective depletion of mGluR5 from VMH astrocytes. We show that astrocytic mGluR5 critically regulates the excitatory drive and activity of PACAP-expressing neurons in the VMH to control glucose homeostasis in both female and male mice. Furthermore, mGluR5 in VMH astrocytes influences adipocyte size and sympathetic tone in white adipose tissue. These studies provide novel insight toward the importance of hypothalamic astrocytes participating in central circuits regulating peripheral metabolism.
Collapse
Affiliation(s)
- Alice Meng
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Maribel Rios
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
25
|
Yang WZ, Xie H, Du X, Zhou Q, Xiao Y, Zhao Z, Jia X, Xu J, Zhang W, Cai S, Li Z, Fu X, Hua R, Cai J, Chang S, Sun J, Sun H, Xu Q, Ni X, Tu H, Zheng R, Xu X, Wang H, Fu Y, Wang L, Li X, Yang H, Yao Q, Yu T, Shen Q, Shen WL. A parabrachial-hypothalamic parallel circuit governs cold defense in mice. Nat Commun 2023; 14:4924. [PMID: 37582782 PMCID: PMC10427655 DOI: 10.1038/s41467-023-40504-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Thermal homeostasis is vital for mammals and is controlled by brain neurocircuits. Yet, the neural pathways responsible for cold defense regulation are still unclear. Here, we found that a pathway from the lateral parabrachial nucleus (LPB) to the dorsomedial hypothalamus (DMH), which runs parallel to the canonical LPB to preoptic area (POA) pathway, is also crucial for cold defense. Together, these pathways make an equivalent and cumulative contribution, forming a parallel circuit. Specifically, activation of the LPB → DMH pathway induced strong cold-defense responses, including increases in thermogenesis of brown adipose tissue (BAT), muscle shivering, heart rate, and locomotion. Further, we identified somatostatin neurons in the LPB that target DMH to promote BAT thermogenesis. Therefore, we reveal a parallel circuit governing cold defense in mice, which enables resilience to hypothermia and provides a scalable and robust network in heat production, reshaping our understanding of neural circuit regulation of homeostatic behaviors.
Collapse
Affiliation(s)
- Wen Z Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hengchang Xie
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaosa Du
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qian Zhou
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xiao
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Zhengdong Zhao
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Xiaoning Jia
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Jianhui Xu
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuang Cai
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563006, China
| | - Zhangjie Li
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Xin Fu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Junhao Cai
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Shuang Chang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Jing Sun
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hongbin Sun
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qingqing Xu
- Institute of life sciences, Chongqing Medical University, Chongqing, 400044, China
| | - Xinyan Ni
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hongqing Tu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, 100871, China
- Neuroscience Research Institute, Peking University, Beijing, 100871, China
| | - Xiaohong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hong Wang
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yu Fu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xi Li
- Institute of life sciences, Chongqing Medical University, Chongqing, 400044, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563006, China.
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China.
| | - Wei L Shen
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China.
| |
Collapse
|
26
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553140. [PMID: 37645772 PMCID: PMC10462015 DOI: 10.1101/2023.08.13.553140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts a role in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Joel C. Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| |
Collapse
|
27
|
Gaspari S, Labouèbe G, Picard A, Berney X, Rodriguez Sanchez‐Archidona A, Thorens B. Tmem117 in AVP neurons regulates the counterregulatory response to hypoglycemia. EMBO Rep 2023; 24:e57344. [PMID: 37314252 PMCID: PMC10398655 DOI: 10.15252/embr.202357344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
The counterregulatory response to hypoglycemia (CRR), which ensures a sufficient glucose supply to the brain, is an essential survival function. It is orchestrated by incompletely characterized glucose-sensing neurons, which trigger a coordinated autonomous and hormonal response that restores normoglycemia. Here, we investigate the role of hypothalamic Tmem117, identified in a genetic screen as a regulator of CRR. We show that Tmem117 is expressed in vasopressin magnocellular neurons of the hypothalamus. Tmem117 inactivation in these neurons increases hypoglycemia-induced vasopressin secretion leading to higher glucagon secretion in male mice, and this effect is estrus cycle phase dependent in female mice. Ex vivo electrophysiological analysis, in situ hybridization, and in vivo calcium imaging reveal that Tmem117 inactivation does not affect the glucose-sensing properties of vasopressin neurons but increases ER stress, ROS production, and intracellular calcium levels accompanied by increased vasopressin production and secretion. Thus, Tmem117 in vasopressin neurons is a physiological regulator of glucagon secretion, which highlights the role of these neurons in the coordinated response to hypoglycemia.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Gwenaël Labouèbe
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Alexandre Picard
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Xavier Berney
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | | - Bernard Thorens
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
28
|
Xu Y, Jiang Z, Li H, Cai J, Jiang Y, Otiz-Guzman J, Xu Y, Arenkiel BR, Tong Q. Lateral septum as a melanocortin downstream site in obesity development. Cell Rep 2023; 42:112502. [PMID: 37171957 DOI: 10.1016/j.celrep.2023.112502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 05/14/2023] Open
Abstract
The melanocortin pathway is well established to be critical for body-weight regulation in both rodents and humans. Despite extensive studies focusing on this pathway, the downstream brain sites that mediate its action are not clear. Here, we found that, among the known paraventricular hypothalamic (PVH) neuron groups, those expressing melanocortin receptors 4 (PVHMc4R) preferably project to the ventral part of the lateral septum (LSv), a brain region known to be involved in emotional behaviors. Photostimulation of PVHMc4R neuron terminals in the LSv reduces feeding and causes aversion, whereas deletion of Mc4Rs or disruption of glutamate release from LSv-projecting PVH neurons causes obesity. In addition, disruption of AMPA receptor function in PVH-projected LSv neurons causes obesity. Importantly, chronic inhibition of PVH- or PVHMc4R-projected LSv neurons causes obesity associated with reduced energy expenditure. Thus, the LSv functions as an important node in mediating melanocortin action on body-weight regulation.
Collapse
Affiliation(s)
- Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Li Y, Li Y, Zhang X, Li Y, Liu Y, Xu H. CaMKIIa Neurons of the Ventromedial Hypothalamus Mediate Wakefulness and Anxiety-like Behavior. Neurochem Res 2023:10.1007/s11064-023-03925-9. [PMID: 37014492 DOI: 10.1007/s11064-023-03925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023]
Abstract
Insomnia and anxiety are two common and closely related clinical problems that pose a threat to individuals' physical and mental well-being. There is a possibility that some nuclei and neural circuits in the brain are shared by both insomnia and anxiety. In the present study, using a combination of chemogenetics, optogenetics, polysomnographic recordings and the classic tests of anxiety-like behaviors, we verified that the calmodulin-dependent protein kinase II alpha (CaMKIIa) neurons of the ventromedial hypothalamus (VMH) are involved in the regulation of both wakefulness and anxiety. Chemogenetic manipulation of the VMH CaMKIIa neurons elicited an apparent increase in wakefulness during activation, whereas inhibition decreased wakefulness mildly. It substantiated that the VMH CaMKIIa neurons contribute to wakefulness. Then in millisecond-scale control of neuronal activity, short-term and long-term optogenetic activation induced the initiation and maintenance of wakefulness, respectively. We also observed that mice reduced exploratory behaviors in classic anxiety tests while activating the VMH CaMKIIa neurons and were anxiolytic while inhibiting. Additionally, photostimulation of the VMH CaMKIIa axons in the paraventricular hypothalamus (PVH) mediated wakefulness and triggered anxiety-like behaviors as well. In conclusion, our results demonstrate that the VMH participates in the control of wakefulness and anxiety, and offer a neurological explanation for insomnia and anxiety, which may be valuable for therapeutic interventions such as medication and transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Yue Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xuefen Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Ying Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Yanchao Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China.
| |
Collapse
|
30
|
Tapia GP, Agostinelli LJ, Chenausky SD, Padilla JVS, Navarro VI, Alagh A, Si G, Thompson RH, Balivada S, Khan AM. Glycemic Challenge Is Associated with the Rapid Cellular Activation of the Locus Ceruleus and Nucleus of Solitary Tract: Circumscribed Spatial Analysis of Phosphorylated MAP Kinase Immunoreactivity. J Clin Med 2023; 12:2483. [PMID: 37048567 PMCID: PMC10095283 DOI: 10.3390/jcm12072483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
Rodent studies indicate that impaired glucose utilization or hypoglycemia is associated with the cellular activation of neurons in the medulla (Winslow, 1733) (MY), believed to control feeding behavior and glucose counterregulation. However, such activation has been tracked primarily within hours of the challenge, rather than sooner, and has been poorly mapped within standardized brain atlases. Here, we report that, within 15 min of receiving 2-deoxy-d-glucose (2-DG; 250 mg/kg, i.v.), which can trigger glucoprivic feeding behavior, marked elevations were observed in the numbers of rhombic brain (His, 1893) (RB) neuronal cell profiles immunoreactive for the cellular activation marker(s), phosphorylated p44/42 MAP kinases (phospho-ERK1/2), and that some of these profiles were also catecholaminergic. We mapped their distributions within an open-access rat brain atlas and found that 2-DG-treated rats (compared to their saline-treated controls) displayed greater numbers of phospho-ERK1/2+ neurons in the locus ceruleus (Wenzel and Wenzel, 1812) (LC) and the nucleus of solitary tract (>1840) (NTS). Thus, the 2-DG-activation of certain RB neurons is more rapid than perhaps previously realized, engaging neurons that serve multiple functional systems and which are of varying cellular phenotypes. Mapping these populations within standardized brain atlas maps streamlines their targeting and/or comparable mapping in preclinical rodent models of disease.
Collapse
Affiliation(s)
- Geronimo P. Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lindsay J. Agostinelli
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah D. Chenausky
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jessica V. Salcido Padilla
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Vanessa I. Navarro
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Amy Alagh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Gabriel Si
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard H. Thompson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- School of Information, The University of Texas at Austin, Austin, TX 78701, USA
| | - Sivasai Balivada
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Arshad M. Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
31
|
Wang F, Chen Y, Lin Y, Wang X, Li K, Han Y, Wu J, Shi X, Zhu Z, Long C, Hu X, Duan S, Gao Z. A parabrachial to hypothalamic pathway mediates defensive behavior. eLife 2023; 12:85450. [PMID: 36930206 PMCID: PMC10023160 DOI: 10.7554/elife.85450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Defensive behaviors are critical for animal's survival. Both the paraventricular nucleus of the hypothalamus (PVN) and the parabrachial nucleus (PBN) have been shown to be involved in defensive behaviors. However, whether there are direct connections between them to mediate defensive behaviors remains unclear. Here, by retrograde and anterograde tracing, we uncover that cholecystokinin (CCK)-expressing neurons in the lateral PBN (LPBCCK) directly project to the PVN. By in vivo fiber photometry recording, we find that LPBCCK neurons actively respond to various threat stimuli. Selective photoactivation of LPBCCK neurons promotes aversion and defensive behaviors. Conversely, photoinhibition of LPBCCK neurons attenuates rat or looming stimuli-induced flight responses. Optogenetic activation of LPBCCK axon terminals within the PVN or PVN glutamatergic neurons promotes defensive behaviors. Whereas chemogenetic and pharmacological inhibition of local PVN neurons prevent LPBCCK-PVN pathway activation-driven flight responses. These data suggest that LPBCCK neurons recruit downstream PVN neurons to actively engage in flight responses. Our study identifies a previously unrecognized role for the LPBCCK-PVN pathway in controlling defensive behaviors.
Collapse
Affiliation(s)
- Fan Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yuge Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yuxin Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xuze Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Kaiyuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yong Han
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Jintao Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xingyi Shi
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Zhenggang Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Chaoying Long
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xiaojun Hu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
- The Institute of Brain and Cognitive Sciences, Zhejiang University City CollegeHangzhouChina
- Chuanqi Research and Development Center of Zhejiang UniversityHangzhouChina
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
| |
Collapse
|
32
|
Huang D, Zhang R, Gasparini S, McDonough MC, Paradee WJ, Geerling JC. Neuropeptide S (NPS) neurons: Parabrachial identity and novel distributions. J Comp Neurol 2022; 530:3157-3178. [PMID: 36036349 PMCID: PMC9588594 DOI: 10.1002/cne.25400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 01/05/2023]
Abstract
Neuropeptide S (NPS) increases wakefulness. A small number of neurons in the brainstem express Nps. These neurons are located in or near the parabrachial nucleus (PB), but we know very little about their ontogeny, connectivity, and function. To identify Nps-expressing neurons within the molecular framework of the PB region, we used in situ hybridization, immunofluorescence, and Cre-reporter labeling in mice. The primary concentration of Nps-expressing neurons borders the lateral lemniscus at far-rostral levels of the lateral PB. Caudal to this main cluster, Nps-expressing neurons scatter through the PB and form a secondary concentration medial to the locus coeruleus (LC). Most Nps-expressing neurons in the PB region are Atoh1-derived, Foxp2-expressing, and mutually exclusive with neurons expressing Calca or Lmx1b. Among Foxp2-expressing PB neurons, those expressing Nps are distinct from intermingled subsets expressing Cck or Pdyn. Examining Nps Cre-reporter expression throughout the brain identified novel populations of neurons in the nucleus incertus, anterior hypothalamus, and lateral habenula. This information will help focus experimental questions about the connectivity and function of NPS neurons.
Collapse
Affiliation(s)
- Dake Huang
- Department of NeurologyUniversity of IowaIowa CityIowa
| | - Richie Zhang
- Department of NeurologyUniversity of IowaIowa CityIowa
| | | | | | | | | |
Collapse
|
33
|
Lipid biosynthesis enzyme Agpat5 in AgRP-neurons is required for insulin-induced hypoglycemia sensing and glucagon secretion. Nat Commun 2022; 13:5761. [PMID: 36180454 PMCID: PMC9525695 DOI: 10.1038/s41467-022-33484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The counterregulatory response to hypoglycemia that restores normal blood glucose levels is an essential physiological function. It is initiated, in large part, by incompletely characterized brain hypoglycemia sensing neurons that trigger the secretion of counterregulatory hormones, in particular glucagon, to stimulate hepatic glucose production. In a genetic screen of recombinant inbred BXD mice we previously identified Agpat5 as a candidate regulator of hypoglycemia-induced glucagon secretion. Here, using genetic mouse models, we demonstrate that Agpat5 expressed in agouti-related peptide neurons is required for their activation by hypoglycemia, for hypoglycemia-induced vagal nerve activity, and glucagon secretion. We find that inactivation of Agpat5 leads to increased fatty acid oxidation and ATP production and that suppressing Cpt1a-dependent fatty acid import into mitochondria restores hypoglycemia sensing. Collectively, our data show that AgRP neurons are involved in the control of glucagon secretion and that Agpat5, by partitioning fatty acyl-CoAs away from mitochondrial fatty acid oxidation and ATP generation, ensures that the fall in intracellular ATP, which triggers neuronal firing, faithfully reflects changes in glycemia. During hypoglycemia, glucagon secretion is part of the mechanism needed to restore normal blood glucose levels. Here, Strembitska et al. report that sensing of hypoglycemia by AgRP neurons requires Agpat5, an enzyme which prevents fatty acids from entering the mitochondria for ATP production, ensuring correct neuronal activation and glucagon secretion.
Collapse
|
34
|
Rawlinson S, Reichenbach A, Clarke RE, Nuñez-Iglesias J, Dempsey H, Lockie SH, Andrews ZB. In Vivo Photometry Reveals Insulin and 2-Deoxyglucose Maintain Prolonged Inhibition of VMH Vglut2 Neurons in Male Mice. Endocrinology 2022; 163:6631280. [PMID: 35788848 DOI: 10.1210/endocr/bqac095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/19/2022]
Abstract
The ventromedial hypothalamic (VMH) nucleus is a well-established hub for energy and glucose homeostasis. In particular, VMH neurons are thought to be important for initiating the counterregulatory response to hypoglycemia, and ex vivo electrophysiology and immunohistochemistry data indicate a clear role for VMH neurons in sensing glucose concentration. However, the temporal response of VMH neurons to physiologically relevant changes in glucose availability in vivo has been hampered by a lack of available tools for measuring neuronal activity over time. Since the majority of neurons within the VMH are glutamatergic and can be targeted using the vesicular glutamate transporter Vglut2, we expressed cre-dependent GCaMP7s in Vglut2 cre mice and examined the response profile of VMH to intraperitoneal injections of glucose, insulin, and 2-deoxyglucose (2DG). We show that reduced available glucose via insulin-induced hypoglycemia and 2DG-induced glucoprivation, but not hyperglycemia induced by glucose injection, inhibits VMH Vglut2 neuronal population activity in vivo. Surprisingly, this inhibition was maintained for at least 45 minutes despite prolonged hypoglycemia and initiation of a counterregulatory response. Thus, although VMH stimulation, via pharmacological, electrical, or optogenetic approaches, is sufficient to drive a counterregulatory response, our data suggest VMH Vglut2 neurons are not the main drivers required to do so, since VMH Vglut2 neuronal population activity remains suppressed during hypoglycemia and glucoprivation.
Collapse
Affiliation(s)
- Sasha Rawlinson
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Rachel E Clarke
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Juan Nuñez-Iglesias
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
35
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
36
|
Fernandes ACA, de Oliveira FP, Fernandez G, da Guia Vieira L, Rosa CG, do Nascimento T, de Castro França S, Donato J, Vella KR, Antunes-Rodrigues J, Mecawi AS, Perello M, Elias LLK, Rorato R. Arcuate AgRP, but not POMC neurons, modulate paraventricular CRF synthesis and release in response to fasting. Cell Biosci 2022; 12:118. [PMID: 35902915 PMCID: PMC9331576 DOI: 10.1186/s13578-022-00853-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The activation of the hypothalamic-pituitary-adrenal (HPA) axis is essential for metabolic adaptation in response to fasting. However, the neurocircuitry connecting changes in the peripheral energy stores to the activity of hypothalamic paraventricular corticotrophin-releasing factor (CRFPVN) neurons, the master controller of the HPA axis activity, is not completely understood. Our main goal was to determine if hypothalamic arcuate nucleus (ARC) POMC and AgRP neurons can communicate fasting-induced changes in peripheral energy stores, associated to a fall in plasma leptin levels, to CRFPVN neurons to modulate the HPA axis activity in mice. RESULTS We observed increased plasma corticosterone levels associate with increased CRFPVN mRNA expression and increased CRFPVN neuronal activity in 36 h fasted mice. These responses were associated with a fall in plasma leptin levels and changes in the mRNA expression of Agrp and Pomc in the ARC. Fasting-induced decrease in plasma leptin partially modulated these responses through a change in the activity of ARC neurons. The chemogenetic activation of POMCARC by DREADDs did not affect fasting-induced activation of the HPA axis. DREADDs inhibition of AgRPARC neurons reduced the content of CRFPVN and increased its accumulation in the median eminence but had no effect on corticosterone secretion induced by fasting. CONCLUSION Our data indicate that AgRPARC neurons are part of the neurocircuitry involved in the coupling of PVNCRF activity to changes in peripheral energy stores induced by prolonged fasting.
Collapse
Affiliation(s)
| | - Franciane Pereira de Oliveira
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, 403, Buenos Aires, Argentina
| | - Luane da Guia Vieira
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Cristiane Gugelmin Rosa
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Taís do Nascimento
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Suzelei de Castro França
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil
| | - Kristen R Vella
- Department of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Jose Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, SP, 14049-900, Brazil
| | - André Souza Mecawi
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, 403, Buenos Aires, Argentina
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, SP, 14049-900, Brazil
| | - Rodrigo Rorato
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil.
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil.
| |
Collapse
|
37
|
Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022; 227:2409-2437. [PMID: 35838792 PMCID: PMC9418111 DOI: 10.1007/s00429-022-02534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) projects to areas of the forebrain involved in regulating behavior. Homeostatic challenges and salient cues activate the PVT and evidence shows that the PVT regulates appetitive and aversive responses. The brainstem is a source of afferents to the PVT and the present study was done to determine if the lateral parabrachial nucleus (LPB) is a relay for inputs to the PVT. Retrograde tracing experiments with cholera toxin B (CTB) demonstrate that the LPB contains more PVT projecting neurons than other regions of the brainstem including the catecholamine cell groups. The hypothesis that the LPB is a relay for signals to the PVT was assessed using an intersectional monosynaptic rabies tracing approach. Sources of inputs to LPB included the reticular formation; periaqueductal gray (PAG); nucleus cuneiformis; and superior and inferior colliculi. Distinctive clusters of input cells to LPB-PVT projecting neurons were also found in the dorsolateral bed nucleus of the stria terminalis (BSTDL) and the lateral central nucleus of the amygdala (CeL). Anterograde viral tracing demonstrates that LPB-PVT neurons densely innervate all regions of the PVT in addition to providing collateral innervation to the preoptic area, lateral hypothalamus, zona incerta and PAG but not the BSTDL and CeL. The paper discusses the anatomical evidence that suggests that the PVT is part of a network of interconnected neurons involved in arousal, homeostasis, and the regulation of behavioral states with forebrain regions potentially providing descending modulation or gating of signals relayed from the LPB to the PVT.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada. .,Departments of Psychiatry and Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| | - Shuanghong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| |
Collapse
|
38
|
Grady FS, Graff SA, Aldridge GM, Geerling JC. BoutonNet: an automatic method to detect anterogradely labeled presynaptic boutons in brain tissue sections. Brain Struct Funct 2022; 227:1921-1932. [PMID: 35648216 PMCID: PMC10597056 DOI: 10.1007/s00429-022-02504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Neurons emit axons, which form synapses, the fundamental unit of the nervous system. Neuroscientists use genetic anterograde tracing methods to label the synaptic output of specific neuronal subpopulations, but the resulting data sets are too large for manual analysis, and current automated methods have significant limitations in cost and quality. In this paper, we describe a pipeline optimized to identify anterogradely labeled presynaptic boutons in brain tissue sections. Our histologic pipeline labels boutons with high sensitivity and low background. To automatically detect labeled boutons in slide-scanned tissue sections, we developed BoutonNet. This detector uses a two-step approach: an intensity-based method proposes possible boutons, which are checked by a neural network-based confirmation step. BoutonNet was compared to expert annotation on a separate validation data set and achieved a result within human inter-rater variance. This open-source technique will allow quantitative analysis of the fundamental unit of the brain on a whole-brain scale.
Collapse
Affiliation(s)
- Fillan S Grady
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, PBDB 1320, 169 Newton Rd, Iowa City, IA, 52246, USA
| | - Shantelle A Graff
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, PBDB 1320, 169 Newton Rd, Iowa City, IA, 52246, USA
| | - Georgina M Aldridge
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, PBDB 1320, 169 Newton Rd, Iowa City, IA, 52246, USA
| | - Joel C Geerling
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, PBDB 1320, 169 Newton Rd, Iowa City, IA, 52246, USA.
| |
Collapse
|
39
|
Picard A, Berney X, Castillo-Armengol J, Tarussio D, Jan M, Sanchez-Archidona AR, Croizier S, Thorens B. Hypothalamic Irak4 is a genetically controlled regulator of hypoglycemia-induced glucagon secretion. Mol Metab 2022; 61:101479. [PMID: 35339728 PMCID: PMC9046887 DOI: 10.1016/j.molmet.2022.101479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Glucagon secretion to stimulate hepatic glucose production is the first line of defense against hypoglycemia. This response is triggered by so far incompletely characterized central hypoglycemia-sensing mechanisms, which control autonomous nervous activity and hormone secretion. The objective of this study was to identify novel hypothalamic genes controlling insulin-induced glucagon secretion. METHODS To obtain new information on the mechanisms of hypothalamic hypoglycemia sensing, we combined genetic and transcriptomic analysis of glucagon response to insulin-induced hypoglycemia in a panel of BXD recombinant inbred mice. RESULTS We identified two QTLs on chromosome 8 and chromosome 15. We further investigated the role of Irak4 and Cpne8, both located in the QTL on chromosome 15, in C57BL/6J and DBA/2J mice, the BXD mouse parental strains. We found that the poor glucagon response of DBA/2J mice was associated with higher hypothalamic expression of Irak4, which encodes a kinase acting downstream of the interleukin-1 receptor (Il-1R), and of Il-ß when compared with C57BL/6J mice. We showed that intracerebroventricular administration of an Il-1R antagonist in DBA/2J mice restored insulin-induced glucagon secretion; this was associated with increased c-fos expression in the arcuate and paraventricular nuclei of the hypothalamus and with higher activation of both branches of the autonomous nervous system. Whole body inactivation of Cpne8, which encodes a Ca++-dependent regulator of membrane trafficking and exocytosis, however, had no impact on insulin-induced glucagon secretion. CONCLUSIONS Collectively, our data identify Irak4 as a genetically controlled regulator of hypoglycemia-activated hypothalamic neurons and glucagon secretion.
Collapse
Affiliation(s)
- Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Judit Castillo-Armengol
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland; Novo Nordisk A/S, Måløv, Denmark
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Maxime Jan
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
40
|
SOCS3 Ablation in Leptin Receptor-Expressing Cells Causes Autonomic and Cardiac Dysfunctions in Middle-Aged Mice despite Improving Energy and Glucose Metabolism. Int J Mol Sci 2022; 23:ijms23126484. [PMID: 35742928 PMCID: PMC9223472 DOI: 10.3390/ijms23126484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leptin resistance is a hallmark of obesity. Treatments aiming to improve leptin sensitivity are considered a promising therapeutical approach against obesity. However, leptin receptor (LepR) signaling also modulates several neurovegetative aspects, such as the cardiovascular system and hepatic gluconeogenesis. Thus, we investigated the long-term consequences of increased leptin sensitivity, considering the potential beneficial and deleterious effects. To generate a mouse model with increased leptin sensitivity, the suppressor of cytokine signaling 3 (SOCS3) was ablated in LepR-expressing cells (LepR∆SOCS3 mice). LepR∆SOCS3 mice displayed reduced food intake, body adiposity and weight gain, as well as improved glucose tolerance and insulin sensitivity, and were protected against aging-induced leptin resistance. Surprisingly, a very high mortality rate was observed in aging LepR∆SOCS3 mice. LepR∆SOCS3 mice showed cardiomyocyte hypertrophy, increased myocardial fibrosis and reduced cardiovascular capacity. LepR∆SOCS3 mice exhibited impaired post-ischemic cardiac functional recovery and middle-aged LepR∆SOCS3 mice showed substantial arhythmic events during the post-ischemic reperfusion period. Finally, LepR∆SOCS3 mice exhibited fasting-induced hypoglycemia and impaired counterregulatory response to glucopenia associated with reduced gluconeogenesis. In conclusion, although increased sensitivity to leptin improved the energy and glucose homeostasis of aging LepR∆SOCS3 mice, major autonomic/neurovegetative dysfunctions compromised the health and longevity of these animals. Consequently, these potentially negative aspects need to be considered in the therapies that increase leptin sensitivity chronically.
Collapse
|
41
|
Staricoff EO, Evans ML. Recent advances in understanding hypothalamic control of defensive responses to hypoglycaemia. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24:100353. [PMID: 39183767 PMCID: PMC11339540 DOI: 10.1016/j.coemr.2022.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Maintenance of normal blood glucose is important for survival. In particular, brain function is dependent on circulating glucose. In health, a series of powerful counterregulatory defences operate to prevent/limit hypoglycaemia. These defences are altered to varying degrees in diabetes and in particular, a subset of people with diabetes can develop profound deficits in these defences placing them at increased risk of suffering episodes of severe hypoglycaemia. Brain is an important controller of glucose homeostasis and developments in molecular techniques have allowed the neurocircuitry of a number of important centrally-controlled homeostatic processes such as energy balance, thirst and thermoregulation to be defined. This review describes how some of these advances have allowed a better understanding of the neuronal/brain ensembles which help protect against hypoglycaemia.
Collapse
Affiliation(s)
- Emily O. Staricoff
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, UK
| | - Mark L. Evans
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, UK
- Department of Medicine, Addenbrookes NIHR Biomedical Campus, Cambridge, UK
| |
Collapse
|
42
|
Tu L, Fukuda M, Tong Q, Xu Y. The ventromedial hypothalamic nucleus: watchdog of whole-body glucose homeostasis. Cell Biosci 2022; 12:71. [PMID: 35619170 PMCID: PMC9134642 DOI: 10.1186/s13578-022-00799-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
The brain, particularly the ventromedial hypothalamic nucleus (VMH), has been long known for its involvement in glucose sensing and whole-body glucose homeostasis. However, it is still not fully understood how the brain detects and responds to the changes in the circulating glucose levels, as well as brain-body coordinated control of glucose homeostasis. In this review, we address the growing evidence implicating the brain in glucose homeostasis, especially in the contexts of hypoglycemia and diabetes. In addition to neurons, we emphasize the potential roles played by non-neuronal cells, as well as extracellular matrix in the hypothalamus in whole-body glucose homeostasis. Further, we review the ionic mechanisms by which glucose-sensing neurons sense fluctuations of ambient glucose levels. We also introduce the significant implications of heterogeneous neurons in the VMH upon glucose sensing and whole-body glucose homeostasis, in which sex difference is also addressed. Meanwhile, research gaps have also been identified, which necessities further mechanistic studies in future.
Collapse
Affiliation(s)
- Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Makoto Fukuda
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
Abstract
The role of central estrogen in cognitive, metabolic, and reproductive health has long fascinated the lay public and scientists alike. In the last two decades, insight into estrogen signaling in the brain and its impact on female physiology is beginning to catch up with the vast information already established for its actions on peripheral tissues. Using newer methods to manipulate estrogen signaling in hormone-sensitive brain regions, neuroscientists are now identifying the molecular pathways and neuronal subtypes required for controlling sex-dependent energy allocation. However, the immense cellular complexity of these hormone-sensitive brain regions makes it clear that more research is needed to fully appreciate how estrogen modulates neural circuits to regulate physiological and behavioral end points. Such insight is essential for understanding how natural or drug-induced hormone fluctuations across lifespan affect women's health.
Collapse
Affiliation(s)
- Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| |
Collapse
|
44
|
Karthik S, Huang D, Delgado Y, Laing JJ, Peltekian L, Iverson GN, Grady F, Miller RL, McCann CM, Fritzsch B, Iskusnykh IY, Chizhikov VV, Geerling JC. Molecular ontology of the parabrachial nucleus. J Comp Neurol 2022; 530:1658-1699. [PMID: 35134251 PMCID: PMC9119955 DOI: 10.1002/cne.25307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/07/2022]
Abstract
This article has been removed because of a technical problem in the rendering of the PDF. 11 February 2022.
Collapse
Affiliation(s)
| | - Dake Huang
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | | | - Lila Peltekian
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | - Fillan Grady
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | - Rebecca L. Miller
- Department of Anatomy and NeurobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Corey M. McCann
- Department of Anatomy and NeurobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Bernd Fritzsch
- Iowa Neuroscience InstituteIowa CityIowaUSA
- Department of BiologyUniversity of IowaIowa CityIowaUSA
| | - Igor Y. Iskusnykh
- Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Victor V. Chizhikov
- Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Joel C. Geerling
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteIowa CityIowaUSA
| |
Collapse
|
45
|
Thorens B. Neuronal regulation of glucagon secretion and gluconeogenesis. J Diabetes Investig 2022; 13:599-607. [PMID: 34989155 PMCID: PMC9017634 DOI: 10.1111/jdi.13745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/02/2022] [Indexed: 11/29/2022] Open
Abstract
Hypoglycemia almost never develops in healthy individuals because multiple hypoglycemia sensing systems, located in the periphery and in the central nervous system trigger a coordinated counterregulatory hormonal response to restore normoglycemia. This involves not only the secretion of glucagon but also of epinephrine, norepinephrine, cortisol and growth hormone. Increased hepatic glucose production is also stimulated by direct autonomous nervous connections to the liver that stimulate glycogenolysis and gluconeogenesis. This counterregulatory response, however, becomes deregulated in a significant fraction of diabetic patients that receive insulin therapy. This leads to risk of developing hypoglycemic episodes, of increasing severity, which negatively impact the quality of life of the patients. How hypoglycemia is detected by the central nervous system is being actively investigated. Recent studies using novel molecular biological, optogenetic and chemogenetic techniques, allow the characterization of glucose sensing neurons, the mechanisms of hypoglycemia detection, the neuronal circuits in which they are integrated and the physiological responses they control. This review will discuss recent studies aimed at identifying central hypoglycemia sensing neuronal circuits, how neurons are activated by hypoglycemia, and how they restore normoglycemia.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
46
|
Ha GE, Cheong E. Chronic Restraint Stress Decreases the Excitability of Hypothalamic POMC Neuron and Increases Food Intake. Exp Neurobiol 2021; 30:375-386. [PMID: 34983879 PMCID: PMC8752322 DOI: 10.5607/en21037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/19/2022] Open
Abstract
Stress activates the hypothalamic-pituitary-adrenal system, and induces the release of glucocorticoids, stress hormones, into circulation. Many studies have shown that stress affects feeding behavior, however, the underlying circuitry and molecular mechanisms are not fully understood. The balance between orexigenic (simulating appetite) and anorexigenic (loss of appetite) signals reciprocally modulate feeding behavior. It is suggested that proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus (ARC) of the hypothalamus are the first-order neurons that respond to the circulating signals of hunger and satiety. Here, we examined a chronic restraint stress model and observed an increase in food intake, which was not correlated with anhedonia. We investigated whether stress affects the properties of POMC and NPY neurons and found that chronic restraint stress reduced the excitatory inputs onto POMC neurons and increased the action potential threshold. Therefore, our study suggests that chronic stress modulates the intrinsic excitability and excitatory inputs in POMC neurons, leading to changes in feeding behavior.
Collapse
Affiliation(s)
- Go Eun Ha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
47
|
Kim A, Knudsen JG, Madara JC, Benrick A, Hill TG, Abdul Kadir L, Kellard JA, Mellander L, Miranda C, Lin H, James T, Suba K, Spigelman AF, Wu Y, MacDonald PE, Wernstedt Asterholm I, Magnussen T, Christensen M, Vilsbøll T, Salem V, Knop FK, Rorsman P, Lowell BB, Briant LJB. Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes. eLife 2021; 10:e72919. [PMID: 34787082 PMCID: PMC8654374 DOI: 10.7554/elife.72919] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023] Open
Abstract
Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.
Collapse
Affiliation(s)
- Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Anna Benrick
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Lina Abdul Kadir
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Joely A Kellard
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Lisa Mellander
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Caroline Miranda
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Haopeng Lin
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Timothy James
- Department of Clinical Biochemistry, John Radcliffe, Oxford NHS TrustOxfordUnited Kingdom
| | - Kinga Suba
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Aliya F Spigelman
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Yanling Wu
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Patrick E MacDonald
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Ingrid Wernstedt Asterholm
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Tore Magnussen
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
| | - Mikkel Christensen
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenCopenhagenDenmark
| | - Victoria Salem
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| | - Linford JB Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Computer Science, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
48
|
Abstract
The ventromedial nucleus of the hypothalamus (VMH) is a complex brain structure that is integral to many neuroendocrine functions, including glucose regulation, thermogenesis, and appetitive, social, and sexual behaviors. As such, it is of little surprise that the nucleus is under intensive investigation to decipher the mechanisms which underlie these diverse roles. Developments in genetic and investigative tools, for example the targeting of steroidogenic factor-1-expressing neurons, have allowed us to take a closer look at the VMH, its connections, and how it affects competing behaviors. In the current review, we aim to integrate recent findings into the literature and contemplate the conclusions that can be drawn.
Collapse
Affiliation(s)
- Tansi Khodai
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
- Correspondence: Simon M. Luckman, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
49
|
Borgmann D, Ciglieri E, Biglari N, Brandt C, Cremer AL, Backes H, Tittgemeyer M, Wunderlich FT, Brüning JC, Fenselau H. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab 2021; 33:1466-1482.e7. [PMID: 34043943 PMCID: PMC8280952 DOI: 10.1016/j.cmet.2021.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 01/26/2023]
Abstract
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Anatomy II, Neuroanatomy, University Hospital Cologne, Joseph-Stelzmann Str. 9, 50937 Cologne, Germany
| | - Elisa Ciglieri
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany
| | - Nasim Biglari
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Claus Brandt
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Anna Lena Cremer
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany
| | - F Thomas Wunderlich
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany; Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Jens C Brüning
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany; Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
50
|
New Insights of SF1 Neurons in Hypothalamic Regulation of Obesity and Diabetes. Int J Mol Sci 2021; 22:ijms22126186. [PMID: 34201257 PMCID: PMC8229730 DOI: 10.3390/ijms22126186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the substantial role played by the hypothalamus in the regulation of energy balance and glucose homeostasis, the exact mechanisms and neuronal circuits underlying this regulation remain poorly understood. In the last 15 years, investigations using transgenic models, optogenetic, and chemogenetic approaches have revealed that SF1 neurons in the ventromedial hypothalamus are a specific lead in the brain’s ability to sense glucose levels and conduct insulin and leptin signaling in energy expenditure and glucose homeostasis, with minor feeding control. Deletion of hormonal receptors, nutritional sensors, or synaptic receptors in SF1 neurons triggers metabolic alterations mostly appreciated under high-fat feeding, indicating that SF1 neurons are particularly important for metabolic adaptation in the early stages of obesity. Although these studies have provided exciting insight into the implications of hypothalamic SF1 neurons on whole-body energy homeostasis, new questions have arisen from these results. Particularly, the existence of neuronal sub-populations of SF1 neurons and the intricate neurocircuitry linking these neurons with other nuclei and with the periphery. In this review, we address the most relevant studies carried out in SF1 neurons to date, to provide a global view of the central role played by these neurons in the pathogenesis of obesity and diabetes.
Collapse
|