1
|
Li Z, Chen S, Wu X, Liu F, Zhu J, Chen J, Lu X, Chi R. Research advances in branched-chain amino acid metabolism in tumors. Mol Cell Biochem 2025; 480:2707-2723. [PMID: 39576465 DOI: 10.1007/s11010-024-05163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
Abstract
The metabolic reprogramming of amino acids is an important component of tumor metabolism. Branched-chain amino acids (BCAAs) perform important functions in tumor progression. They are the important amino donor and are involved in the synthesis of various non-essential amino acids, nucleotides, and polyamines to satisfy the increased demand for nitrogen sources. This review summarizes the studies related to abnormalities in BCAA metabolism during tumorigenesis and the potential therapeutic targets. The expression of BCAA transporters was significantly upregulated in tumor cells, which increases BCAA uptake. High expression of the BCAA transaminases is prevalent in various tumors, however, the dehydrogenation step of BCAA catabolism is inhibited in tumors. This review shows that BCAA metabolic reprogramming is an important tumor metabolic feature, and metabolic genes of BCAAs play a crucial role in tumor metabolism, representing a good auxiliary target for early clinical diagnosis and treatment. In addition, BCAAs are indispensable for maintaining immune system function, and dietary supplementation with BCAAs can enhance the activity of immune cells. Therefore, BCAA supplementation in tumor patients may affect the interaction between the immune system and tumors.
Collapse
Affiliation(s)
- Zheng Li
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | | | - Xuechao Wu
- Wuxi Neurosurgical Institute, Wuxi, China
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Fei Liu
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX, 76010, USA
| | - Jiayi Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, Jilin, China.
| | - Xiaojie Lu
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Nanjing Medical University, Nanjing, China.
- Wuxi Neurosurgical Institute, Wuxi, China.
- Department of Neurosurgery, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| | - Rui Chi
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Department of Laboratory Medicine, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| |
Collapse
|
2
|
Zheng J, Yi Y, Tian T, Luo S, Liang X, Bai Y. ICI-induced cardiovascular toxicity: mechanisms and immune reprogramming therapeutic strategies. Front Immunol 2025; 16:1550400. [PMID: 40356915 PMCID: PMC12066601 DOI: 10.3389/fimmu.2025.1550400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, offering life-saving benefits to tumor patients. However, the utilize of ICI agents is often accompanied by immune-related adverse events (irAEs), among which cardiovascular toxicities have attracted more and more attention. ICI induced cardiovascular toxicities predominantly present as acute myocarditis and chronic atherosclerosis, both of which are driven by excessive immune activation. Reprogramming of T cells and macrophages has been demonstrated as a pivotal factor in the pathogenesis of these complications. Therapeutic strategies targeting glycolysis, fatty acid oxidation, reactive oxygen species (ROS) production and some other key signaling have shown promise in mitigating immune hyperactivation and inflammation. In this review, we explored the intricate mechanisms underlying ICI-induced cardiovascular toxicities and highlighted the protective potential of immune reprogramming. We emphasize the roles of T cell and macrophage reprogramming in the heart and vasculature, showcasing their contributions to both short-term and long-term regulation of cardiovascular health. Ultimately, a deeper understanding of these processes will not only enhance the safety of ICIs but also pave the way for innovative strategies to manage immune-related toxicities in cancers therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Bai
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Nam H, Park H, Son MK, Kang I, Choi Y, Lee S, Kim S, Kim S, Kim H, Chang JB, Lee YK, Kim YC. Metal-phenolic networks reverse the immunosuppressive tumor microenvironment via dual metabolism regulation and immunogenic cell death. J Control Release 2025; 383:113775. [PMID: 40294797 DOI: 10.1016/j.jconrel.2025.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Targeting cancer cell metabolism has emerged as a promising strategy to reverse the immunosuppressive tumor microenvironment (TME). Aerobic glycolysis, the dominant metabolic pathway in cancer cells, leads to glucose depletion and the accumulation of immunosuppressive metabolites such as lactate, ultimately limiting the efficacy of conventional immunotherapies. In this study, metal phenolic-networks (MPNs) are developed by coating zinc oxide (ZnO) nanoparticles with epigallocatechin gallate (EGCG) to modulate cancer metabolism for TME reprogramming and immune activation. Under acidic conditions, MPNs release Zn2+ ions and EGCG, inhibiting both glycolysis and mitochondrial metabolism, effectively regulating the metabolic ability of cancer cells. Furthermore, severe starvation stress induced by dual metabolic inhibition triggers immunogenic cell death (ICD) without the need for conventional ICD inducers. Consequently, MPN treatment reverses the immunosuppressive TME through dual metabolic regulation and ICD, which induces dendritic cell maturation, cytotoxic T cell activation, and regulatory T cell suppression. These findings highlight the potential of combining metabolic therapy with immunotherapy as a novel strategy to enhance antitumor immunity and overcome the limitations of current cancer treatments.
Collapse
Affiliation(s)
- Hoyeon Nam
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Kwon Son
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jeungpyeong, 27909, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yuri Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Susam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sejin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungcheol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunwoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jeungpyeong, 27909, Republic of Korea; Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea.
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Gong H, Nie D, Li Z. The crosstalk between broad epigenetic modification and T cell metabolism within tumor microenvironment. Int Immunopharmacol 2025; 152:114410. [PMID: 40068521 DOI: 10.1016/j.intimp.2025.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/24/2025]
Abstract
T cells play an important role in adaptive immune responses, providing antigen specificity for pathogen and tumor recognition. Recent studies have elucidated the complex interplay between T cell metabolism and broad epigenetic modifications in response to tumors, occurring at transcriptional, post-transcriptional, and post-translational levels. At the transcriptional level, gene expression is regulated through mechanisms such as DNA methylation, chromatin remodeling, and transcription factor activity. Post-transcriptionally, gene expression is further modulated by non-coding RNAs and RNA modifications, an area of increasing research interest. In addition, histone proteins are primarily regulated by well-established post-translational modifications (PTMs), including acetylation and methylation. Novel PTMs such as succinylation, glycosylation, glutamylation, and lactylation add complexity to the regulation and warrant further investigation. At present, the interaction between CD8+ T cell metabolism and epigenetic modifications in response to malignancies has been reported extensively. However, the interplay in CD4+ T cells remains less understood. In this review, we introduce the differentiation trajectories of T cells and critically evaluate existing interplay between metabolic activity and epigenetic modifications influences the functional dynamics in both CD8+ and CD4+ T cells, offering promising avenues for the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Han Gong
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Dan Nie
- Department of Obstetrics and Gynecology, The affiliated hospital of Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
5
|
Jiang P, Jiang Z, Li S, Li YX, Chen Y, Li X. The suppressive role of GLS in radiosensitivity and irradiation-induced immune response in LUAD: integrating bioinformatics and experimental insights. Front Immunol 2025; 16:1582587. [PMID: 40308578 PMCID: PMC12040943 DOI: 10.3389/fimmu.2025.1582587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Radiotherapy elicits immune activation, thereby synergistically enhancing systemic tumor control when combined with immunotherapy. Glutaminase (GLS), a key enzyme for glutamine metabolism, has been found to regulate glutamine availability within tumor microenvironment (TME). However, the precise mechanisms through which GLS modulates radiosensitivity and irradiation-induced immune responses in lung adenocarcinoma (LUAD) and its clinical value remain to be fully elucidated. Methods We employed bulk RNA-seq and single-cell transcriptomics to explore the role of GLS expression in radiosensitivity and immune infiltration. The bioinformatic results were validated by in vitro and in vivo experiments. Co-culture assays and flow cytometry were used to validate the impact of GLS expression on CD8+ T cell activation and cytotoxicity. Moreover, a GLS-DSBr (double strand break repair) prognostic model was developed using machine learning with data from 2,066 LUAD patients. Results In vitro and in vivo experiments demonstrated that GLS silence inhibited DSB repair and promoted ferroptosis, therefore enhancing radiosensitivity. Single-cell and spatial transcriptomics revealed the immunomodulatory effects of GLS expression in the TME. Further, Co-culture assays and flow cytometry experiments indicated that silencing GLS in LUAD cells potentiated the activation and cytotoxicity of CD8+ T cells in the context of radiotherapy. The GLS-DSBr model demonstrated robust predictive performance for overall survival, as well as the efficacy of radiotherapy and immunotherapy in LUAD. The applicability of GLS-DSBr model was further validated through pan-cancer analysis. Conclusion In the contexts of radiotherapy, GLS downregulation exerts dual regulatory effects by modulating ferroptosis and remodeling the immune landscapes, particularly enhancing CD8+ T cell cytotoxicity. Our work suggests that strategies preferentially targeting GLS in tumor cells may represent promising and translatable therapeutic approaches to promote antitumor efficacy of radiotherapy plus immune checkpoint blockade in LUAD patients. Furthermore, the established GLS-DSBr model serves as a robust predictive tool for prognosis and effects of radiotherapy and immunotherapy, which assists personalized treatment optimization in LUAD.
Collapse
Affiliation(s)
- Peicheng Jiang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifeng Jiang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xinyan Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
7
|
Yang Y, Liu L, Cui H, Cheng B, Peng W, Wang R, Wang J, Chen W, Cao M, Li Y, Liang J, Chen S, Bai S, Zhao Y. Establishing a new-onset diabetes-related metabolism signature for predicting the prognosis and immune landscape in pancreatic cancer. Carcinogenesis 2025; 46:bgae072. [PMID: 39526455 PMCID: PMC11966386 DOI: 10.1093/carcin/bgae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
New-onset diabetes (NOD) is a common condition among patients with pancreatic adenocarcinoma (PAAD) and is related to poor clinical outcomes. The potential impact of NOD on PAAD progression and the tumor microenvironment remains unclear. Here, we revealed that NOD in PAAD was associated with metabolic disorders. Utilizing three machine-learning algorithms, an NOD-related metabolism signature (NRMS) was established. Validated in three independent cohorts, patients with a high NRMS score exhibited a worse prognosis. Moreover, an elevated NRMS score was associated with an immunosuppressive microenvironment and diminished response to immunotherapy. Further experiments demonstrated that ALDH3A1, a key feature in NRMS, was significantly upregulated in tissues from PAAD patients with NOD and played a crucial role in tumor progression and immune suppression. Our findings highlight the potential of NRMS as a prognostic biomarker and an indicator of immunotherapy response for patients with PAAD.
Collapse
Affiliation(s)
- Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Luyao Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Haochen Cui
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Ronghua Wang
- Department of Surgery, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburg, PA 15213M, United States
| | - Jinlin Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Mengdie Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Yanling Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Jingwen Liang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Shiru Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| |
Collapse
|
8
|
Shang Y, Zeng J, Mai J, Xiao J. Metabolic reprogramming landscape of pan-cancer by single-cell transcriptome data integration. Sci Bull (Beijing) 2025; 70:852-855. [PMID: 39500689 DOI: 10.1016/j.scib.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 03/26/2025]
Affiliation(s)
- Yunfei Shang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyao Zeng
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
| | - Jialin Mai
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Hu JX, Chen YK, Chen SJ, Lin YY, Chen JN, Xie Y, Zhao CF, Chen CR. Mechanism of calcitonin gene related peptide against acute pancreatitis in rats by modulating amino acid metabolism based on metabonomics. Sci Rep 2025; 15:6686. [PMID: 39994332 PMCID: PMC11850807 DOI: 10.1038/s41598-025-87707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
To study the mechanism of calcitonin gene related peptide(CGRP) protecting acute pancreatitis based on metabolomics. 24 adult male rats were randomly divided into control group (Con), acute pancreatitis model group (AP), CGRP treatment group (CGRP + AP, abbreviated as CGRP) and CGRP antagonist(CGRP(8-37)) pretreatment group (preCGRP(8-37) + AP, abbreviated as CGRP37), with 6 rats in each group. After different interventions, pancreases of rats in each group were collected for pathological analysis, and serum was collected for metabolomics analysis. Pathological examination of the pancreas suggested that the inflammation of pancreatitis in AP group was significant, the inflammation of pancreatitis in CGRP group was significantly reduced, and the pancreatitis in CGRP37 group was aggravated. Metabolomics of rat serum suggested that the differences in metabolites in each group were mainly related to amino acid metabolism, coenzyme/vitamin metabolism, carbohydrate metabolism, lipid metabolism, digestive system and other metabolic pathways. According to the trend of metabolite changes, we found 6 differential metabolites that were significantly correlated with CGRP intervention, including L-Valine, 5-Aminopentanoic acid, 4-oxo-L-proline, L-glutamine, L-proline, and Ornithine, all of which were related to amino acid metabolism. CGRP can effectively protect acute pancreatitis, possibly by regulating amino acid metabolism to alleviate acute pancreatitis.
Collapse
Affiliation(s)
- Jian-Xiong Hu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Ying-Kai Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Shi-Jun Chen
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Yan-Ya Lin
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Jun-Nian Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350000, Fujian Province, China
| | - Ying Xie
- School of Mechanical, Electrical and Information Engineering, Putian University, Putian, China
| | - Cheng-Fei Zhao
- School of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Cun-Rong Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350000, Fujian Province, China.
| |
Collapse
|
10
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
11
|
Xu Q, Hua X, Li B, Jiang B, Jin J, Wu R, Gu Y, Xu H, Cheng Q, Zhu S, Zhang F, Lv T, Song Y. Intrinsic STING of CD8 + T cells regulates self-metabolic reprogramming and memory to exert anti-tumor effects. Cell Commun Signal 2025; 23:99. [PMID: 39972350 PMCID: PMC11837649 DOI: 10.1186/s12964-025-02069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Our team has previously found that the stimulator of interferon genes (STING) plays a more significant anti-tumor role in host immune cells than in tumor cells. Although STING is necessary for CD8 + T cells to exert immunological activity, its effect on CD8 + T cells remains debatable. In this study, we used both in vitro and in vivo models to explore the metabolic effects of STING on CD8 + T cells. METHODS Peripheral blood lymphocytes were procured from non-small cell lung cancer (NSCLC) patients receiving anti-PD-1 therapy to investigate the correlation between STING expression levels, CD8 + T-cell subsets, and immunotherapy efficacy. STING knockout (STING-KO) mice were used for in vivo studies. RNA-seq, seahorse, flow cytometry, electron microscopy, qPCR, immunofluorescence, western blotting, and immunoprecipitation were performed to explore the underlying mechanisms of STING in regulating CD8 + T cell function. RESULTS We discovered that the expression level of STING in immune cells exhibited a significant correlation with immunotherapy efficacy, as well as with the proportion of central memory CD8 + T cells. Moreover, we found that the loss of the STING gene results in a reduction in the number of mitochondria and a change in the metabolic pathway selection, thereby inducing excessive glycolysis in CD8 + T cells. This excessive glycolysis generates high levels of lactate, which further inhibits IFN-γ secretion and impacts memory T cell differentiation. Correcting the glycolysis disorder partially restored function and IFN-γ secretion, rescued the central memory CD8 + T subset, and improved immunotherapy in STING-KO mice. This provides a new treatment strategy for patients with low STING expression and a poor response to immunotherapy. CONCLUSION Intrinsic STING of CD8 + T cells affects their function through the HK2/Lactate/IFN-γ axis and affects memory differentiation by regulating glycolysis.
Collapse
Affiliation(s)
- Qiuli Xu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Xin Hua
- Department of Geriatric Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Bingbing Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Bei Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Ranpu Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Hao Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
- Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Qinpei Cheng
- Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China.
| | - Yong Song
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China.
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China.
| |
Collapse
|
12
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
13
|
Yao ZY, Ma X, Cui YZ, Liu J, Han ZX, Song J. Impact of triglyceride-glucose index on the long-term prognosis of advanced gastric cancer patients receiving immunotherapy combined with chemotherapy. World J Gastroenterol 2025; 31:102249. [PMID: 39926212 PMCID: PMC11718607 DOI: 10.3748/wjg.v31.i5.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of death worldwide. Despite advancements in immunotherapies, patient prognosis remains poor, necessitating the identification of key prognostic factors to optimize the treatment approaches. Insulin resistance, as indicated by the triglyceride glucose (TyG) index, is increasingly recognized for its impact on cancer progression and immune modulation, and its potential role in GC prognosis is of particular interest. AIM To investigate whether the TyG index, a surrogate marker of insulin resistance, can predict the prognosis of patients with advanced GC receiving immunotherapy combined with chemotherapy. METHODS This retrospective study included 300 patients with advanced GC who received sintilimab combined with chemotherapy. The patients were categorized into two groups according to high or low TyG index, and independent prognostic factors for overall survival (OS) were determined using Cox proportional hazards regression analysis, which led to the development of a nomogram model. RESULTS Of the included patients, 136 had a high TyG index and 164 had a low TyG index. The median progression-free survival of the high TyG index group was significantly longer than that of the low TyG index group. Similarly, the median OS of the high TyG index group was significantly longer than that of the low TyG index group. The objective response and disease control rates in the two groups were 18.38% vs 9.15% and 58.82% vs 46.95%, respectively. No significant difference was noted in the incidence of adverse reactions at any level between the two groups (P > 0.05). In multivariate analysis, the Eastern Cooperative Oncology Group score, programmed cell death ligand 1 expression, and TyG index acted as independent prognostic factors for OS. Of these factors, the hazard ratio of the TyG index was 0.36 (95% confidence interval: 0.36-0.55, P < 0.001), and the nomogram model re-emphasized its importance as the main predictor of patient prognosis, followed by programmed cell death ligand 1 expression and the Eastern Cooperative Oncology Group score. CONCLUSION The TyG index is a long-term predictor of the efficacy of immunotherapy combined with chemotherapy, and patients with a high index have a better prognosis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| | - Xiao Ma
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Yong-Zheng Cui
- Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| | - Jie Liu
- Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| | - Zheng-Xiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| | - Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
14
|
Leven AS, Wagner N, Nienaber S, Messiha D, Tasdogan A, Ugurel S. Changes in tumor and cardiac metabolism upon immune checkpoint. Basic Res Cardiol 2025; 120:133-152. [PMID: 39658699 PMCID: PMC11790718 DOI: 10.1007/s00395-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Cardiovascular disease and cancer are the leading causes of death in the Western world. The associated risk factors are increased by smoking, hypertension, diabetes, sedentary lifestyle, aging, unbalanced diet, and alcohol consumption. Therefore, the study of cellular metabolism has become of increasing importance, with current research focusing on the alterations and adjustments of the metabolism of cancer patients. This may also affect the efficacy and tolerability of anti-cancer therapies such as immune-checkpoint inhibition (ICI). This review will focus on metabolic adaptations and their consequences for various cell types, including cancer cells, cardiac myocytes, and immune cells. Focusing on ICI, we illustrate how anti-cancer therapies interact with metabolism. In addition to the desired tumor response, we highlight that ICI can also lead to a variety of side effects that may impact metabolism or vice versa. With regard to the cardiovascular system, ICI-induced cardiotoxicity is increasingly recognized as one of the most life-threatening adverse events with a mortality of up to 50%. As such, significant efforts are being made to assess the specific interactions and associated metabolic changes associated with ICIs to improve both efficacy and management of side effects.
Collapse
Affiliation(s)
- Anna-Sophia Leven
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Natalie Wagner
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephan Nienaber
- Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Daniel Messiha
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Zhang D, Wang Y, Yu P, Sun J, Li J, Hu Y, Meng X, Li J, Xiang L. Scutellarein inhibits lung cancer growth by inducing cell apoptosis and inhibiting glutamine metabolic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118999. [PMID: 39490431 DOI: 10.1016/j.jep.2024.118999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi, a widely used Chinese medicinal herb, has shown effectiveness against lung cancer. Scutellarein, a key component of Scutellaria baicalensis, also demonstrates anticancer properties in lung cancer. However, the underlying mechanisms have not yet been clarified. AIM OF THE STUDY This study aimed to investigate the effects of scutellarein in the treatment of NSCLC and its underlying mechanisms. METHODS This study explored the effects of scutellarein on non-small cell lung cancer (NSCLC) and its mechanisms. A Lewis lung cancer mouse model was established to assess scutellarein's anticancer activity in vivo. Additionally, the compound's effects on cell proliferation, colony formation, migration, and apoptosis were evaluated in vitro using A549 and H1299 lung cancer cells. Metabolomics analysis was conducted to identify changes in cellular metabolism due to scutellarein, while molecular docking and western blotting techniques were employed to elucidate the molecular mechanisms of its anti-lung cancer effects. RESULTS Scutellarein significantly inhibited lung cancer xenograft tumor growth. In vitro studies showed that scutellarein suppressed migration and colony formation in A549 and H1299 cells, induced cell cycle arrest, and triggered cell apoptosis. Notably, scutellarein profoundly altered amino acid metabolism, particularly affecting glutamine metabolites. It affected key glutamine transporters ASCT2 and LAT1, as well as glutaminase GLS1, leading to their reduced expression. CONCLUSION Scutellarein effectively inhibits lung cancer growth both in vivo and in vitro by inducing cell apoptosis and downregulating the glutamine metabolic pathway.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apigenin/pharmacology
- Apigenin/therapeutic use
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Glutamine/metabolism
- Cell Proliferation/drug effects
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- A549 Cells
- Cell Line, Tumor
- Mice, Inbred C57BL
- Cell Movement/drug effects
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Mice
- Molecular Docking Simulation
- Xenograft Model Antitumor Assays
- Scutellaria baicalensis/chemistry
- Minor Histocompatibility Antigens/metabolism
- Male
- Amino Acid Transport System ASC/metabolism
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinwen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yingfan Hu
- The School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Juan Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
16
|
Liu Y, Han J, Hsu WH, LaBella KA, Deng P, Shang X, de Lara PT, Cai L, Jiang S, DePinho RA. Combined KRAS Inhibition and Immune Therapy Generates Durable Complete Responses in an Autochthonous PDAC Model. Cancer Discov 2025; 15:162-178. [PMID: 39348506 PMCID: PMC11858029 DOI: 10.1158/2159-8290.cd-24-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
SIGNIFICANCE Clinically available KRAS* inhibitors and IO agents alleviated the immunosuppressive tumor microenvironment in PDAC. Profound tumor regression and prolonged survival in an autochthonous PDAC model provide a compelling rationale for combining KRAS* inhibition with IO agents targeting multiple arms of the immunity cycle to combat PDAC.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Jincheng Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Kyle A. LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Paulino Tallón de Lara
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Li Cai
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| |
Collapse
|
17
|
Ying H, Kimmelman AC, Bardeesy N, Kalluri R, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2025; 39:36-63. [PMID: 39510840 PMCID: PMC11789498 DOI: 10.1101/gad.351863.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a grim prognosis for patients. Recent multidisciplinary research efforts have provided critical insights into its genetics and tumor biology, creating the foundation for rational development of targeted and immune therapies. Here, we review the PDAC genomic landscape and the role of specific oncogenic events in tumor initiation and progression, as well as their contributions to shaping its tumor biology. We further summarize and synthesize breakthroughs in single-cell and metabolic profiling technologies that have illuminated the complex cellular composition and heterotypic interactions of the PDAC tumor microenvironment, with an emphasis on metabolic cross-talk across cancer and stromal cells that sustains anabolic growth and suppresses tumor immunity. These conceptual advances have generated novel immunotherapy regimens, particularly cancer vaccines, which are now in clinical testing. We also highlight the advent of KRAS targeted therapy, a milestone advance that has transformed treatment paradigms and offers a platform for combined immunotherapy and targeted strategies. This review provides a perspective summarizing current scientific and therapeutic challenges as well as practice-changing opportunities for the PDAC field at this major inflection point.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA
- The Cancer Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Raghu Kalluri
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anirban Maitra
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA;
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Wei L, Zhang B, Tu Y, Liu A. Research Progress on Glycolysis Mechanism of Psoriasis. PSORIASIS (AUCKLAND, N.Z.) 2024; 14:195-206. [PMID: 39759475 PMCID: PMC11699830 DOI: 10.2147/ptt.s493315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Psoriasis is a chronic inflammatory disease with a complex pathogenesis. Hyperplasia of glycolytic-dependent epidermal keratinocytes (KCs) is a new hallmark of psoriasis pathogenesis. Meanwhile, immune cells undergo metabolic reprogramming similar to KCs. Glycolysis provides energy for the proliferation of KCs, while it also releases lactic acid to facilitate the differentiation of immune cells. In turn, differentiated immune cells further promote KCs glycolysis by releasing inflammatory factors, thus forming an immunometabolism loop. The interaction between immune response and metabolic pathways jointly promotes the sustained proliferation of KCs and the secretion of various inflammatory factors by immune cells. Understanding the role of glycolysis in immunometabolism of psoriasis may provide new ideas for non-immunosuppressive treatment of psoriasis. This article aims to review the role of glycolysis in the pathogenesis of psoriasis and attempts to summarize the key enzymes and regulatory factors involved in psoriasis glycolysis, as well as their interactions. Finally, we discuss the pharmacological modulators of glycolysis in psoriasis.
Collapse
Affiliation(s)
- Lu Wei
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Buxin Zhang
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| | - Yuanhui Tu
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| | - Aimin Liu
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
19
|
Li W, Chen J, Guo Z. Targeting metabolic pathway enhance CAR-T potency for solid tumor. Int Immunopharmacol 2024; 143:113412. [PMID: 39454410 DOI: 10.1016/j.intimp.2024.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have great potential in cancer therapy, particularly in treating hematologic malignancies. However, their efficacy in solid tumors remains limited, with a significant proportion of patients failing to achieve long-term complete remission. One major challenge is the premature exhaustion of CAR-T cells, often due to insufficient metabolic energy. The survival, function and metabolic adaptation of CAR-T cells are key determinants of their therapeutic efficacy. We explore how targeting metabolic pathways in the tumor microenvironment can enhance CAR-T cell therapy by addressing metabolic competition and immunosuppression that impair CAR-T cell function. Tumors undergo metabolically reprogrammed to meet their rapid proliferation, thereby modulating metabolic pathways in immune cells to promote immunosuppression. The distinct metabolic requirements of tumors and T cells create a competitive environment, affecting the efficacy of CAR-T cell therapy. Recent research on glucose, lipid and amino acid metabolism, along with the interactions between tumor and immune cell metabolism, has revealed that targeting these metabolic processes can enhance antitumor immune responses. Combining metabolic interventions with existing antitumor therapies can fulfill the metabolic demands of immune cells, providing new ideas for tumor immunometabolic therapies. This review discusses the latest advances in the immunometabolic mechanisms underlying tumor immunosuppression, their implications for immunotherapy, and summarizes potential metabolic targets to improve the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Wenying Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
20
|
Kenny TC, Birsoy K. Mitochondria and Cancer. Cold Spring Harb Perspect Med 2024; 14:a041534. [PMID: 38692736 PMCID: PMC11610758 DOI: 10.1101/cshperspect.a041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mitochondria are semiautonomous organelles with diverse metabolic and cellular functions including anabolism and energy production through oxidative phosphorylation. Following the pioneering observations of Otto Warburg nearly a century ago, an immense body of work has examined the role of mitochondria in cancer pathogenesis and progression. Here, we summarize the current state of the field, which has coalesced around the position that functional mitochondria are required for cancer cell proliferation. In this review, we discuss how mitochondria influence tumorigenesis by impacting anabolism, intracellular signaling, and the tumor microenvironment. Consistent with their critical functions in tumor formation, mitochondria have become an attractive target for cancer therapy. We provide a comprehensive update on the numerous therapeutic modalities targeting the mitochondria of cancer cells making their way through clinical trials.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
21
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
22
|
Li W, Dong P, Wang W. Association of systemic inflammation markers in cancer mortality with diabetes: evidence from National Health and Nutrition Examination Survey. Acta Diabetol 2024; 61:1403-1412. [PMID: 38801427 DOI: 10.1007/s00592-024-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
AIMS Inflammation plays a crucial role in the interconnection between diabetes and cancer. Our study seeks to investigate the predictive value of inflammatory indices concerning overall survival (OS) among diabetic cancer patients. METHODS We analyzed data from the National Health and Nutrition Examination Survey between 1999 and 2020. Using four immune-related markers, we employed the log-rank method, multivariate Cox regression, and subgroup analysis to explore the predictive capacity of these markers for OS among adult individuals with diabetes and cancer. RESULTS Our study identified four systemic immune-inflammatory indices that demonstrated significant predictive potential for OS among diabetic cancer patients, namely systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio (all p values < 0.05). Notably, these inflammatory biomarkers still maintain their predictive value after adjusting potential confounding factors. The analysis using restrictive cubic splines revealed significant non-linear relationships between inflammatory biomarkers and OS. CONCLUSION The findings presented in this study underscore the potential of inflammatory markers as prognostic indicators and their crucial role in enhancing risk assessment for diabetic patients with cancer.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peixin Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
23
|
Wu X, Zou W, Liu Z. The relationship between immune cells and prostate cancer, and the mediating role of metabolites: a Mendelian randomization study. Sci Rep 2024; 14:26217. [PMID: 39482407 PMCID: PMC11528075 DOI: 10.1038/s41598-024-78085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024] Open
Abstract
Research has demonstrated the significant involvement of immune cells in the development and progression of prostate cancer (PCa). However, the precise causal relationship between immune cells and PCa remains unclear. This study utilized bidirectional Mendelian randomization (MR) analysis to investigate the causal link between immune cells and PCa. Additionally, employed mediation MR design to ascertain the potential mediating role of metabolites in the connection between immune cells and PCa outcomes. Unswitched memory B cell % lymphocyte and CD24 + CD27 + B cell % lymphocyte were positively related to PCa risk, while CD62L - monocyte absolute count and CD62L - monocyte % monocyte were negatively associated with PCa risk. Sensitivity analysis was conducted to validate these results. The mediation MR results indicate that 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) levels may be an independent risk factor for PCa, while the succinate to acetoacetate ratio (SA ratio) was found to be a mediator for the effect of CD62L - monocyte % monocyte on PCa, with a mediation proportion of 16.6% (mediation percentage: 16.6%, 95%CI - 163% - 196%). The research validates the genetic causality between particular immune cells and PCa, and has emphasized the potential intermediary function of SA ratio. These noteworthy discoveries provide fresh perspectives for the clinical management of PCa.
Collapse
Affiliation(s)
- Xipeng Wu
- Department of Urology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, ZhuZhou, People's Republic of China
| | - Wenda Zou
- Department of Reproductive Medicine Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, ZhuZhou, People's Republic of China
| | - Ziwei Liu
- Department of Urology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, ZhuZhou, People's Republic of China.
| |
Collapse
|
24
|
Bazer FW, Wu G, Johnson GA. Fructose metabolism is unregulated in cancers and placentae. Exp Biol Med (Maywood) 2024; 249:10200. [PMID: 39529665 PMCID: PMC11550943 DOI: 10.3389/ebm.2024.10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Fructose and lactate are present in high concentrations in uterine luminal fluid, fetal fluids and fetal blood of ungulates and cetaceans, but their roles have been ignored and they have been considered waste products of pregnancy. This review provides evidence for key roles of both fructose and lactate in support of key metabolic pathways required for growth and development of fetal-placental tissues, implantation and placentation. The uterus and placenta of ungulates convert glucose to fructose via the polyol pathway. Fructose is sequestered within the uterus and cannot be transported back into the maternal circulation. Fructose is phosphorylated by ketohexokinase to fructose-1-PO4 (F1P) by that is metabolized via the fructolysis pathway to yield dihydoxyacetone phosphate and glyceraldehyde-3-PO4 that are downstream of phosphofructokinase. Thus, there is no inhibition of the fructolysis pathway by low pH, citrate or ATP which allows F1P to continuously generate substrates for the pentose cycle, hexosamine biosynthesis pathway, one-carbon metabolism and tricarboxylic acid cycle, as well as lactate. Lactate sustains the activity of hypoxia-inducible factor alpha and its downstream targets such as vascular endothelial growth factor to increase utero-placental blood flow critical to growth and development of the fetal-placental tissues and a successful outcome of pregnancy. Pregnancy has been referred to as a controlled cancer and this review addresses similarities regarding metabolic aspects of tumors and the placenta.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
25
|
Sun B, Si N, Wei X, Wang H, Wang H, Liu Y, Jiang S, Liu H, Yang J, Xia B, Chen L, Bian B, Zhao H. Multi-omics reveals bufadienolide Q-markers of Bufonis Venenum based on antitumor activity and cardiovascular toxicity in zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155914. [PMID: 39121534 DOI: 10.1016/j.phymed.2024.155914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Bufonis Venenum (BV) is a traditional animal-based Chinese medicine with therapeutic effects against cancer. However, its clinical use is significantly restricted due to associated cardiovascular risks. BV's value in China's market is typically assessed based on "content priority," focusing on indicator components. However, these components of BV possess both antitumor activity and toxicity, and the correlation between the antitumor activity and toxicity of BV has not yet been elucidated. PURPOSE This study employs an integrated multi-omics approach to identify bufadienolide Q-markers and explore the correlation between BV's antitumor activity and toxicity. The aim is to establish a more comprehensive method for BV's quality. METHODS Normal zebrafish and HepG2 xenograft zebrafish were chosen as activity and toxicity evaluation models. Ultra-high performance liquid chromatography (UHPLC) coupled with a linear ion trap orbitrap (LTQ-Orbitrap) mass spectrometry was used to quantify eight batches of BV and key "toxic and effective" components were screened out. Transcriptomic and metabolomic analyses were performed to elucidate the regulatory mechanisms underlying the antitumor activity and cardiovascular toxicity of the key components in BV. RESULTS Eight key "toxic and effective" compounds were identified: resibufogenin, cinobufagin, arenobufagin, bufotalin, bufalin, gamabufotalin, desacetylcinobufagin, and telocinobufagin. The findings showed that bufalin and cinobufagin interfered with calcium homeostasis through CaV and CaSR, induced cardiotoxicity, and upregulated CASP9 to activate myocardial cell apoptosis. However, desacetylcinobufagin exhibited greater potential in terms of anti-tumor effects. Combining the results of untargeted and targeted metabolomics revealed that desacetylcinobufagin could have a callback effect on differential lipids and correct abnormal energy and amino acid metabolism caused by cancer, similar to cinobufagin and bufalin. Microscale thermophoresis (MST) ligand binding measurements also showed that the binding of desacetylcinobufagin to GPX4 has a more potent ability to induce ferroptosis in tumor cells compared to cinobufagin. CONCLUSION An innovative evaluation method based on the zebrafish was developed to investigate the relationship between the toxicity and efficacy of BV. This study identified toxicity and activity Q-markers and explored the mechanism between the two effects of BV. The research data could offer valuable insights into the efficacy of BV. Additionally, desacetylcinobufagin, an active ingredient with low toxicity, was found to enhance the quality of BV.
Collapse
Affiliation(s)
- Bo Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huijun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuyang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shan Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huining Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiaying Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Xia
- Hunter Biotechnology Inc., Zhejiang Hangzhou 310051, China
| | - Lihua Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
26
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
27
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
28
|
Aehnlich P, Santiago MV, Dam SH, Saló SF, Rahbech A, Olsen LR, Thor Straten P, Desler C, Holmen Olofsson G. Glycolysis inhibition affects proliferation and cytotoxicity of Vγ9Vδ2 T cells expanded for adoptive cell therapy. Cytotherapy 2024; 26:1033-1045. [PMID: 38775775 DOI: 10.1016/j.jcyt.2024.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/31/2024] [Accepted: 04/26/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND AIMS Vγ9Vδ2 T cells are under investigation as alternative effector cells for adoptive cell therapy (ACT) in cancer. Despite promising in vitro results, anti-tumor efficacies in early clinical studies have been lower than expected, which could be ascribed to the complex interplay of tumor and immune cell metabolism competing for the same nutrients in the tumor microenvironment. METHODS To contribute to the scarce knowledge regarding gamma delta T-cell metabolism, we investigated the metabolic phenotype of 25-day-expanded Vγ9Vδ2 T cells and how it is intertwined with functionality. RESULTS We found that Vγ9Vδ2 T cells displayed a quiescent metabolism, utilizing both glycolysis and oxidative phosphorylation (OXPHOS) for energy production, as measured in Seahorse assays. Upon T-cell receptor activation, both pathways were upregulated, and inhibition with metabolic inhibitors showed that Vγ9Vδ2 T cells were dependent on glycolysis and the pentose phosphate pathway for proliferation. The dependency on glucose for proliferation was confirmed in glucose-free conditions. Cytotoxicity against malignant melanoma was reduced by glycolysis inhibition but not OXPHOS inhibition. CONCLUSIONS These findings lay the groundwork for further studies on manipulation of Vγ9Vδ2 T-cell metabolism for improved ACT outcome.
Collapse
Affiliation(s)
- Pia Aehnlich
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marta Velasco Santiago
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Søren Helweg Dam
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sara Fresnillo Saló
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Anne Rahbech
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Holmen Olofsson
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
29
|
Wang J, Zhang Q, Fu H, Han Y, Li X, Zou Q, Yuan S, Sun L. ASCT2 Regulates Fatty Acid Metabolism to Trigger Glutamine Addiction in Basal-like Breast Cancer. Cancers (Basel) 2024; 16:3028. [PMID: 39272886 PMCID: PMC11394221 DOI: 10.3390/cancers16173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
As a crucial amino acid, glutamine can provide the nitrogen and carbon sources needed to support cancer cell proliferation, invasion, and metastasis. Interestingly, different types of breast cancer have different dependences on glutamine. This research shows that basal-like breast cancer depends on glutamine, while the other types of breast cancer may be more dependent on glucose. Glutamine transporter ASCT2 is highly expressed in various cancers and significantly promotes the growth of breast cancer. However, the key regulatory mechanism of ASCT2 in promoting basal-like breast cancer progression remains unclear. Our research demonstrates the significant change in fatty acid levels caused by ASCT2, which may be a key factor in glutamine sensitivity. This phenomenon results from the mutual activation between ASCT2-mediated glutamine transport and lipid metabolism via the nuclear receptor PPARα. ASCT2 cooperatively promoted PPARα expression, leading to the upregulation of lipid metabolism. Moreover, we also found that C118P could inhibit lipid metabolism by targeting ASCT2. More importantly, this research identifies a potential avenue of evidence for the prevention and early intervention of basal-like breast cancer by blocking the glutamine-lipid feedback loop.
Collapse
Affiliation(s)
- Jia Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Huaizi Fu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Han
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Li
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Qianlin Zou
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Li Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
30
|
Pandey S, Anang V, Schumacher MM. Tumor microenvironment induced switch to mitochondrial metabolism promotes suppressive functions in immune cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:67-103. [PMID: 39396850 DOI: 10.1016/bs.ircmb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Understanding the intricacies of the metabolic phenotype in immune cells and its plasticity within the tumor microenvironment is pivotal in understanding the pathology and prognosis of cancer. Unfavorable conditions and cellular stress in the tumor microenvironment (TME) exert a profound impact on cellular functions in immune cells, thereby influencing both tumor progression and immune responses. Elevated AMP:ATP ratio, a consequence of limited glucose levels, activate AMP-activated protein kinase (AMPK) while concurrently repressing the activity of mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α). The intricate balance between AMPK, mTOR, and HIF-1α activities defines the metabolic phenotype of immune cells in the TME. These Changes in metabolic phenotype are strongly associated with immune cell functions and play a crucial role in creating a milieu conducive to tumor progression. Insufficiency of nutrient and oxygen supply leads to a metabolic shift in immune cells characterized by a decrease in glycolysis and an increase in oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) rates. In most cases, this shift in metabolism is accompanied by a compromise in the effector functions of these immune cells. This metabolic adaptation prompts immune cells to turn down their effector functions, entering a quiescent or immunosuppressive state that may support tumor growth. This article discusses how tumor microenvironment alters the metabolism in immune cells leading to their tolerance and tumor progression, with emphasis on mitochondrial metabolism (OXPHOS and FAO).
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
31
|
He L, Li J, Li X, Wang X, Yan Q. Inflammatory status predicts prognosis in patients with gastric cancer with early pyloric stenosis who underwent radical resection: A propensity score‑matching analysis. Oncol Lett 2024; 28:355. [PMID: 38881714 PMCID: PMC11176888 DOI: 10.3892/ol.2024.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 06/18/2024] Open
Abstract
The inflammatory status of patients is closely related to their nutritional status, and the impact of inflammatory status on patients with pyloric stenosis remains unclear. The present study aimed to investigate the impact of inflammatory status on the prognosis of patients with gastric cancer with early pyloric stenosis who underwent radical resection. A retrospective analysis included 242 patients with gastric cancer who underwent radical resection at the Affiliated Hospital of Southwest Medical University between July 2016 and December 2020. All patients were diagnosed with early pyloric stenosis. Correlation analysis was used to assess variations among different factors, and survival analysis was conducted to evaluate differences in overall survival (OS). To identify independent prognostic indicators, both univariate and multivariate Cox regression analyses were performed, addressing potential multicollinearity using Lasso analysis. Propensity score matching (PSM) was employed to eliminate potential confounding factors. Additionally, a prognostic risk model and nomogram based on inflammatory indicators were developed to comprehensively explore their impact on prognosis. Initial survival analysis revealed significant associations between neutrophil-to-lymphocyte ratio (NLR; χ2=10.522, P<0.001), systemic immune-inflammation index (SII; χ2=6.733, P=0.025), systemic inflammation response index (SIRI; χ2=15.490, P<0.001) and OS of the patients, while there was no significant survival difference among patients with different platelet-to-lymphocyte ratio (PLR; χ2=2.561, P=0.050). SIRI not only had the highest area under the curve but was also found to be an independent prognostic indicator (hazard ratio=1.851, P=0.046) in the present study. Following PSM on SIRI, a total of 174 patients were included in the subsequent analysis. Time-receiver operating characteristic and survival curves for SIRI after PSM consistently demonstrated its robust prognostic predictive capability. Furthermore, the prognostic risk model based on SIRI and the nomogram incorporating SIRI both exhibited high prognostic value. Inflammatory status was significantly associated with the prognosis of patients with gastric cancer with early pyloric stenosis who underwent radical resection. The NLR, SII and SIRI could all predict patient outcomes. Moreover, SIRI exhibited the highest prognostic value among the inflammatory indices and has been identified as an independent prognostic factor in the present study.
Collapse
Affiliation(s)
- Lijuan He
- Health Management Center, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jie Li
- Department of Cardiology, Ordos Central Hospital, Baotou Medical College, Ordos, Inner Mongolia Autonomous Region 017000, P.R. China
| | - Xiaohong Li
- Health Management Center, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiong Yan
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
32
|
Espelage L, Wagner N, Placke JM, Ugurel S, Tasdogan A. The Interplay between Metabolic Adaptations and Diet in Cancer Immunotherapy. Clin Cancer Res 2024; 30:3117-3127. [PMID: 38771898 DOI: 10.1158/1078-0432.ccr-22-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring antitumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and antitumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutic approaches that can effectively combat cancer in patients.
Collapse
Affiliation(s)
- Lena Espelage
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Natalie Wagner
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
33
|
Yang M, Wang B, Hou W, Zeng H, He W, Zhang XK, Yan D, Yu H, Huang L, Pei L, Li K, Qin H, Lin T, Huang J. NAD + metabolism enzyme NNMT in cancer-associated fibroblasts drives tumor progression and resistance to immunotherapy by modulating macrophages in urothelial bladder cancer. J Immunother Cancer 2024; 12:e009281. [PMID: 39067875 DOI: 10.1136/jitc-2024-009281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND This study comprehensively investigates the association between the expression of nicotinamide N-methyltransferase (NNMT) and clinical outcomes of urothelial bladder cancer (UBC), as well as the molecular mechanisms by which NNMT in cancer-associated fibroblast (CAF) modulates tumor progression and immunotherapy resistance in UBC. METHODS Single-cell transcriptomic analyses, immunohistochemical and immunofluorescence assays were performed on bladder cancer samples to validate the relationship between NNMT expression and clinical outcomes. A series of experiments, including chromatin immunoprecipitation assay, liquid chromatography tandem mass spectrometry assay, and CRISPR‒Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9) knockout, together with in vivo models, have been established to determine the molecular functions of NNMT in CAFs in UBC. RESULTS We demonstrated that elevated expression of the nicotinamide adenine dinucleotide (NAD+) metabolism enzyme NNMT in CAFs (NNMT+ CAFs) was significantly associated with non-response to programmed death-ligand 1 (PD-L1) blockade immunotherapy in patients with UBC and predicted the unfavorable prognosis of UBC in two independent large cohorts. Targeting NNMT using the inhibitor 5-Amino-1-methylquinolinium iodide significantly reduced tumor growth and enhanced the apoptotic effects of the anti-PD-L1 antibody in UBC mouse models. Mechanistically, NNMT+ CAFs recruit tumor-associated macrophages via epigenetic reprogramming of serum amyloid A (SAA) to drive tumor cell proliferation and confer resistance to programmed death-1/PD-L1 blockade immunotherapy. CONCLUSIONS NNMT+ CAFs were significantly associated with non-response to PD-L1 blockade immunotherapy in patients with UBC. Elevated NNMT, specifically in CAFs, upregulates SAA expression and enhances the recruitment and differentiation of macrophages in the tumor microenvironment, thereby directly or indirectly promoting tumor progression and conferring resistance to immunotherapies in bladder cancer.
Collapse
Affiliation(s)
- Meihua Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R.China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Weibin Hou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Honghui Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R.China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xin-Ke Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Dong Yan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hao Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Long Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Lu Pei
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
34
|
Agarwala Y, Brauns TA, Sluder AE, Poznansky MC, Gemechu Y. Targeting metabolic pathways to counter cancer immunotherapy resistance. Trends Immunol 2024; 45:486-494. [PMID: 38876831 DOI: 10.1016/j.it.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Immunotherapies have revolutionized the treatment of certain cancers, but challenges remain in overcoming immunotherapy resistance. Research shows that metabolic modulation of the tumor microenvironment can enhance antitumor immunity. Here, we discuss recent preclinical and clinical evidence for the efficacy of combining metabolic modifiers with immunotherapies. While this combination holds great promise, a few key areas must be addressed, which include identifying the effects of metabolic modifiers on immune cell metabolism, the putative biomarkers of therapeutic efficacy, the efficacy of modifiers on tumors harboring metabolic heterogeneity, and the potential development of resistance due to tumor reliance on alternative metabolic pathways. We propose solutions to these problems and posit that assessing these parameters is crucial for considering the potential of metabolic modifiers in sensitizing tumors to immunotherapies.
Collapse
Affiliation(s)
- Yuki Agarwala
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Imperial College School of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Timothy A Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohannes Gemechu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Zhu G, Cao L, Wu J, Xu M, Zhang Y, Wu M, Li J. Co-morbid intersections of cancer and cardiovascular disease and targets for natural drug action: Reprogramming of lipid metabolism. Biomed Pharmacother 2024; 176:116875. [PMID: 38850662 DOI: 10.1016/j.biopha.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Cancer and cardiovascular diseases are major contributors to global morbidity and mortality, and their seemingly separate pathologies are intricately intertwined. In the context of cancer, the cardiovascular disease encompasses not only the side effects arising from anti-tumor treatments but also the metabolic shifts induced by oncological conditions. A growing body of research indicates that lipid metabolic reprogramming serves as a distinctive hallmark of tumors. Furthermore, anomalies in lipid metabolism play a significant role in the development of cardiovascular disease. This study delves into the cardiac implications of lipid metabolic reprogramming within the cancer context, closely examining abnormalities in lipid metabolism present in tumors, cardiac tissue, and immune cells within the microenvironment. Additionally, we examined risk factors such as obesity and anti-tumor therapy. Despite progress, a gap remains in the availability of drugs targeting lipid metabolism modulation for treating tumors and mitigating cardiac risk, with limited advancement seen in prior studies. Here, we present a review of previous research on natural drugs that exhibit both shared and distinct therapeutic effects on tumors and cardiac health by modulating lipid metabolism. Our aim is to provide insights for potential drug development.
Collapse
Affiliation(s)
- Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Manman Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
36
|
Ba ZC, Zhu XQ, Li ZG, Li YZ. Development and validation of a prognostic immunoinflammatory index for patients with gastric cancer. World J Gastroenterol 2024; 30:3059-3075. [PMID: 38983960 PMCID: PMC11230058 DOI: 10.3748/wjg.v30.i24.3059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Studies have demonstrated the influence of immunity and inflammation on the development of tumors. Although single biomarkers of immunity and inflammation have been shown to be clinically predictive, the use of biomarkers integrating both to predict prognosis in patients with gastric cancer remains to be investigated. AIM To investigate the prognostic and clinical significance of inflammatory biomarkers and lymphocytes in patients undergoing surgical treatment for gastric cancer. METHODS Univariate COX regression analysis was performed to identify potential prognostic factors for patients with gastric cancer undergoing surgical treatment. Least absolute shrinkage and selection operator-COX (LASSO-COX) regression analysis was performed to integrate these factors and formulate a new prognostic immunoinflammatory index (PII). The correlation between PII and clinical characteristics was statistically analyzed. Nomograms incorporating the PII score were devised and validated based on the time-dependent area under the curve and decision curve analysis. RESULTS Patients exhibiting elevated neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and systemic immune inflammatory index displayed inferior progression-free survival (PFS) and overall survival (OS). Conversely, low levels of CD3(+), CD3(+) CD8(+), CD4(+)CD8(+), and CD3(+)CD16(+)CD56(+) T lymphocytes were associated with improved PFS and OS, while high CD19(+) T lymphocyte levels were linked to worse PFS and OS. The PII score demonstrated associations with tumor characteristics (primary tumor site and tumor size), establishing itself as an independent prognostic factor for both PFS and OS. Time-dependent area under the curve and decision curve analysis affirmed the effectiveness of the PII-based nomogram as a robust prognostic predictive model. CONCLUSION PII may be a reliable predictor of prognosis in patients with gastric cancer undergoing surgical treatment, and it offers insights into cancer-related immune-inflammatory responses, with potential significance in clinical practice.
Collapse
Affiliation(s)
- Zhi-Chang Ba
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
- Zhi-Chang Ba and Xi-Qing Zhu
| | - Xi-Qing Zhu
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
- Zhi-Chang Ba and Xi-Qing Zhu
| | - Zhi-Guo Li
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yuan-Zhou Li
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
37
|
Cao H, Zheng X, Teng C, Xu L, Wang Y, Gai C, Ye H. Rhodobacter sphaeroides supplementation improves defense ability of Chinese mitten crab Eriocheir sinensis against Shewanella putrefaciens infection via intestinal flora and metabolism regulation. J Invertebr Pathol 2024; 204:108120. [PMID: 38679366 DOI: 10.1016/j.jip.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Shewanella putrefaciens is a vital bacterial pathogen implicated in serious diseases in Chinese mitten crab Eriocheir sinensis. Yet the use of probiotics to improve the defense ability of E. sinensis against S. putrefaciens infection remains poorly understood. In the present study, the protective effect of dietary R. sphaeroides against S. putrefaciens infection in E. sinensis was evaluated through antioxidant capability, immune response, and survival under bacterial challenge assays, and its protective mechanism was further explored using a combination of intestinal flora and metabolome assays. Our results indicated that dietary R. sphaeroides could significantly improve immunity and antioxidant ability of Chinese mitten crabs, thereby strengthening their disease resistance with the relative percentage survival of 81.09% against S. putrefaciens. In addition, dietary R. sphaeroides could significantly alter the intestinal microbial composition and intestinal metabolism of crabs, causing not only the reduction of potential threatening pathogen load but also the increase of differential metabolites in tryptophan metabolism, pyrimidine metabolism, and glycerophospholipid metabolism. Furthermore, the regulation of differential metabolites such as N-Acetylserotonin positively correlated with beneficial Rhodobacter could be a potential protection strategy for Shewanella infection. To the best of our knowledge, this is the first study to illustrate the protective effect and mechanism of R. sphaeroides supplementation to protect E. sinensis against S. putrefaciens infection.
Collapse
Affiliation(s)
- Haipeng Cao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Xurui Zheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenhao Teng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - La Xu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao, Shandong 266104, China
| | - Youhong Wang
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao, Shandong 266104, China
| | - Chunlei Gai
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao, Shandong 266104, China.
| | - Haibin Ye
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao, Shandong 266104, China.
| |
Collapse
|
38
|
Su R, Shao Y, Huang M, Liu D, Yu H, Qiu Y. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov 2024; 10:236. [PMID: 38755125 PMCID: PMC11099033 DOI: 10.1038/s41420-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Maturing immunometabolic research empowers immune regulation novel approaches. Progressive metabolic adaptation of tumor cells permits a thriving tumor microenvironment (TME) in which immune cells always lose the initial killing capacity, which remains an unsolved dilemma even with the development of immune checkpoint therapies. In recent years, many studies on tumor immunometabolism have been reported. The development of immunometabolism may facilitate anti-tumor immunotherapy from the recurrent crosstalk between metabolism and immunity. Here, we discuss clinical studies of the core signaling pathways of immunometabolism and their inhibitors or agonists, as well as the specific functions of these pathways in regulating immunity and metabolism, and discuss some of the identified immunometabolic checkpoints. Understanding the comprehensive advances in immunometabolism helps to revise the status quo of cancer treatment. An overview of the new landscape of immunometabolism. The PI3K pathway promotes anabolism and inhibits catabolism. The LKB1 pathway inhibits anabolism and promotes catabolism. Overactivation of PI3K/AKT/mTOR pathway and IDO, IL4I1, ACAT, Sirt2, and MTHFD2 promote immunosuppression of TME formation, as evidenced by increased Treg and decreased T-cell proliferation. The LKBI-AMPK pathway promotes the differentiation of naive T cells to effector T cells and memory T cells and promotes anti-tumor immunity in DCs.
Collapse
Affiliation(s)
- Ranran Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Donghui Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
39
|
Sheng Y, Hu W, Chen S, Zhu X. Efferocytosis by macrophages in physiological and pathological conditions: regulatory pathways and molecular mechanisms. Front Immunol 2024; 15:1275203. [PMID: 38779685 PMCID: PMC11109379 DOI: 10.3389/fimmu.2024.1275203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Efferocytosis is defined as the highly effective phagocytic removal of apoptotic cells (ACs) by professional or non-professional phagocytes. Tissue-resident professional phagocytes ("efferocytes"), such as macrophages, have high phagocytic capacity and are crucial to resolve inflammation and aid in homeostasis. Recently, numerous exciting discoveries have revealed divergent (and even diametrically opposite) findings regarding metabolic immune reprogramming associated with efferocytosis by macrophages. In this review, we highlight the key metabolites involved in the three phases of efferocytosis and immune reprogramming of macrophages under physiological and pathological conditions. The next decade is expected to yield further breakthroughs in the regulatory pathways and molecular mechanisms connecting immunological outcomes to metabolic cues as well as avenues for "personalized" therapeutic intervention.
Collapse
Affiliation(s)
- Yan−Ran Sheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen−Ting Hu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Siman Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao−Yong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Cai Z, Li W, Hager S, Wilson JL, Afjehi-Sadat L, Heiss EH, Weichhart T, Heffeter P, Weckwerth W. Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling. Cell Mol Immunol 2024; 21:448-465. [PMID: 38409249 PMCID: PMC11061172 DOI: 10.1038/s41423-024-01134-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.
Collapse
Affiliation(s)
- Zhengnan Cai
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Wan Li
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facility, Mass Spectrometry Unit, Faculty of Life Science, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Yu T, Liu Z, Tao Q, Xu X, Li X, Li Y, Chen M, Liu R, Chen D, Wu M, Yu J. Targeting tumor-intrinsic SLC16A3 to enhance anti-PD-1 efficacy via tumor immune microenvironment reprogramming. Cancer Lett 2024; 589:216824. [PMID: 38522774 DOI: 10.1016/j.canlet.2024.216824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Immunotherapy, especially immune checkpoint inhibitors, has revolutionized clinical practice within the last decade. However, primary and secondary resistance to immunotherapy is common in patients with diverse types of cancer. It is well-acknowledged that tumor cells can facilitate the formation of immunosuppressive microenvironments via metabolism reprogramming, and lactic acid, the metabolite of glycolysis, is a significant contributor. SLC16A3 (also named as MCT4) is a transporter mediating lactic acid efflux. In this study, we investigated the role of glycolysis in immunotherapy resistance and aimed to improve the immunotherapy effects via Slc16a3 inhibition. Bioinformatical analysis revealed that the expression of glycolysis-related genes correlated with less CD8+ T cell infiltration and increased myeloid-derived suppressor cells (MDSC) enrichment. We found that high glycolytic activity in tumor cells adversely affected the antitumor immune responses and efficacy of immunotherapy and radiotherapy. As the transporter of lactic acid, SLC16A3 is highly expressed in glycolytic B16-F10 (RRID: CVCL_0159) cells, as well as human non-small cell lung carcinoma. We validated that Slc16a3 expression in tumor cells negatively correlated with anti-PD-1 efficiency. Overexpression of Slc16a3 in tumor cells promoted lactic acid production and efflux, and reduced tumor response to anti-PD-1 inhibitors by inhibiting CD8+ T cell function. Genetic and pharmacological inhibition of Slc16a3 dramatically reduced the glycolytic activity and lactic acid production in tumor cells, and ameliorated the immunosuppressive tumor microenvironments (TMEs), leading to boosted antitumor effects via anti-PD-1 blockade. Our study therefore demonstrates that tumor cell-intrinsic SLC16A3 may be a potential target to reverse tumor resistance to immunotherapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China; Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Zhaoyun Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Qingxu Tao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Xin Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Xinyang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, PR China
| | - Yang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Minxin Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Rufei Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
42
|
Li J, Feng C, Pang X, Li X, Dou X, Jiang E, Shang Z. L-cysteine contributes to destructive activities of odontogenic cysts/tumor. Discov Oncol 2024; 15:109. [PMID: 38589585 PMCID: PMC11001836 DOI: 10.1007/s12672-024-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Odontogenic cysts/tumor can cause severe bone destruction, which affects maxillofacial function and aesthetics. Meanwhile, metabolic reprogramming is an important hallmark of diseases. Changes in metabolic flow affect all aspects of disease, especially bone-related diseases. At present, the researches on pathogenesis of odontogenic cysts/tumor are mainly focused on the level of gene regulation, but the effects of metabolic alterations on odontogenic cysts/tumor have still underexplored. MATERIALS AND METHODS Imaging analysis was used to evaluate the lesion size of different odontogenic lesions. Tartrate resistant acid phosphatase (TRAP) and immunohistochemistry (IHC) assays were utilized to detect the differences in bone destruction activity in odontogenic cysts and tumors. Furthermore, metabolomics and weighted gene co-expression network analysis (WGCNA) were conducted for the metabolomic features and key metabolite screening, respectively. The effect of ferroptosis inhibition on bone destruction was confirmed by IHC, immunofluorescence, and malondialdehyde colorimetric assay. RESULTS The bone destruction activity of ameloblastoma (AM) was the strongest and the weakest in odontogenic cysts (OC). High-throughput targeted metabolomics was used to map the metabolomic profiles of OC, odontogenic keratocyst (OKC) and AM. WGCNA and differential analysis identified L-cysteine in OKC and AM. Cystathionine γ-lyase (CTH) was further screened by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The functions of L-cysteine were further validated. Finally, we confirmed that CTH affected destructive activities by regulating the sensitivity of epithelial cells to ferroptosis. CONCLUSION High-throughput targeted metabolomics performed on diseased tissue confirmed the unique alteration of metabolic profiles in OKC and AM. CTH and its metabolite L-cysteine are the key factors regulating destructive activities.
Collapse
Affiliation(s)
- Ji Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China
| | - Chunyu Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China
| | - Xiaochan Pang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China
| | - Xiang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China
| | - Xinyu Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China
| | - Erhui Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
43
|
Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S, Ni T. The Tumor Microenvironment: Signal Transduction. Biomolecules 2024; 14:438. [PMID: 38672455 PMCID: PMC11048169 DOI: 10.3390/biom14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Haijun Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yabing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| |
Collapse
|
44
|
Saha P, Ettel P, Weichhart T. Leveraging macrophage metabolism for anticancer therapy: opportunities and pitfalls. Trends Pharmacol Sci 2024; 45:335-349. [PMID: 38494408 DOI: 10.1016/j.tips.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.
Collapse
Affiliation(s)
- Piyal Saha
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria.
| |
Collapse
|
45
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res 2024; 43:74. [PMID: 38459595 PMCID: PMC10921613 DOI: 10.1186/s13046-024-02994-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
47
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
48
|
Wang L, Dou X, Xie L, Zhou X, Liu Y, Liu J, Liu X. Metabolic Landscape of Osteosarcoma: Reprogramming of Lactic Acid Metabolism and Metabolic Communication. FRONT BIOSCI-LANDMRK 2024; 29:83. [PMID: 38420794 DOI: 10.31083/j.fbl2902083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Lactic acid, previously regarded only as an endpoint of glycolysis, has emerged as a major regulator of tumor invasion, growth, and the tumor microenvironment. In this study, we aimed to explore the reprogramming of lactic acid metabolism relevant to osteosarcoma (OS) microenvironment by decoding the underlying lactic acid metabolic landscape of OS cells and intercellular signaling alterations. METHODS The landscape of OS metabolism was evaluated using single-cell gene expression data, lactic acid metabolism clustering, and screening of the hub genes in lactic acid metabolism of OS samples using transcriptome data. The role of the hub gene NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 6 (NDUFAF6) was validated with in vitro studies and patient experiments. RESULTS Single-cell RNA sequencing data validated a lactic acid metabolismhigh subcluster in OS. Further investigation of intercellular communications revealed a unique metabolic communication pattern between the lactic acid metabolismhigh subcluster and other subclusters. Next, two lactic acid metabolic reprogramming phenotypes were defined, and six lactic acid metabolism-related genes (LRGs), including the biomarker NDUFAF6, were screened in OS. In vitro studies and patient experiments confirmed that NDUFAF6 is a crucial lactic acid metabolism-associated gene in OS. CONCLUSIONS The patterns of lactic acid metabolism in OS suggested metabolic reprogramming phenotypes relevant to the tumor microenvironment (TME) and identified NDUFAF6 as an LRG prognostic biomarker.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, 100191 Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, 100191 Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, 100191 Beijing, China
| | - Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, 100191 Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, 100191 Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, 100191 Beijing, China
| | - Linzhen Xie
- Peking University Fourth School of Clinical Medicine, 100035 Beijing, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, 100084 Beijing, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, 100191 Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, 100191 Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, 100191 Beijing, China
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, 100191 Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, 100191 Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, 100191 Beijing, China
| |
Collapse
|
49
|
Liu C, Liu T, Zhang Q, Song M, Zhang Q, Shi J, Deng L, Chen Y, Zheng X, Lin S, Wang Z, Xie H, Chen S, Wu S, Shi H. Temporal relationship between inflammation and metabolic disorders and their impact on cancer risk. J Glob Health 2024; 14:04041. [PMID: 38386717 PMCID: PMC10869135 DOI: 10.7189/jogh.14.04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background Inflammation and metabolic disorders are closely associated with cancer. Whether inflammation leads to metabolic disorders or vice versa during cancer initiation remains unclear. In this study, we explored this temporal relationship and the co-exposure effect on cancer risk. Methods This prospective study had two phases. Initially, we examined the temporal relationship between inflammation (high-sensitivity C-reactive protein (CRP)) and metabolic disorders (metabolic syndrome severity Z-score (MetS-Z)) using a 3.98-year survey and cross-lagged analysis. Subsequently, we assessed the connection of co-exposure to inflammation and metabolic disorders, and the risks of overall cancer, as well as specific obesity-related, non-obesity-related, digestive system, lung, and other cancers using an 11.04-year survey and Cox proportional hazard models. Results The cross-lagged analysis revealed that the path coefficient from baseline CRP to follow-up MetS-Z (β2 = 0.032; 95% confidence interval (CI) = 0.026, 0.046) was more significant than the path coefficient from baseline MetS-Z to follow-up CRP (β1 = 0.009; 95% CI = -0.001, 0.019). During the follow-up, 2304 cases of cancer occurred. Compared with the risk of cancer of patients with low average cumulative CRP and MetS-Z, patients with high value had a significantly increased risk (hazard ratio = 1.54, 95% CI = 1.30, 1.83). The mediation analysis showed that MetS-Z mediated the association between CRP levels and overall cancer (12.67%), digestive system cancer (10.16%), and obesity-related cancer risk (13.87%). Conclusions Inflammation had a greater impact on metabolic disorders than vice versa. Co-exposure to inflammation and metabolic disorders significantly increased the risk of cancer, particularly digestive system and obesity-related cancers. Registration Chinese Clinical Trial Registry: ChiCTR-TNRC-11001489.
Collapse
Affiliation(s)
- Chenan Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Tong Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Qingsong Zhang
- Department of General Surgery, Kailuan General Hospital, Tangshan, China
| | - Mengmeng Song
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Qi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, USA
| | - Jinyu Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Li Deng
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Yue Chen
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Shiqi Lin
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Ziwen Wang
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Hailun Xie
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Xuekai L, Yan S, Jian C, Yifei S, Xinyue W, Wenyuan Z, Shuwen H, Xi Y. Advances in reprogramming of energy metabolism in tumor T cells. Front Immunol 2024; 15:1347181. [PMID: 38415258 PMCID: PMC10897011 DOI: 10.3389/fimmu.2024.1347181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer is a leading cause of human death worldwide, and the modulation of the metabolic properties of T cells employed in cancer immunotherapy holds great promise for combating cancer. As a crucial factor, energy metabolism influences the activation, proliferation, and function of T cells, and thus metabolic reprogramming of T cells is a unique research perspective in cancer immunology. Special conditions within the tumor microenvironment and high-energy demands lead to alterations in the energy metabolism of T cells. In-depth research on the reprogramming of energy metabolism in T cells can reveal the mechanisms underlying tumor immune tolerance and provide important clues for the development of new tumor immunotherapy strategies as well. Therefore, the study of T cell energy metabolism has important clinical significance and potential applications. In the study, the current achievements in the reprogramming of T cell energy metabolism were reviewed. Then, the influencing factors associated with T cell energy metabolism were introduced. In addition, T cell energy metabolism in cancer immunotherapy was summarized, which highlighted its potential significance in enhancing T cell function and therapeutic outcomes. In summary, energy exhaustion of T cells leads to functional exhaustion, thus resulting in immune evasion by cancer cells. A better understanding of reprogramming of T cell energy metabolism may enable immunotherapy to combat cancer and holds promise for optimizing and enhancing existing therapeutic approaches.
Collapse
Affiliation(s)
- Liu Xuekai
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Song Yan
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Chu Jian
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Song Yifei
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Wu Xinyue
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Zhang Wenyuan
- Department of Gynecology, Heyuan Hospital of Traditional Chinese Medicine, Heyuan, China
| | - Han Shuwen
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Yang Xi
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| |
Collapse
|