1
|
Chen X, Yang M, Wang L, Tu J, Yuan X. Fructose Metabolism in Cancer: Molecular Mechanisms and Therapeutic Implications. Int J Med Sci 2025; 22:2852-2876. [PMID: 40520908 PMCID: PMC12163614 DOI: 10.7150/ijms.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 05/16/2025] [Indexed: 06/18/2025] Open
Abstract
Metabolic reprogramming enables cancer cells to adapt to the tumor microenvironment, facilitating their survival, proliferation, and resistance to therapy. While glucose has long been considered the primary substrate for cancer cell metabolism, recent studies have highlighted the role of fructose as an alternative carbon source. Fructose metabolism, particularly through key enzymes such as ketohexokinase (KHK) and aldolase B (ALDOB), along with the fructose transporter GLUT5, supports tumor growth, metastasis, and therapeutic resistance. This review explores the mechanisms by which fructose metabolism influences cancer progression, focusing on its metabolic pathways and its impact on the tumor microenvironment. By promoting glycolysis, lipid biosynthesis, and nucleotide production, fructose metabolism enhances the metabolic adaptability of cancer cells, especially in glucose-deprived conditions. A comprehensive understanding of these processes offers potential insights into therapeutic strategies targeting fructose metabolism for cancer treatment. However, further studies are required to fully elucidate the complex role of fructose in various malignancies.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Bi Q, Zhao J, Nie J, Huang F. Metabolic pathway analysis of tumors using stable isotopes. Semin Cancer Biol 2025; 113:9-24. [PMID: 40348000 DOI: 10.1016/j.semcancer.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Metabolic reprogramming is pivotal in malignant transformation and cancer progression. Tumor metabolism is shaped by a complex interplay of both intrinsic and extrinsic factors that are not yet fully elucidated. It is of great value to unravel the complex metabolic activity of tumors in patients. Metabolic flux analysis (MFA) is a versatile technique for investigating tumor metabolism in vivo, it has increasingly been applied to the assessment of metabolic activity in cancer in the past decade. Stable-isotope tracing have shown that human tumors use diverse nutrients to fuel central metabolic pathways, such as the tricarboxylic acid cycle and macromolecule synthesis. Precisely how tumors use different fuels, and the contribution of alternative metabolic pathways in tumor progression, remain areas of intensive investigation. In this review, we systematically summarize the evidence from in vivo stable- isotope tracing in tumors and describe the catabolic and anabolic processes involved in altered tumor metabolism. We also discuss current challenges and future perspectives for MFA of human cancers, which may provide new approaches in diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Qiufen Bi
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
| | - Junzhang Zhao
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Jun Nie
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China.
| |
Collapse
|
3
|
Huang F, Wang Y, Zhang X, Gao W, Li J, Yang Y, Mo H, Prince E, Long Y, Hu J, Jiang C, Kang Y, Chen Z, Hu YC, Zeng C, Yang L, Chen CW, Chen J, Huang H, Weng H. m 6A/IGF2BP3-driven serine biosynthesis fuels AML stemness and metabolic vulnerability. Nat Commun 2025; 16:4214. [PMID: 40328743 PMCID: PMC12056023 DOI: 10.1038/s41467-025-58966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic reprogramming of amino acids represents a vulnerability in cancer cells, yet the mechanisms underlying serine metabolism in acute myeloid leukemia (AML) and leukemia stem/initiating cells (LSCs/LICs) remain unclear. Here, we identify RNA N6-methyladenosine (m6A) modification as a key regulator of serine biosynthesis in AML. Using a CRISPR/Cas9 screen, we find that depletion of m6A regulators IGF2BP3 or METTL14 sensitizes AML cells to serine and glycine (SG) deprivation. IGF2BP3 recognizies m6A on mRNAs of key serine synthesis pathway (SSP) genes (e.g., ATF4, PHGDH, PSAT1), stabilizing these transcripts and sustaining serine production to meet the high metabolic demand of AML cells and LSCs/LICs. IGF2BP3 silencing combined with dietary SG restriction potently inhibits AML in vitro and in vivo, while its deletion spares normal hematopoiesis. Our findings reveal the critical role of m6A modification in the serine metabolic vulnerability of AML and highlight the IGF2BP3/m6A/SSP axis as a promising therapeutic target.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Humans
- Serine/biosynthesis
- Serine/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Animals
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Mice
- Cell Line, Tumor
- Glycine/metabolism
- Methyltransferases/metabolism
- Methyltransferases/genetics
- CRISPR-Cas Systems
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Feng Huang
- The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | | | - Xiuxin Zhang
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Weiwei Gao
- Guangzhou National Laboratory, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Jingwen Li
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Ying Yang
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Hongjie Mo
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Emily Prince
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yifei Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiacheng Hu
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chuang Jiang
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yalin Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhenhua Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengwu Zeng
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Lu Yang
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Jianjun Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- The Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hengyou Weng
- The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| |
Collapse
|
4
|
Lyu H, Bao S, Cai L, Wang M, Liu Y, Sun Y, Hu X. The role and research progress of serine metabolism in tumor cells. Front Oncol 2025; 15:1509662. [PMID: 40265021 PMCID: PMC12011608 DOI: 10.3389/fonc.2025.1509662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Serine is crucial for tumor initiation, progression, and adaptive immunity. Metabolic pathways for serine synthesis, acquisition, and utilization in tumors and tumor-associated cells are influenced by various physiological factors and the tumor microenvironment, leading to metabolic reprogramming and amplification. Excessive serine metabolism promotes abnormal macromolecule biosynthesis, mitochondrial dysfunction, and epigenetic modifications, driving malignant transformation, proliferation, metastasis, immune suppression, and drug resistance in tumor cells. Restricting dietary serine intake or reducing the expression of serine synthetic enzymes can effectively slow tumor growth and extend patient survival. Consequently, targeting serine metabolism has emerged as a novel and promising research focus in cancer research. This paper reviews serine metabolic pathways and their roles in tumor development. It summarizes the influencing factors of serine metabolism. The article explores the significance of serine synthesis and metabolizing enzymes, along with related biomarkers, in tumor diagnosis and treatment, providing new insights for developing targeted therapies that modulate serine metabolism in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Sun
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoyang Hu
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Schild T, Wallisch P, Zhao Y, Wang YT, Haughton L, Chirayil R, Pierpont K, Chen K, Nunes-Violante S, Cross J, de Stanchina E, Thompson CB, Scheinberg DA, Perry JSA, Keshari KR. Metabolic engineering to facilitate anti-tumor immunity. Cancer Cell 2025; 43:552-562.e9. [PMID: 40020672 PMCID: PMC11929521 DOI: 10.1016/j.ccell.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Fructose consumption is elevated in western diets, but its impact on anti-tumor immunity is unclear. Fructose is metabolized in the liver and small intestine, where fructose transporters are highly expressed. Most tumors are unable to drive glycolytic flux using fructose, enriching fructose in the tumor microenvironment (TME). Excess fructose in the TME may be utilized by immune cells to enhance effector functions if engineered to express the fructose-specific transporter GLUT5. Here, we show that GLUT5-expressing CD8+ T cells, macrophages, and chimeric antigen receptor (CAR) T cells all demonstrate improved effector functions in glucose-limited conditions in vitro. GLUT5-expressing T cells show high fructolytic activity in vitro and higher anti-tumor efficacy in murine syngeneic and human xenograft models in vivo, especially following fructose supplementation. Together, our data demonstrates that metabolic engineering through GLUT5 enables immune cells to efficiently utilize fructose and boosts anti-tumor immunity in the glucose-limited TME.
Collapse
Affiliation(s)
- Tanya Schild
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Yixuan Zhao
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lyric Haughton
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachel Chirayil
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kaitlyn Pierpont
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Kevin Chen
- Anti-tumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Nunes-Violante
- Metabolism Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin Cross
- Metabolism Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Anti-tumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Craig B Thompson
- Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin S A Perry
- Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayvan R Keshari
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
6
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2025; 69:361-379. [PMID: 38631430 PMCID: PMC11954837 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Walvekar AS, Warmoes M, Cheung D, Sikora T, Seyedkatouli N, Gomez-Giro G, Perrone S, Dengler L, Unger F, Santos BFR, Gavotto F, Dong X, Becker-Kettern J, Kwon YJ, Jäger C, Schwamborn JC, Van Bergen NJ, Christodoulou J, Linster CL. Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells. Cell Mol Biol Lett 2025; 30:3. [PMID: 39789421 PMCID: PMC11715087 DOI: 10.1186/s11658-024-00681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors. Pathogenic loss-of-function variants in NAXE and NAXD lead to development of the neurometabolic disorders progressive, early-onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL)1 and PEBEL2, respectively. METHODS To gain insights into the molecular disease mechanisms, we investigated the metabolic impact of NAXD deficiency in human cell models. Control and NAXD-deficient cells were cultivated under different conditions, followed by cell viability and mitochondrial function assays as well as metabolomic analyses without or with stable isotope labeling. Enzymatic assays with purified recombinant proteins were performed to confirm molecular mechanisms suggested by the cell culture experiments. RESULTS HAP1 NAXD knockout (NAXDko) cells showed growth impairment specifically in a basal medium containing galactose instead of glucose. Surprisingly, the galactose-grown NAXDko cells displayed only subtle signs of mitochondrial impairment, whereas metabolomic analyses revealed a strong inhibition of the cytosolic, de novo serine synthesis pathway in those cells as well as in NAXD patient-derived fibroblasts. We identified inhibition of 3-phosphoglycerate dehydrogenase as the root cause for this metabolic perturbation. The NAD precursor nicotinamide riboside (NR) and inosine exerted beneficial effects on HAP1 cell viability under galactose stress, with more pronounced effects in NAXDko cells. Metabolomic profiling in supplemented cells indicated that NR and inosine act via different mechanisms that at least partially involve the serine synthesis pathway. CONCLUSIONS Taken together, our study identifies a metabolic vulnerability in NAXD-deficient cells that can be targeted by small molecules such as NR or inosine, opening perspectives in the search for mechanism-based therapeutic interventions in PEBEL disorders.
Collapse
Affiliation(s)
- Adhish S Walvekar
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Marc Warmoes
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Dean Cheung
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Tim Sikora
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
| | - Najmesadat Seyedkatouli
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Sebastian Perrone
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Lisa Dengler
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - François Unger
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Bruno F R Santos
- Disease Modeling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux and Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Floriane Gavotto
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Xiangyi Dong
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Julia Becker-Kettern
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Yong-Jun Kwon
- Disease Modeling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux and Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Christian Jäger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3002, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
| | - Carole L Linster
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.
| |
Collapse
|
8
|
Chen Z, Xu J, Fang K, Jiang H, Leng Z, Wu H, Zhang Z, Wang Z, Li Z, Sun M, Zhao Z, Feng A, Zhang S, Chu Y, Ye L, Xu M, He L, Chen T. FOXC1-mediated serine metabolism reprogramming enhances colorectal cancer growth and 5-FU resistance under serine restriction. Cell Commun Signal 2025; 23:13. [PMID: 39773485 PMCID: PMC11708197 DOI: 10.1186/s12964-024-02016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy, and 5-Fluorouracil (5-FU) is the principal chemotherapeutic drug used for its treatment. However, 5-FU resistance remains a significant challenge. Under stress conditions, tumor metabolic reprogramming influences 5-FU resistance. Serine metabolism plasticity is one of the crucial metabolic pathways influencing 5-FU resistance in CRC. However, the mechanisms by which CRC modulates serine metabolic reprogramming under serine-deprived conditions remain unknown. We found that exogenous serine deprivation enhanced the expression of serine synthesis pathway (SSP) genes, which in turn supported CRC cell growth and 5-FU resistance. Serine deprivation activate the ERK1/2-p-ELK1 signaling axis, leading to upregulated FOXC1 expression in CRC cells. Elevated FOXC1 emerged as a critical element, promoting the transcription of serine metabolism enzymes PHGDH, PSAT1, and PSPH, which in turn facilitated serine production, supporting CRC growth. Furthermore, through serine metabolism, FOXC1 influenced purine metabolism and DNA damage repair, thereby increasing 5-FU resistance. Consequently, combining dietary serine restriction with targeted therapy against the ERK1/2-pELK1-FOXC1 axis could be a highly effective strategy for treating CRC, enhancing the efficacy of 5-FU.
Collapse
Affiliation(s)
- Zhukai Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiacheng Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanyu Jiang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuyun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Wu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zehua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zeyu Wang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhaoxing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingchuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anqi Feng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shihan Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Chu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lechi Ye
- Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Meidong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Lingnan He
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Capelletti MM, Montini O, Ruini E, Tettamanti S, Savino AM, Sarno J. Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions. Int J Mol Sci 2024; 26:45. [PMID: 39795903 PMCID: PMC11719665 DOI: 10.3390/ijms26010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation. Understanding the metabolic diversities among cancer cells and their surrounding environments is therefore essential in unravelling the complexities of leukaemia and improving therapeutic strategies. Here, we describe the currently available methodologies and approaches to addressing the dynamic heterogeneity of leukaemia progression. In the second section, we focus on metabolic leukaemic vulnerabilities in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). Lastly, we provide a comprehensive overview of the most interesting clinical trials designed to target these metabolic dependencies, highlighting their potential to advance therapeutic strategies in leukaemia treatment. The integration of multi-omics data for cancer identification with the metabolic states of tumour cells will enable a comprehensive "micro-to-macro" approach for the refinement of clinical practices and delivery of personalised therapies.
Collapse
Affiliation(s)
- Martina Maria Capelletti
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Orsola Montini
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Emilio Ruini
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
| | - Sarah Tettamanti
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Angela Maria Savino
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Jolanda Sarno
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
10
|
Shen J, Xie E, Shen S, Song Z, Li X, Wang F, Min J. Essentiality of SLC7A11-mediated nonessential amino acids in MASLD. Sci Bull (Beijing) 2024; 69:3700-3716. [PMID: 39366830 DOI: 10.1016/j.scib.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) remains a rapidly growing global health burden. Here, we report that the nonessential amino acid (NEAA) transporter SLC7A11 plays a key role in MASLD. In patients with MASLD, we found high expression levels of SLC7A11 that were correlated directly with clinical grade. Using both loss-of-function and gain-of-function genetic models, we found that Slc7a11 deficiency accelerated MASLD progression via classic cystine/cysteine deficiency-induced ferroptosis, while serine deficiency and a resulting impairment in de novo cysteine production were attributed to ferroptosis-induced MASLD progression in mice overexpressing hepatic Slc7a11. Consistent with these findings, we found that both serine supplementation and blocking ferroptosis significantly alleviated MASLD, and the serum serine/glutamate ratio was significantly lower in these preclinical disease models, suggesting that it might serve as a prognostic biomarker for MASLD in patients. These findings indicate that defects in NEAA metabolism are involved in the progression of MASLD and that serine deficiency-triggered ferroptosis may provide a therapeutic target for its treatment.
Collapse
Affiliation(s)
- Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Enjun Xie
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China; The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuying Shen
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zijun Song
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaopeng Li
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
11
|
Medeiros HCD, Lunt SY. The liver converts fructose into lipids to fuel tumours. Nature 2024; 636:580-581. [PMID: 39633121 PMCID: PMC11787852 DOI: 10.1038/d41586-024-03653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Affiliation(s)
- Hyllana C. D. Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, 48824, USA
| |
Collapse
|
12
|
Zhang S, Huang F, Wang Y, Long Y, Li Y, Kang Y, Gao W, Zhang X, Wen Y, Wang Y, Pan L, Xia Y, Yang Z, Yang Y, Mo H, Li B, Hu J, Song Y, Zhang S, Dong S, Du X, Li Y, Liu Y, Liao W, Gao Y, Zhang Y, Chen H, Liang Y, Chen J, Weng H, Huang H. NAT10-mediated mRNA N 4-acetylcytidine reprograms serine metabolism to drive leukaemogenesis and stemness in acute myeloid leukaemia. Nat Cell Biol 2024; 26:2168-2182. [PMID: 39506072 PMCID: PMC11628400 DOI: 10.1038/s41556-024-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
RNA modification has emerged as an important epigenetic mechanism that controls abnormal metabolism and growth in acute myeloid leukaemia (AML). However, the roles of RNA N4-acetylcytidine (ac4C) modification in AML remain elusive. Here, we report that ac4C and its catalytic enzyme NAT10 drive leukaemogenesis and sustain self-renewal of leukaemic stem cells/leukaemia-initiating cells through reprogramming serine metabolism. Mechanistically, NAT10 facilitates exogenous serine uptake and de novo biosynthesis through ac4C-mediated translation enhancement of the serine transporter SLC1A4 and the transcription regulators HOXA9 and MENIN that activate transcription of serine synthesis pathway genes. We further characterize fludarabine as an inhibitor of NAT10 and demonstrate that pharmacological inhibition of NAT10 targets serine metabolic vulnerability, triggering substantial anti-leukaemia effects both in vitro and in vivo. Collectively, our study demonstrates the functional importance of ac4C and NAT10 in metabolism control and leukaemogenesis, providing insights into the potential of targeting NAT10 for AML therapy.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Mice
- Serine/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- N-Terminal Acetyltransferases/metabolism
- N-Terminal Acetyltransferases/genetics
- Cell Line, Tumor
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/genetics
- Cytidine/analogs & derivatives
- Cytidine/pharmacology
- Cytidine/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Mice, Inbred NOD
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
Collapse
Affiliation(s)
- Subo Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Huang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yushuai Wang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yifei Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yalin Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiwei Gao
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiuxin Zhang
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yueting Wen
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lili Pan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Youmei Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhoutian Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Yang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Hongjie Mo
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Baiqing Li
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Jiacheng Hu
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yunda Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shilin Zhang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shenghua Dong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingmin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yadi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongming Chen
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianjun Chen
- Department of Systems Biology & Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Hengyou Weng
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
13
|
Wang C, Wang L, Zhao Q, Ma J, Li Y, Kuang J, Yang X, Bi H, Lu A, Cheung KCP, Melino G, Jia W. Exploring fructose metabolism as a potential therapeutic approach for pancreatic cancer. Cell Death Differ 2024; 31:1625-1635. [PMID: 39406919 PMCID: PMC11618635 DOI: 10.1038/s41418-024-01394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Excessive fructose intake has been associated with the development and progression of pancreatic cancer. This study aimed to elucidate the relationship between fructose utilization and pancreatic cancer progression. Our findings revealed that pancreatic cancer cells have a high capacity to utilize fructose and are capable of converting glucose to fructose via the AKR1B1-mediated polyol pathway, in addition to uptake via the fructose transporter GLUT5. Fructose metabolism exacerbates pancreatic cancer proliferation by enhancing glycolysis and accelerating the production of key metabolites that regulate angiogenesis. However, pharmacological blockade of fructose metabolism has been shown to slow pancreatic cancer progression and synergistically enhance anti-tumor capabilities when combined with anti-angiogenic agents. Overall, targeting fructose metabolism may prove to be a promising therapeutic approach in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Chengqiang Wang
- Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lu Wang
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Qing Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiao Ma
- Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yitao Li
- Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Junliang Kuang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xintong Yang
- Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Aiping Lu
- Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kenneth C P Cheung
- Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Wei Jia
- Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Fowle-Grider R, Rowles JL, Shen I, Wang Y, Schwaiger-Haber M, Dunham AJ, Jayachandran K, Inkman M, Zahner M, Naser FJ, Jackstadt MM, Spalding JL, Chiang S, McCommis KS, Dolle RE, Kramer ET, Zimmerman SM, Souroullas GP, Finck BN, Shriver LP, Kaufman CK, Schwarz JK, Zhang J, Patti GJ. Dietary fructose enhances tumour growth indirectly via interorgan lipid transfer. Nature 2024; 636:737-744. [PMID: 39633044 DOI: 10.1038/s41586-024-08258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Fructose consumption has increased considerably over the past five decades, largely due to the widespread use of high-fructose corn syrup as a sweetener1. It has been proposed that fructose promotes the growth of some tumours directly by serving as a fuel2,3. Here we show that fructose supplementation enhances tumour growth in animal models of melanoma, breast cancer and cervical cancer without causing weight gain or insulin resistance. The cancer cells themselves were unable to use fructose readily as a nutrient because they did not express ketohexokinase-C (KHK-C). Primary hepatocytes did express KHK-C, resulting in fructolysis and the excretion of a variety of lipid species, including lysophosphatidylcholines (LPCs). In co-culture experiments, hepatocyte-derived LPCs were consumed by cancer cells and used to generate phosphatidylcholines, the major phospholipid of cell membranes. In vivo, supplementation with high-fructose corn syrup increased several LPC species by more than sevenfold in the serum. Administration of LPCs to mice was sufficient to increase tumour growth. Pharmacological inhibition of ketohexokinase had no direct effect on cancer cells, but it decreased circulating LPC levels and prevented fructose-mediated tumour growth in vivo. These findings reveal that fructose supplementation increases circulating nutrients such as LPCs, which can enhance tumour growth through a cell non-autonomous mechanism.
Collapse
Affiliation(s)
- Ronald Fowle-Grider
- Department of Chemistry, Washington University, St Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Joe L Rowles
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Isabel Shen
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Yahui Wang
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Alden J Dunham
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael Zahner
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Fuad J Naser
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Madelyn M Jackstadt
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Jonathan L Spalding
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah Chiang
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Roland E Dolle
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Eva T Kramer
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah M Zimmerman
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - George P Souroullas
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics (I2DB), Washington University School of Medicine, St Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St Louis, MO, USA.
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA.
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
15
|
Yan H, Wang Z, Teng D, Chen X, Zhu Z, Chen H, Wang W, Wei Z, Wu Z, Chai Q, Zhang F, Wang Y, Shu K, Li S, Shi G, Zhu M, Piao HL, Shen X, Bu P. Hexokinase 2 senses fructose in tumor-associated macrophages to promote colorectal cancer growth. Cell Metab 2024; 36:2449-2467.e6. [PMID: 39471815 DOI: 10.1016/j.cmet.2024.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Fructose is associated with colorectal cancer tumorigenesis and metastasis through ketohexokinase-mediated metabolism in the colorectal epithelium, yet its role in the tumor immune microenvironment remains largely unknown. Here, we show that a modest amount of fructose, without affecting obesity and associated complications, promotes colorectal cancer tumorigenesis and growth by suppressing the polarization of M1-like macrophages. Fructose inhibits M1-like macrophage polarization independently of fructose-mediated metabolism. Instead, it serves as a signal molecule to promote the interaction between hexokinase 2 and inositol 1,4,5-trisphophate receptor type 3, the predominant Ca2+ channel on the endoplasmic reticulum. The interaction reduces Ca2+ levels in cytosol and mitochondria, thereby suppressing the activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 1 (STAT1) as well as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Consequently, this impedes M1-like macrophage polarization. Our study highlights the critical role of fructose as a signaling molecule that impairs the polarization of M1-like macrophages for tumor growth.
Collapse
Affiliation(s)
- Huiwen Yan
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Da Teng
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Xiaodong Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ziyuan Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaile Shu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaotang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guizhi Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Zhang Z, Chen C, Li X, Zheng J, Zhao Y. Regulation of leukemogenesis via redox metabolism. Trends Cell Biol 2024; 34:928-941. [PMID: 39492031 DOI: 10.1016/j.tcb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Redox metabolism plays a central role in the cellular metabolism network, involves catabolic and anabolic reactions of diverse biomass, and determines the redox state of cells. It can be quantitatively and conveniently measured in living cells and organisms with genetically encoded fluorescent sensors, providing novel insights that cannot be readily acquired via conventional metabolic assays. Here, we review the recent progress on the regulation of leukemogenesis via redox metabolism, especially redox biosensor-based findings. In general, low reactive oxygen species levels and high reductive capacity promote leukemogenesis and chemotherapy resistance in leukemia cells, and acute leukemia cells rewire metabolism of glucose, fatty acids, and some amino acids, together with oxidative phosphorylation, to fuel energy production, support biomass-related synthesis, and survive oxidative stress. In summary, redox metabolism is a potential target for the development of novel therapies for leukemia or beneficial dietary regimens for patients with refractory and relapsed leukemia.
Collapse
Affiliation(s)
- Zhuo Zhang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xie Li
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yuzheng Zhao
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
17
|
Muhs C, Alshamleh I, Richter C, Serve H, Schwalbe H. Mapping Natural Sugars Metabolism in Acute Myeloid Leukaemia Using 2D Nuclear Magnetic Resonance Spectroscopy. Cancers (Basel) 2024; 16:3576. [PMID: 39518017 PMCID: PMC11545164 DOI: 10.3390/cancers16213576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism plays a central role in cancer progression. Rewiring glucose metabolism is essential for fulfilling the high energy and biosynthetic demands as well as for the development of drug resistance. Nevertheless, the role of other diet-abundant natural sugars is not fully understood. In this study, we performed a comprehensive 2D NMR spectroscopy tracer-based assay with a panel of 13C-labelled sugars (glucose, fructose, galactose, mannose and xylose). We assigned over 100 NMR signals from metabolites derived from each sugar and mapped them to metabolic pathways, uncovering two novel findings. First, we demonstrated that mannose has a semi-identical metabolic profile to that of glucose with similar label incorporation patterns. Second, next to the known role of fructose in driving one-carbon metabolism, we explained the equally important contribution of galactose to this pathway. Interestingly, we demonstrated that cells growing with either fructose or galactose became less sensitive to certain one-carbon metabolism inhibitors such as 5-Flurouracil and SHIN1. In summary, this study presents the differential metabolism of natural sugars, demonstrating that mannose has a comparable profile to that of glucose. Conversely, galactose and fructose contribute to a greater extent to one-carbon metabolism, which makes them important modulators for inhibitors targeting this pathway. To our knowledge, this is the first NMR study to comprehensively investigate the metabolism of key natural sugars in AML and cancer.
Collapse
Affiliation(s)
- Christina Muhs
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
| | - Islam Alshamleh
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
| | - Hubert Serve
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
| |
Collapse
|
18
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
19
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. E-Cadherin Induces Serine Synthesis to Support Progression and Metastasis of Breast Cancer. Cancer Res 2024; 84:2820-2835. [PMID: 38959339 PMCID: PMC11374473 DOI: 10.1158/0008-5472.can-23-3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The loss of E-cadherin, an epithelial cell adhesion molecule, has been implicated in metastasis by mediating the epithelial-mesenchymal transition, which promotes invasion and migration of cancer cells. However, recent studies have demonstrated that E-cadherin supports the survival and proliferation of metastatic cancer cells. Here, we identified a metabolic role for E-cadherin in breast cancer by upregulating the de novo serine synthesis pathway (SSP). The upregulated SSP provided metabolic precursors for biosynthesis and resistance to oxidative stress, enabling E-cadherin+ breast cancer cells to achieve faster tumor growth and enhanced metastases. Inhibition of phosphoglycerate dehydrogenase, a rate-limiting enzyme in the SSP, significantly and specifically hampered proliferation of E-cadherin+ breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. These findings reveal that E-cadherin reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers. Significance: E-Cadherin promotes the progression and metastasis of breast cancer by upregulating the de novo serine synthesis pathway, offering promising targets for inhibiting tumor growth and metastasis in E-cadherin-expressing tumors.
Collapse
Affiliation(s)
- Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Claudia Wong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Cho
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Junior J. West
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ashleigh J. Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Bishwa Ranjan Si
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jungwoo Kim
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren Hoffner
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert D. Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew J. Ewald
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Wagner PM, Salgado MA, Turani O, Fornasier SJ, Salvador GA, Smania AM, Bouzat C, Guido ME. Rhythms in lipid droplet content driven by a metabolic oscillator are conserved throughout evolution. Cell Mol Life Sci 2024; 81:348. [PMID: 39136766 PMCID: PMC11335272 DOI: 10.1007/s00018-024-05355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O2 levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.
Collapse
Affiliation(s)
- Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Mauricio A Salgado
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ornella Turani
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Santiago J Fornasier
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gabriela A Salvador
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Andrea M Smania
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Cecilia Bouzat
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
21
|
Yu PC, Hou D, Chang B, Liu N, Xu CH, Chen X, Hu CL, Liu T, Wang X, Zhang Q, Liu P, Jiang Y, Fei MY, Zong LJ, Zhang JY, Liu H, Chen BY, Chen SB, Wang Y, Li ZJ, Li X, Deng CH, Ren YY, Zhao M, Jiang S, Wang R, Jin J, Yang S, Xue K, Shi J, Chang CK, Shen S, Wang Z, He PC, Chen Z, Chen SJ, Sun XJ, Wang L. SMARCA5 reprograms AKR1B1-mediated fructose metabolism to control leukemogenesis. Dev Cell 2024; 59:1954-1971.e7. [PMID: 38776924 DOI: 10.1016/j.devcel.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
A significant variation in chromatin accessibility is an epigenetic feature of leukemia. The cause of this variation in leukemia, however, remains elusive. Here, we identify SMARCA5, a core ATPase of the imitation switch (ISWI) chromatin remodeling complex, as being responsible for aberrant chromatin accessibility in leukemia cells. We find that SMARCA5 is required to maintain aberrant chromatin accessibility for leukemogenesis and then promotes transcriptional activation of AKR1B1, an aldo/keto reductase, by recruiting transcription co-activator DDX5 and transcription factor SP1. Higher levels of AKR1B1 are associated with a poor prognosis in leukemia patients and promote leukemogenesis by reprogramming fructose metabolism. Moreover, pharmacological inhibition of AKR1B1 has been shown to have significant therapeutic effects in leukemia mice and leukemia patient cells. Thus, our findings link the aberrant chromatin state mediated by SMARCA5 to AKR1B1-mediated endogenous fructose metabolism reprogramming and shed light on the essential role of AKR1B1 in leukemogenesis, which may provide therapeutic strategies for leukemia.
Collapse
Affiliation(s)
- Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Hou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Binhe Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Liu
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinchi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qunling Zhang
- Department of Medical Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yilun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shu-Bei Chen
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Muying Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyu Jiang
- Department of Medical Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Roujia Wang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiacheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Peng-Cheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
22
|
Valentić B, Kelly A, Shestov AA, Gan Z, Shen F, Chatoff A, Jaccard A, Crispim CV, Scholler J, Heeke S, Snyder NW, Ghassemi S, Jones N, Gill S, O'Connor RS. The Glucose Transporter 5 Enhances CAR-T Cell Metabolic Function and Anti-tumour Durability. RESEARCH SQUARE 2024:rs.3.rs-4342820. [PMID: 38766088 PMCID: PMC11100898 DOI: 10.21203/rs.3.rs-4342820/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Activated T cells undergo a metabolic shift to aerobic glycolysis to support the energetic demands of proliferation, differentiation, and cytolytic function. Transmembrane glucose flux is facilitated by glucose transporters (GLUT) that play a vital role in T cell metabolic reprogramming and anti-tumour function. GLUT isoforms are regulated at the level of expression and subcellular distribution. GLUTs also display preferential selectivity for carbohydrate macronutrients including glucose, galactose, and fructose. GLUT5, which selectively transports fructose over glucose, has never been explored as a genetic engineering strategy to enhance CAR-T cells in fructose-rich tumour environments. Fructose levels are significantly elevated in the bone marrow and the plasma of acute myeloid leukaemia (AML) patients. Here, we demonstrate that the expression of wild-type GLUT5 restores T cell metabolic fitness in glucose-free, high fructose conditions. We find that fructose supports maximal glycolytic capacity and ATP replenishment rates in GLUT5-expressing T cells. Using steady state tracer technology, we show that 13C6 fructose supports glycolytic reprogramming and TCA anaplerosis in CAR-T cells undergoing log phase expansion. In cytotoxicity assays, GLUT5 rescues T cell cytolytic function in glucose-free medium. The fructose/GLUT5 metabolic axis also supports maximal migratory velocity, which provides mechanistic insight into why GLUT5-expressing CAR-Ts have superior effector function as they undergo "hit-and-run" serial killing. These findings translate to superior anti-tumour function in a xenograft model of AML. In fact, we found that GLUT5 enhances CAR-T cell anti-tumour function in vivo without any need for fructose intervention. Accordingly, we hypothesize that GLUT5 is sufficient to enhance CAR-T resilience by increasing the cells' competitiveness for glucose at physiologic metabolite levels. Our findings have immediate translational relevance by providing the first evidence that GLUT5 confers a competitive edge in a fructose-enriched milieu, and is a novel approach to overcome glucose depletion in hostile tumour microenvironments (TMEs).
Collapse
Affiliation(s)
- Bakir Valentić
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andre Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander A Shestov
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiyang Gan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feng Shen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Haematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Chatoff
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Alison Jaccard
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Claudia V Crispim
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathaniel W Snyder
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Saar Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Haematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Ting KKY. Fructose-induced metabolic reprogramming of cancer cells. Front Immunol 2024; 15:1375461. [PMID: 38711514 PMCID: PMC11070519 DOI: 10.3389/fimmu.2024.1375461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
24
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. Serine synthesis pathway upregulated by E-cadherin is essential for the proliferation and metastasis of breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.541452. [PMID: 37292712 PMCID: PMC10245808 DOI: 10.1101/2023.05.24.541452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The loss of E-cadherin (E-cad), an epithelial cell adhesion molecule, has been implicated in the epithelial-mesenchymal transition (EMT), promoting invasion and migration of cancer cells and, consequently, metastasis. However, recent studies have demonstrated that E-cad supports the survival and proliferation of metastatic cancer cells, suggesting that our understanding of E-cad in metastasis is far from comprehensive. Here, we report that E-cad upregulates the de novo serine synthesis pathway (SSP) in breast cancer cells. The SSP provides metabolic precursors for biosynthesis and resistance to oxidative stress, critically beneficial for E-cad-positive breast cancer cells to achieve faster tumor growth and more metastases. Inhibition of PHGDH, a rate-limiting enzyme in the SSP, significantly and specifically hampered the proliferation of E-cad-positive breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. Our findings reveal that E-cad adhesion molecule significantly reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers.
Collapse
|
25
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
26
|
Rang O, Qin X, Tang Y, Cao L, Li G, Liu X, Zhong J, Wang M. The effect of fructose exposure on amino acid metabolism among Chinese community residents and its possible multi-omics mechanisms. Sci Rep 2023; 13:22704. [PMID: 38123624 PMCID: PMC10733306 DOI: 10.1038/s41598-023-50069-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The consumption of fructose has increased dramaticly during the last few decades, inducing a great increase in the risk of intrahepatic lipid accumulation, hypertriglyceridemia, hyperuricemia and cancer. However, the underlying mechanism has not yet been fully elucidated. Amino acid metabolism may play an important role in the process of the diseases caused by fructose, but there is still a lack of corresponding evidence. In present study, we provide an evidence of how fructose affects amino acids metabolism in 1895 ordinary residents in Chinese community using UPLC-QqQMS based amino acid targeted metabolomics and the underlying mechanism of fructose exposure how interferes with amino acid metabolism related genes and acetylated modification of proteome in the liver of rats model. We found people with high fructose exposure had higher levels of Asa, EtN, Asp, and Glu, and lower levels of 1MHis, PEtN, Arg, Gln, GABA, Aad, Hyl and Cys. The further mechanism study displayed amino acid metabolic genes of Aspa, Cndp1, Dbt, Dmgdh, and toxic metabolites such as N-acetylethanolamines accumulation, interference of urea cycle, as well as acetylated modification of key enzymes in glutamine metabolic network and glutamine derived NEAAs synthesis pathway in liver may play important roles in fructose caused reprogramming in amino acid metabolism. This research provides novel insights of the mechanism of amino acid metabolic disorder caused by fructose and supplies new targets for clinical therapy.
Collapse
Affiliation(s)
- Ouyan Rang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xinru Qin
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- School of Public Health, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yonghong Tang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Lin Cao
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Guojuan Li
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xiaocheng Liu
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jing Zhong
- The First Affiliated Hospital, Hengyang Medical School, Institute of Clinical Medicine, Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
27
|
Cui Y, Tian J, Wang Z, Guo H, Zhang H, Wang Z, Liu H, Song W, Liu L, Tian R, Zuo X, Ren S, Niu R, Zhang F. Fructose-Induced mTORC1 Activation Promotes Pancreatic Cancer Progression through Inhibition of Autophagy. Cancer Res 2023; 83:4063-4079. [PMID: 37738413 PMCID: PMC10722142 DOI: 10.1158/0008-5472.can-23-0464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Excessive fructose intake is associated with the occurrence, progression, and poor prognosis of various tumors. A better understanding of the mechanisms underlying the functions of fructose in cancer could facilitate the development of better treatment and prevention strategies. In this study, we investigated the functional association between fructose utilization and pancreatic ductal adenocarcinoma (PDAC) progression. Fructose could be taken up and metabolized by PDAC cells and provided an adaptive survival mechanism for PDAC cells under glucose-deficient conditions. GLUT5-mediated fructose metabolism maintained the survival, proliferation, and invasion capacities of PDAC cells in vivo and in vitro. Fructose metabolism not only provided ATP and biomass to PDAC cells but also conferred metabolic plasticity to the cells, making them more adaptable to the tumor microenvironment. Mechanistically, fructose activated the AMP-activated protein kinase (AMPK)-mTORC1 signaling pathway to inhibit glucose deficiency-induced autophagic cell death. Moreover, the fructose-specific transporter GLUT5 was highly expressed in PDAC tissues and was an independent marker of disease progression in patients with PDAC. These findings provide mechanistic insights into the role of fructose in promoting PDAC progression and offer potential strategies for targeting metabolism to treat PDAC. SIGNIFICANCE Fructose activates AMPK-mTORC1 signaling to inhibit autophagy-mediated cell death in pancreatic cancer cells caused by glucose deficiency, facilitating metabolic adaptation to the tumor microenvironment and supporting tumor growth.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianfei Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhaosong Wang
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Guo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weijie Song
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Liming Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruinan Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoyan Zuo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Sixin Ren
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
28
|
Yun HJ, Li M, Guo D, Jeon SM, Park SH, Lim JS, Lee SB, Liu R, Du L, Kim SH, Shin TH, Eyun SI, Park YY, Lu Z, Lee JH. AMPK-HIF-1α signaling enhances glucose-derived de novo serine biosynthesis to promote glioblastoma growth. J Exp Clin Cancer Res 2023; 42:340. [PMID: 38098117 PMCID: PMC10722853 DOI: 10.1186/s13046-023-02927-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Cancer cells undergo cellular adaptation through metabolic reprogramming to sustain survival and rapid growth under various stress conditions. However, how brain tumors modulate their metabolic flexibility in the naturally serine/glycine (S/G)-deficient brain microenvironment remain unknown. METHODS We used a range of primary/stem-like and established glioblastoma (GBM) cell models in vitro and in vivo. To identify the regulatory mechanisms of S/G deprivation-induced metabolic flexibility, we employed high-throughput RNA-sequencing, transcriptomic analysis, metabolic flux analysis, metabolites analysis, chromatin immunoprecipitation (ChIP), luciferase reporter, nuclear fractionation, cycloheximide-chase, and glucose consumption. The clinical significances were analyzed in the genomic database (GSE4290) and in human GBM specimens. RESULTS The high-throughput RNA-sequencing and transcriptomic analysis demonstrate that the de novo serine synthesis pathway (SSP) and glycolysis are highly activated in GBM cells under S/G deprivation conditions. Mechanistically, S/G deprivation rapidly induces reactive oxygen species (ROS)-mediated AMP-activated protein kinase (AMPK) activation and AMPK-dependent hypoxia-inducible factor (HIF)-1α stabilization and transactivation. Activated HIF-1α in turn promotes the expression of SSP enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH). In addition, the HIF-1α-induced expression of glycolytic genes (GLUT1, GLUT3, HK2, and PFKFB2) promotes glucose uptake, glycolysis, and glycolytic flux to fuel SSP, leading to elevated de novo serine and glycine biosynthesis, NADPH/NADP+ ratio, and the proliferation and survival of GBM cells. Analyses of human GBM specimens reveal that the levels of overexpressed PHGDH, PSAT1, and PSPH are positively correlated with levels of AMPK T172 phosphorylation and HIF-1α expression and the poor prognosis of GBM patients. CONCLUSION Our findings reveal that metabolic stress-enhanced glucose-derived de novo serine biosynthesis is a critical metabolic feature of GBM cells, and highlight the potential to target SSP for treating human GBM.
Collapse
Affiliation(s)
- Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - So Mi Jeon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Je Sun Lim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Su Bin Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Linyong Du
- Key Laboratory of Laboratory of Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Tae Hwan Shin
- Department of Biomedical Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
- Department of Biomedical Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
29
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
30
|
Zhou P, Chang WY, Gong DA, Xia J, Chen W, Huang LY, Liu R, Liu Y, Chen C, Wang K, Tang N, Huang AL. High dietary fructose promotes hepatocellular carcinoma progression by enhancing O-GlcNAcylation via microbiota-derived acetate. Cell Metab 2023; 35:1961-1975.e6. [PMID: 37797623 DOI: 10.1016/j.cmet.2023.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/30/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Emerging studies have addressed the tumor-promoting role of fructose in different cancers. The effects and pathological mechanisms of high dietary fructose on hepatocellular carcinoma (HCC) remain unclear. Here, we examined the effects of fructose supplementation on HCC progression in wild-type C57BL/6 mice using a spontaneous and chemically induced HCC mouse model. We show that elevated uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and O-GlcNAcylation levels induced by high dietary fructose contribute to HCC progression. Non-targeted metabolomics and stable isotope tracing revealed that under fructose treatment, microbiota-derived acetate upregulates glutamine and UDP-GlcNAc levels and enhances protein O-GlcNAcylation in HCC. Global profiling of O-GlcNAcylation revealed that hyper-O-GlcNAcylation of eukaryotic elongation factor 1A1 promotes cell proliferation and tumor growth. Targeting glutamate-ammonia ligase or O-linked N-acetylglucosamine transferase (OGT) remarkably impeded HCC progression in mice with high fructose intake. We propose that high dietary fructose promotes HCC progression through microbial acetate-induced hyper-O-GlcNAcylation.
Collapse
Affiliation(s)
- Peng Zhou
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yi Chang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - De-Ao Gong
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Chen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai 201109, China
| | - Lu-Yi Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Rui Liu
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Shunxi W, Xiaoxue Y, Guanbin S, Li Y, Junyu J, Wanqian L. Serine Metabolic Reprogramming in Tumorigenesis, Tumor Immunity, and Clinical Treatment. Adv Nutr 2023; 14:1050-1066. [PMID: 37187454 PMCID: PMC10509429 DOI: 10.1016/j.advnut.2023.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serine has been recently identified as an essential metabolite for oncogenesis, progression, and adaptive immunity. Influenced by many physiologic or tumor environmental factors, the metabolic pathways of serine synthesis, uptake, and usage are heterogeneously reprogrammed and frequently amplified in tumor or tumor-associated cells. The hyperactivation of serine metabolism promotes abnormal cellular nucleotide/protein/lipid synthesis, mitochondrial function, and epigenetic modifications, which drive malignant transformation, unlimited proliferation, metastasis, immunosuppression, and drug resistance of tumor cells. Dietary restriction of serine or phosphoglycerate dehydrogenase depletion mitigates tumor growth and extends the survival of tumor patients. Correspondingly, these findings triggered a boom in the development of novel therapeutic agents targeting serine metabolism. In this study, recent discoveries in the underlying mechanism and cellular function of serine metabolic reprogramming are summarized. The vital role of serine metabolism in oncogenesis, tumor stemness, tumor immunity, and therapeutic resistance is outlined. Finally, some potential tumor therapeutic concepts, strategies, and limitations of targeting the serine metabolic pathway are described in detail. Taken together, this review underscores the importance of serine metabolic reprogramming in tumorigenesis and progression and highlights new opportunities for dietary restriction or selective pharmacologic intervention.
Collapse
Affiliation(s)
- Wang Shunxi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yuan Xiaoxue
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Song Guanbin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Jin Junyu
- Department of Oncology, Chenjiaqiao Hospital, Shapingba, Chongqing, China.
| | - Liu Wanqian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
32
|
Wang Z, Lipshutz A, Liu ZL, Trzeciak AJ, Miranda IC, Martínez de la Torre C, Schild T, Lazarov T, Rojas WS, Saavedra PHV, Romero-Pichardo JE, Baako A, Geissmann F, Faraco G, Gan L, Etchegaray JI, Lucas CD, Parkhurst CN, Zeng MY, Keshari KR, Perry JSA. Early life high fructose exposure disrupts microglia function and impedes neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553242. [PMID: 37645894 PMCID: PMC10462086 DOI: 10.1101/2023.08.14.553242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Despite the success of fructose as a low-cost food additive, recent epidemiological evidence suggests that high fructose consumption by pregnant mothers or during adolescence is associated with disrupted neurodevelopment 1-7 . An essential step in appropriate mammalian neurodevelopment is the synaptic pruning and elimination of newly-formed neurons by microglia, the central nervous system's (CNS) resident professional phagocyte 8-10 . Whether early life high fructose consumption affects microglia function and if this directly impacts neurodevelopment remains unknown. Here, we show that both offspring born to dams fed a high fructose diet and neonates exposed to high fructose exhibit decreased microglial density, increased uncleared apoptotic cells, and decreased synaptic pruning in vivo . Importantly, deletion of the high affinity fructose transporter SLC2A5 (GLUT5) in neonates completely reversed microglia dysfunction, suggesting that high fructose directly affects neonatal development. Mechanistically, we found that high fructose treatment of both mouse and human microglia suppresses synaptic pruning and phagocytosis capacity which is fully reversed in GLUT5-deficient microglia. Using a combination of in vivo and in vitro nuclear magnetic resonance- and mass spectrometry-based fructose tracing, we found that high fructose drives significant GLUT5-dependent fructose uptake and catabolism, rewiring microglia metabolism towards a hypo-phagocytic state. Importantly, mice exposed to high fructose as neonates exhibited cognitive defects and developed anxiety-like behavior which were rescued in GLUT5-deficient animals. Our findings provide a mechanistic explanation for the epidemiological observation that early life high fructose exposure is associated with increased prevalence of adolescent anxiety disorders.
Collapse
|
33
|
Wu D, Zhang K, Khan FA, Wu Q, Pandupuspitasari NS, Tang Y, Guan K, Sun F, Huang C. The emerging era of lactate: A rising star in cellular signaling and its regulatory mechanisms. J Cell Biochem 2023; 124:1067-1081. [PMID: 37566665 DOI: 10.1002/jcb.30458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Cellular metabolites are ancient molecules with pleiotropic implications in health and disease. Beyond their cognate roles, they have signaling functions as the ligands for specific receptors and the precursors for epigenetic or posttranslational modifications. Lactate has long been recognized as a metabolic waste and fatigue product mainly produced from glycolytic metabolism. Recent evidence however suggests lactate is an unique molecule with diverse signaling attributes in orchestration of numerous biological processes, including tumor immunity and neuronal survival. The copious metabolic and non-metabolic functions of lactate mediated by its bidirectional shuttle between cells or intracellular organelles lead to a phenotype called "lactormone." Importantly, the mechanisms of lactate signaling, via acting as a molecular sensor and a regulator of NAD+ metabolism and AMP-activated protein kinase signaling, and via the newly identified lactate-driven lactylation, have been discovered. Further, we include a brief discussion about the autocrine regulation of efferocytosis by lactate in Sertoli cells which favoraerobic glycolysis. By emphasizing a repertoire of the most recent discovered mechanisms of lactate signaling, this review will open tantalizing avenues for future investigations cracking the regulatory topology of lactate signaling covered in the veil of mystery.
Collapse
Affiliation(s)
- Di Wu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Kejia Zhang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, Ministry of Research and Technology National Research and Innovation Agency, Jakarta, Indonesia
| | - Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, China
| | | | - Yuan Tang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| |
Collapse
|
34
|
Cui Y, Liu H, Wang Z, Zhang H, Tian J, Wang Z, Song W, Guo H, Liu L, Tian R, Zuo X, Ren S, Zhang F, Niu R. Fructose promotes angiogenesis by improving vascular endothelial cell function and upregulating VEGF expression in cancer cells. J Exp Clin Cancer Res 2023; 42:184. [PMID: 37507736 PMCID: PMC10375648 DOI: 10.1186/s13046-023-02765-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Fructose is a very common sugar found in natural foods, while current studies demonstrate that high fructose intake is significantly associated with increased risk of multiple cancers and more aggressive tumor behavior, but the relevant mechanisms are not fully understood. METHODS Tumor-grafting experiments and in vitro angiogenesis assays were conducted to detect the effect of fructose and the conditioned medium of fructose-cultured tumor cells on biological function of vascular endothelial cells (VECs) and angiogenesis. 448 colorectal cancer specimens were utilized to analyze the relationship between Glut5 expression levels in VECs and tumor cells and microvascular density (MVD). RESULTS We found that fructose can be metabolized by VECs and activate the Akt and Src signaling pathways, thereby enhancing the proliferation, migration, and tube-forming abilities of VECs and thereby promoting angiogenesis. Moreover, fructose can also improve the expression of vascular endothelial growth factor (VEGF) by upregulating the production of reactive oxygen species (ROS) in colorectal cancer cells, thus indirectly enhancing the biological function of VECs. Furthermore, this pro-angiogenic effect of fructose metabolism has also been well validated in clinical colorectal cancer tissues and mouse models. Fructose contributes to angiogenesis in mouse subcutaneous tumor grafts, and MVD is positively correlated with Glut5 expression levels of both endothelial cells and tumor cells of human colorectal cancer specimens. CONCLUSIONS These findings establish the direct role and mechanism by which fructose promotes tumor progression through increased angiogenesis, and provide reliable evidence for a better understanding of tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Liu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhaosong Wang
- Laboratory Animal Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jianfei Tian
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weijie Song
- Laboratory Animal Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Guo
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liming Liu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruinan Tian
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaoyan Zuo
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Sixin Ren
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Zhang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
35
|
He L, Ding Y, Zhou X, Li T, Yin Y. Serine signaling governs metabolic homeostasis and health. Trends Endocrinol Metab 2023; 34:361-372. [PMID: 36967366 DOI: 10.1016/j.tem.2023.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 05/12/2023]
Abstract
Serine has functions that are involved in metabolic homeostasis and health in pathological or stressful situations. Notably, the de novo serine synthesis pathway (SSP) plays a vital role in targeted regulation of immune responses, cell proliferation, and lipid/protein metabolism. The presentation of serine residues derived from SSP may be a signal of stress and provide novel insights into the relationship between metabolic homeostasis and diseases. Here, we summarize the current trends in understanding the regulatory mechanisms of serine metabolism, discuss how serine signaling governs metabolic and antistress processes, including oxidative stress, immunity, energy and lipid metabolism, intestinal microbiota, and the neurological system. We present a possible framework by which serine metabolism maintains metabolic homeostasis and treats human diseases.
Collapse
Affiliation(s)
- Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
| | - Yaqiong Ding
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China
| | - Xihong Zhou
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China
| | - Tiejun Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
| |
Collapse
|
36
|
Rattigan KM, Zarou MM, Helgason GV. Metabolism in stem cell-driven leukemia: parallels between hematopoiesis and immunity. Blood 2023; 141:2553-2565. [PMID: 36634302 PMCID: PMC10646800 DOI: 10.1182/blood.2022018258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Our understanding of cancer metabolism spans from its role in cellular energetics and supplying the building blocks necessary for proliferation, to maintaining cellular redox and regulating the cellular epigenome and transcriptome. Cancer metabolism, once thought to be solely driven by upregulated glycolysis, is now known to comprise multiple pathways with great plasticity in response to extrinsic challenges. Furthermore, cancer cells can modify their surrounding niche during disease initiation, maintenance, and metastasis, thereby contributing to therapy resistance. Leukemia is a paradigm model of stem cell-driven cancer. In this study, we review how leukemia remodels the niche and rewires its metabolism, with particular attention paid to therapy-resistant stem cells. Specifically, we aim to give a global, nonexhaustive overview of key metabolic pathways. By contrasting the metabolic rewiring required by myeloid-leukemic stem cells with that required for hematopoiesis and immune cell function, we highlight the metabolic features they share. This is a critical consideration when contemplating anticancer metabolic inhibitor options, especially in the context of anticancer immune therapies. Finally, we examine pathways that have not been studied in leukemia but are critical in solid cancers in the context of metastasis and interaction with new niches. These studies also offer detailed mechanisms that are yet to be investigated in leukemia. Given that cancer (and normal) cells can meet their energy requirements by not only upregulating metabolic pathways but also utilizing systemically available substrates, we aim to inform how interlinked these metabolic pathways are, both within leukemic cells and between cancer cells and their niche.
Collapse
Affiliation(s)
- Kevin M. Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martha M. Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - G. Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
37
|
Chen S, Tao Y, Wang Q, Ren J, Jing Y, Huang J, Zhang L, Li R. Glucose induced-AKT/mTOR activation accelerates glycolysis and promotes cell survival in acute myeloid leukemia. Leuk Res 2023; 128:107059. [PMID: 36989577 DOI: 10.1016/j.leukres.2023.107059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Multiple studies have demonstrated that excessive glucose utilization is a common feature of cancer cells to support malignant phenotype. Acute myeloid leukemia (AML) is recognized as a heterogeneous disorder of hematopoietic stem cells characterized by altered glucose metabolism. However, the role of glucose metabolic dysfunction in AML development remains obscure. In this study, glucose and 2-Deoxy-D-glucose (2-DG) treatment were applied to analyze the relationship between glucose metabolism and cell survival. Cell Counting Kit-8 (CCK-8) and flow cytometry (FCM) assays were used to examine the cell viability and apoptosis rate. Glucose consumption and lactate production were measured to assess the glucose metabolism pathway. The results demonstrated that abnormally increased glucose effectively promoted proliferation of leukemic cells and inhibited cell apoptosis, while 2-DG ameliorated leukemic phenotypes. Importantly, glucose exposure induced active glycolysis by increasing glucose consumption and lactate production. Furthermore, the levels of key glycolysis-related genes glucose transporter 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) were upregulated. Mechanistic investigations revealed that AKT/mTOR signaling pathway was activated in glucose condition. In conclusion, our findings indicate that glucose induced-AKT/mTOR activation plays a growth-promoting role in AML, highlighting that inhibition of glycolysis would be a vital adjuvant therapy strategy for AML.
Collapse
|
38
|
Transcription factor NKX2-1 drives serine and glycine synthesis addiction in cancer. Br J Cancer 2023; 128:1862-1878. [PMID: 36932191 PMCID: PMC10147615 DOI: 10.1038/s41416-023-02216-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.
Collapse
|
39
|
Xu HL, Zhou X, Chen S, Xu S, Li Z, Nakanishi H, Gao XD. Rare sugar L-sorbose exerts antitumor activity by impairing glucose metabolism. Commun Biol 2023; 6:259. [PMID: 36906698 PMCID: PMC10008635 DOI: 10.1038/s42003-023-04638-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Rare sugars are monosaccharides with low natural abundance. They are structural isomers of dietary sugars, but hardly be metabolized. Here, we report that rare sugar L-sorbose induces apoptosis in various cancer cells. As a C-3 epimer of D-fructose, L-sorbose is internalized via the transporter GLUT5 and phosphorylated by ketohexokinase (KHK) to produce L-sorbose-1-phosphate (S-1-P). Cellular S-1-P inactivates the glycolytic enzyme hexokinase resulting in attenuated glycolysis. Consequently, mitochondrial function is impaired and reactive oxygen species are produced. Moreover, L-sorbose downregulates the transcription of KHK-A, a splicing variant of KHK. Since KHK-A is a positive inducer of antioxidation genes, the antioxidant defense mechanism in cancer cells can be attenuated by L-sorbose-treatment. Thus, L-sorbose performs multiple anticancer activities to induce cell apoptosis. In mouse xenograft models, L-sorbose enhances the effect of tumor chemotherapy in combination with other anticancer drugs. These results demonstrate L-sorbose as an attractive therapeutic reagent for cancer treatment.
Collapse
Affiliation(s)
- Hui-Lin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shuai Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Si Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
40
|
Wang X, Bajpai AK, Gu Q, Ashbrook DG, Starlard-Davenport A, Lu L. Weighted gene co-expression network analysis identifies key hub genes and pathways in acute myeloid leukemia. Front Genet 2023; 14:1009462. [PMID: 36923792 PMCID: PMC10008864 DOI: 10.3389/fgene.2023.1009462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Introduction: Acute myeloid leukemia (AML) is the most common type of leukemia in adults. However, there is a gap in understanding the molecular basis of the disease, partly because key genes associated with AML have not been extensively explored. In the current study, we aimed to identify genes that have strong association with AML based on a cross-species integrative approach. Methods: We used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify co-expressed gene modules significantly correlated with human AML, and further selected the genes exhibiting a significant difference in expression between AML and healthy mouse. Protein-protein interactions, transcription factors, gene function, genetic regulation, and coding sequence variants were integrated to identify key hub genes in AML. Results: The cross-species approach identified a total of 412 genes associated with both human and mouse AML. Enrichment analysis confirmed an association of these genes with hematopoietic and immune-related functions, phenotypes, processes, and pathways. Further, the integrated analysis approach identified a set of important module genes including Nfe2, Trim27, Mef2c, Ets1, Tal1, Foxo1, and Gata1 in AML. Six of these genes (except ETS1) showed significant differential expression between human AML and healthy samples in an independent microarray dataset. All of these genes are known to be involved in immune/hematopoietic functions, and in transcriptional regulation. In addition, Nfe2, Trim27, Mef2c, and Ets1 harbor coding sequence variants, whereas Nfe2 and Trim27 are cis-regulated, making them attractive candidates for validation. Furthermore, subtype-specific analysis of the hub genes in human AML indicated high expression of NFE2 across all the subtypes (M0 through M7) and enriched expression of ETS1, LEF1, GATA1, and TAL1 in M6 and M7 subtypes. A significant correlation between methylation status and expression level was observed for most of these genes in AML patients. Conclusion: Findings from the current study highlight the importance of our cross-species approach in the identification of multiple key candidate genes in AML, which can be further studied to explore their detailed role in leukemia/AML.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Akhilesh K Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Qingqing Gu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - David G Ashbrook
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
41
|
Montégut L, de Cabo R, Zitvogel L, Kroemer G. Science-Driven Nutritional Interventions for the Prevention and Treatment of Cancer. Cancer Discov 2022; 12:2258-2279. [PMID: 35997502 PMCID: PMC10749912 DOI: 10.1158/2159-8290.cd-22-0504] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
In population studies, dietary patterns clearly influence the development, progression, and therapeutic response of cancers. Nonetheless, interventional dietary trials have had relatively little impact on the prevention and treatment of malignant disease. Standardization of nutritional interventions combined with high-level mode-of-action studies holds the promise of identifying specific entities and pathways endowed with antineoplastic properties. Here, we critically review the effects of caloric restriction and more specific interventions on macro- and micronutrients in preclinical models as well as in clinical studies. We place special emphasis on the prospect of using defined nutrition-relevant molecules to enhance the efficacy of established anticancer treatments. SIGNIFICANCE The avoidance of intrinsically hypercaloric and toxic diets contributes to the prevention and cure of cancer. In addition, specific diet-induced molecules such as ketone bodies and micronutrients, including specific vitamins, have drug-like effects that are clearly demonstrable in preclinical models, mostly in the context of immunotherapies. Multiple trials are underway to determine the clinical utility of such molecules.
Collapse
Affiliation(s)
- Léa Montégut
- Equipe labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Laurence Zitvogel
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, ClinicObiome, Villejuif, France
- INSERM U1015, Paris, France
- Equipe labellisée par la Ligue contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
42
|
High fructose diet: A risk factor for immune system dysregulation. Hum Immunol 2022; 83:538-546. [DOI: 10.1016/j.humimm.2022.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
|
43
|
Kansal R. Fructose Metabolism and Acute Myeloid Leukemia. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2022; 7:25-38. [DOI: 10.14218/erhm.2021.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Shen Z, Li Z, Liu Y, Li Y, Feng X, Zhan Y, Lin M, Fang C, Fang Y, Deng H. GLUT5-KHK axis-mediated fructose metabolism drives proliferation and chemotherapy resistance of colorectal cancer. Cancer Lett 2022; 534:215617. [DOI: 10.1016/j.canlet.2022.215617] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
|
45
|
Qian L, Zhang F, Yin M, Lei Q. Cancer metabolism and dietary interventions. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0461. [PMID: 34931768 PMCID: PMC8832959 DOI: 10.20892/j.issn.2095-3941.2021.0461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022] Open
Abstract
Metabolic remodeling is a key feature of cancer development. Knowledge of cancer metabolism has greatly expanded since the first observation of abnormal metabolism in cancer cells, the so-called Warburg effect. Malignant cells tend to modify cellular metabolism to favor specialized fermentation over the aerobic respiration usually used by most normal cells. Thus, targeted cancer therapies based on reprogramming nutrient or metabolite metabolism have received substantial attention both conceptually and in clinical practice. In particular, the management of nutrient availability is becoming more attractive in cancer treatment. In this review, we discuss recent findings on tumor metabolism and potential dietary interventions based on the specific characteristics of tumor metabolism. First, we present a comprehensive overview of changes in macronutrient metabolism. Carbohydrates, amino acids, and lipids, are rewired in the cancer microenvironment individually or systematically. Second, we summarize recent progress in cancer interventions applying different types of diets and specific nutrient restrictions in pre-clinical research or clinical trials.
Collapse
Affiliation(s)
- Lin Qian
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Fan Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Qunying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China
- Lead Contact, Shanghai 200030, China
| |
Collapse
|
46
|
Saito Y, Kinoshita M, Yamada A, Kawano S, Liu H, Kamimura S, Nakagawa M, Nagasawa S, Taguchi T, Yamada S, Moritake H. Mannose and phosphomannose isomerase regulate energy metabolism under glucose starvation in leukemia. Cancer Sci 2021; 112:4944-4956. [PMID: 34533861 PMCID: PMC8645730 DOI: 10.1111/cas.15138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diverse metabolic changes are induced by various driver oncogenes during the onset and progression of leukemia. By upregulating glycolysis, cancer cells acquire a proliferative advantage over normal hematopoietic cells; in addition, these changes in energy metabolism contribute to anticancer drug resistance. Because leukemia cells proliferate by consuming glucose as an energy source, an alternative nutrient source is essential when glucose levels in bone marrow are insufficient. We profiled sugar metabolism in leukemia cells and found that mannose is an energy source for glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway. Leukemia cells express high levels of phosphomannose isomerase (PMI), which mobilizes mannose to glycolysis; consequently, even mannose in the blood can be used as an energy source for glycolysis. Conversely, suppression of PMI expression or a mannose load exceeding the processing capacity of PMI inhibited transcription of genes related to mitochondrial metabolism and the TCA cycle, therefore suppressing the growth of leukemia cells. High PMI expression was also a poor prognostic factor for acute myeloid leukemia. Our findings reveal a new mechanism for glucose starvation resistance in leukemia. Furthermore, the combination of PMI suppression and mannose loading has potential as a novel treatment for driver oncogene-independent leukemia.
Collapse
Affiliation(s)
- Yusuke Saito
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Mariko Kinoshita
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Ai Yamada
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Sayaka Kawano
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Hong‐Shan Liu
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Sachiyo Kamimura
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Midori Nakagawa
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Syun Nagasawa
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Tadao Taguchi
- Center for the Development of Pharmacy EducationFaculty of PharmacyMeijo UniversityNagoyaJapan
| | - Shuhei Yamada
- Department of PathobiochemistryFaculty of PharmacyMeijo UniversityNagoyaJapan
| | - Hiroshi Moritake
- Division of PediatricsFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
47
|
Yu S, Li C, Ji G, Zhang L. The Contribution of Dietary Fructose to Non-alcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:783393. [PMID: 34867414 PMCID: PMC8637741 DOI: 10.3389/fphar.2021.783393] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the primary organ for fructose metabolism, recent studies suggest that excessive fructose intake is a driving force in non-alcoholic fatty liver disease (NAFLD). Dietary fructose metabolism begins at the intestine, along with its metabolites, may influence gut barrier and microbiota community, and contribute to increased nutrient absorption and lipogenic substrates overflow to the liver. Overwhelming fructose and the gut microbiota-derived fructose metabolites (e.g., acetate, butyric acid, butyrate and propionate) trigger the de novo lipogenesis in the liver, and result in lipid accumulation and hepatic steatosis. Fructose also reprograms the metabolic phenotype of liver cells (hepatocytes, macrophages, NK cells, etc.), and induces the occurrence of inflammation in the liver. Besides, there is endogenous fructose production that expands the fructose pool. Considering the close association of fructose metabolism and NAFLD, the drug development that focuses on blocking the absorption and metabolism of fructose might be promising strategies for NAFLD. Here we provide a systematic discussion of the underlying mechanisms of dietary fructose in contributing to the development and progression of NAFLD, and suggest the possible targets to prevent the pathogenetic process.
Collapse
Affiliation(s)
| | | | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
48
|
Lin WY, Fordham SE, Hungate E, Sunter NJ, Elstob C, Xu Y, Park C, Quante A, Strauch K, Gieger C, Skol A, Rahman T, Sucheston-Campbell L, Wang J, Hahn T, Clay-Gilmour AI, Jones GL, Marr HJ, Jackson GH, Menne T, Collin M, Ivey A, Hills RK, Burnett AK, Russell NH, Fitzgibbon J, Larson RA, Le Beau MM, Stock W, Heidenreich O, Alharbi A, Allsup DJ, Houlston RS, Norden J, Dickinson AM, Douglas E, Lendrem C, Daly AK, Palm L, Piechocki K, Jeffries S, Bornhäuser M, Röllig C, Altmann H, Ruhnke L, Kunadt D, Wagenführ L, Cordell HJ, Darlay R, Andersen MK, Fontana MC, Martinelli G, Marconi G, Sanz MA, Cervera J, Gómez-Seguí I, Cluzeau T, Moreilhon C, Raynaud S, Sill H, Voso MT, Lo-Coco F, Dombret H, Cheok M, Preudhomme C, Gale RE, Linch D, Gaal-Wesinger J, Masszi A, Nowak D, Hofmann WK, Gilkes A, Porkka K, Milosevic Feenstra JD, Kralovics R, Grimwade D, Meggendorfer M, Haferlach T, Krizsán S, Bödör C, Stölzel F, Onel K, Allan JM. Genome-wide association study identifies susceptibility loci for acute myeloid leukemia. Nat Commun 2021; 12:6233. [PMID: 34716350 PMCID: PMC8556284 DOI: 10.1038/s41467-021-26551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).
Collapse
Affiliation(s)
- Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah E Fordham
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric Hungate
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Nicola J Sunter
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yaobo Xu
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Park
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anne Quante
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Konstantin Strauch
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Christian Gieger
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Andrew Skol
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Junke Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Theresa Hahn
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Alyssa I Clay-Gilmour
- Arnold School of Public Health, Department of Epidemiology & Biostatistics, University of South Carolina, Greenville, USA
| | - Gail L Jones
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Helen J Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Graham H Jackson
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Tobias Menne
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Mathew Collin
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College Medical School, London, UK
| | - Robert K Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alan K Burnett
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK
| | - Nigel H Russell
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Richard A Larson
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Michelle M Le Beau
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Wendy Stock
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Abrar Alharbi
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David J Allsup
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jean Norden
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elisabeth Douglas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Clare Lendrem
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Palm
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Kim Piechocki
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Sally Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Martin Bornhäuser
- Department of Haematological Medicine, The Rayne Institute, King's College London, London, UK
- National Center for Tumor Diseases NCT, Partner site Dresden, Dresden, Germany
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Heidi Altmann
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Leo Ruhnke
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Desiree Kunadt
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca Darlay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mette K Andersen
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Maria C Fontana
- Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Marconi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Miguel A Sanz
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - José Cervera
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Inés Gómez-Seguí
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Cluzeau
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Chimène Moreilhon
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Sophie Raynaud
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Maria Teresa Voso
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Francesco Lo-Coco
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Hervé Dombret
- Hôpital Saint-Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Meyling Cheok
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Claude Preudhomme
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Rosemary E Gale
- Department of Haematology, University College London Cancer Institute, London, UK
| | - David Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Julia Gaal-Wesinger
- 1st Department of Internal Medicine, Semmewleis University, Budapest, Hungary
| | - Andras Masszi
- 3rd Department of Internal Medicine, Semmewleis University, Budapest, Hungary
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Amanda Gilkes
- Department of Haematology, University of Cardiff, Cardiff, UK
| | - Kimmo Porkka
- Helsinki University Hospital Comprehensive Cancer Center, Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Grimwade
- Department of Medical and Molecular Genetics, King's College Medical School, London, UK
| | | | | | - Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany.
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
49
|
Di Martino L, Tosello V, Peroni E, Piovan E. Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. Int J Mol Sci 2021; 22:ijms22168738. [PMID: 34445444 PMCID: PMC8395761 DOI: 10.3390/ijms22168738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemias, classified as acute myeloid leukemia and acute lymphoblastic leukemia, represent the most prevalent hematologic tumors in adolescent and young adults. In recent years, new challenges have emerged in order to improve the clinical effectiveness of therapies already in use and reduce their side effects. In particular, in this scenario, metabolic reprogramming plays a key role in tumorigenesis and prognosis, and it contributes to the treatment outcome of acute leukemia. This review summarizes the latest findings regarding the most relevant metabolic pathways contributing to the continuous growth, redox homeostasis, and drug resistance of leukemia cells. We describe the main metabolic deregulations in acute leukemia and evidence vulnerabilities that could be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ludovica Di Martino
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
| | - Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Edoardo Peroni
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
- Correspondence: ; Tel.: +39-049-8215895
| |
Collapse
|
50
|
Fructose and Mannose in Inborn Errors of Metabolism and Cancer. Metabolites 2021; 11:metabo11080479. [PMID: 34436420 PMCID: PMC8397987 DOI: 10.3390/metabo11080479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
History suggests that tasteful properties of sugar have been domesticated as far back as 8000 BCE. With origins in New Guinea, the cultivation of sugar quickly spread over centuries of conquest and trade. The product, which quickly integrated into common foods and onto kitchen tables, is sucrose, which is made up of glucose and fructose dimers. While sugar is commonly associated with flavor, there is a myriad of biochemical properties that explain how sugars as biological molecules function in physiological contexts. Substantial research and reviews have been done on the role of glucose in disease. This review aims to describe the role of its isomers, fructose and mannose, in the context of inborn errors of metabolism and other metabolic diseases, such as cancer. While structurally similar, fructose and mannose give rise to very differing biochemical properties and understanding these differences will guide the development of more effective therapies for metabolic disease. We will discuss pathophysiology linked to perturbations in fructose and mannose metabolism, diagnostic tools, and treatment options of the diseases.
Collapse
|