1
|
Humardani FM, Endharti AT, Ningrum RA, Arsana Wiyasa IW, Mulyanata LT, Antonius Y, Jonathan J, Dwi Putra SE. Unique motif Sequences for early diagnosis of preeclampsia. Clin Chim Acta 2025; 574:120339. [PMID: 40348314 DOI: 10.1016/j.cca.2025.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Preeclampsia (PE) is a disease that significantly impacts both maternal and infant health with its prevalence varying across different ethnicities. Current diagnostic methods for PE typically identify the condition after 20 weeks of gestation, often when the disease has already manifested and reached an advanced stage. The situation underscores the urgent need for early biomarkers capable of effective screening and diagnosis. Our review addresses this challenge by utilizing bioinformatics approaches as an alternative method prior to preclinical and clinical studies. Specifically, we focus on FRAGmentomics-based Methylation Analysis (FRAGMA), targeting the CGCGCGG sequence motif for methylation studies in cell-free DNA (cfDNA). Since cfDNA is largely derived from the placenta, the FRAGMA approach is particularly promising, given that the primary pathophysiology of PE originates in the placenta, and methylation patterns are unique to specific tissues. In the previous research, we identified 66 genes containing this sequence motif that are implicated in the pathophysiology of PE, and only six genes - FN1, ITGA2, ITGA5, ITGB1, ITGB3, and VWF - show potential as early detection biomarkers for PE. These genes still require further investigation to confirm their utility as biomarkers for PE in the future studies.
Collapse
Affiliation(s)
| | - Agustina Tri Endharti
- Doctoral Program in Medical Science, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia.
| | - Ratih Asmana Ningrum
- Research Center for Genetic Engineering, National Research and Innovation Agency, Cibinong, Bogor, Indonesia.
| | - I Wayan Arsana Wiyasa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
| | | | - Yulanda Antonius
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia.
| | - Jonathan Jonathan
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia.
| | | |
Collapse
|
2
|
Fu S, Lu Y, Sun W, Chen W, Lin C, Qin A. Swimming induces bone loss via regulating mechanical sensing pathways in bone marrow. MECHANOBIOLOGY IN MEDICINE 2025; 3:100125. [PMID: 40395774 PMCID: PMC12067880 DOI: 10.1016/j.mbm.2025.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 05/22/2025]
Abstract
Bone is an organ capable of perceiving external mechanical stress in real time and responding dynamically via mechanosensing proteins such as Piezo1 and YAP/TAZ. Upon sensing the mechano-signals, cells within the bone matrix collaborate to coordinate bone formation and resorption, while bone marrow cells are also stimulated and mobilized. High-load exercise stimulates osteoblast differentiation and bone formation. However, the mechanism through which the low-load exercises affect bone homeostasis is still unclear. In this work, we established a long-term swimming training model to unload the mechanical stress in mice. Throughout the training model, we observed a significant loss in trabecular bone mass, as evidenced by microCT scanning and histological staining. Single-cell sequencing of the tibial bone marrow tissue revealed a significant increase in the percentage of bone marrow neutrophils, along with alterations in Integrins and the ERK1/2 signaling pathway. Notably, the changes in both Integrins and the ERK1/2 signaling pathway in macrophages were more pronounced than in other cell types, which suggests a mechanical adaptive response in these cells. Moreover, the involvement of Integrins is also critical for the crosstalk between monocyte precusors and macrophages during swimming. Together, this study provides a resource of the alterations of bone marrow cell gene expression profile after swimming and highlights the importance of Integrins and the ERK1/2 signaling pathway in the bone marrow microenvironment after swimming.
Collapse
Affiliation(s)
- Shaotian Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yahong Lu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Zhejiang, 323000, China
| | - Wenkun Sun
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Wugui Chen
- Department of Orthopaedics, Mindong Hospital Affiliated Fujian Medical University, Fujian, China
| | - Chengshou Lin
- Department of Orthopaedics, Mindong Hospital Affiliated Fujian Medical University, Fujian, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
3
|
Li L, Li S, Cai L, Yang X, Feng Y, Zhang L, He X, Li M. Physical exercise mitigates the cognitive impairments by promoting ER-phagy in mice model of Alzheimer's disease. Behav Brain Res 2025:115650. [PMID: 40414310 DOI: 10.1016/j.bbr.2025.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/20/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia in older individuals, exhibiting an increasing incidence worldwide. Endoplasmic reticulum (ER) quality control has been receiving attention in the pathology of AD. The accumulation of misfolded proteins in the ER will activates the unfolded protein response (UPR), leading to cellular apoptosis. Using a mouse model of 5xFAD, we found that physical exercise (PE) promoted the clearance of ER fragments and inhibited the ER stress via ER autophagy (ER - Phagy). As a result, physical exercise reduced Aβ deposition, inhibited the neuronal apoptosis, ameliorated the emotional and cognitive impairments. Mechanistically, these PE related effects may be linked to the increased FAM134B, an ER-Phagy receptor, by up-regulating neuronal progranulin (Pgrn). Recombinant Pgrn injection could mimic the protective effects of PE, whereas down-regulation of Pgrn could abolish the PE-associated protection. Our findings indicate that physical exercise, as a readily accessible lifestyle intervention, holds significant potential for preventing diseases related to the global aging population.
Collapse
Affiliation(s)
- Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Shiyin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Lei Cai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), No.11, Fengxin Road, Huangpu district, Guangzhou, Guangdong, China
| | - Xiaofeng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Yifeng Feng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China.
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
4
|
Wang F, Zhang J, Yuan Y, Zhou J, Pang S, Li X, Qiu A. Study on the role of FN1 in chronic obstructive pulmonary disease. Gene 2025; 963:149551. [PMID: 40339769 DOI: 10.1016/j.gene.2025.149551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic respiratory condition characterized by a complex etiology. Fibronectin 1 (FN1), an extracellular matrix protein, is known to play a significant role in inflammatory responses and tissue remodeling. This study aims to investigate the involvement of FN1 in the development and progression of COPD, providing potential insights for preventive and therapeutic strategies. METHODS We first conducted a bioinformatics analysis to evaluate the expression of FN1 in COPD patients and then performed clinical validation. A total of 84 COPD patients and 39 healthy controls were enrolled. We measured FN1 levels in the serum and FN1 mRNA expression in the plasma of both groups. Additionally, we analyzed and compared the correlation between serum FN1 levels and lung function parameters in the healthy control group and COPD group. Next, we established a COPD model in SD rats, confirming the successful establishment of the model through HE staining. We then used immunohistochemistry and Western blot to detect the differences in FN1 expression in the lung tissues of COPD rats and normal rats. Finally, in BEAS-2B human normal bronchial epithelial cells, we overexpressed and silenced the FN1 gene to observe the effects on cell proliferation, apoptosis, and AKT phosphorylation levels. RESULTS Bioinformatics analysis revealed that FN1 expression was higher in the COPD group compared to the normal group. ELISA and PCR analysis both showed that FN1 levels in the serum and plasma of COPD patients were significantly higher than those in the normal group (P < 0.05). Statistical analysis further revealed a positive correlation between serum FN1 levels and lung function parameters in both the healthy control and COPD groups. Western blot and immunohistochemical analysis confirmed that, in the COPD rat model, FN1 expression in lung tissues was significantly higher than in normal rat lung tissues (P < 0.05). In BEAS-2B cells, overexpression of FN1 led to increased cell proliferation, reduced apoptosis, and elevated AKT phosphorylation levels. In contrast, silencing FN1 decreased cell proliferation, increased apoptosis, and lowered AKT phosphorylation levels. CONCLUSION Fibronectin 1 (FN1) has been implicated in the development and progression of Chronic Obstructive Pulmonary Disease (COPD). FN1 has potential as a biomarker for evaluating the prognosis of COPD patients and informing treatment strategies. Further research is essential to deepen our understanding of FN1's involvement in the pathogenesis of COPD, thereby facilitating the development of new theoretical frameworks and therapeutic interventions for managing this condition.
Collapse
Affiliation(s)
- Fei Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, PR China
| | - Jiansheng Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, PR China
| | - Yuxin Yuan
- Nanjing Medical University School of Medicine, PR China
| | - Jing Zhou
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, PR China
| | - Shanshan Pang
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, PR China
| | - Xia Li
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, PR China; Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, PR China.
| | - Aimin Qiu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, PR China.
| |
Collapse
|
5
|
Zhao X, Zhao B, Li H, Liu Y, Wang B, Li A, Zeng T, Hui HX, Sun J, Cikes D, Gheldof N, Hager J, Mi J, Laybutt DR, Deng Y, Shi Y, Neely GG, Wang Q. MTCH2 Suppresses Thermogenesis by Regulating Autophagy in Adipose Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416598. [PMID: 40051328 PMCID: PMC12061245 DOI: 10.1002/advs.202416598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Indexed: 05/10/2025]
Abstract
Stimulating adipose tissue thermogenesis has emerged as a promising strategy for combating obesity, with uncoupling protein 1 (UCP1) playing a central role in this process. However, the mechanisms that suppress adipose thermogenesis and energy dissipation in obesity are not fully understood. This study identifies mitochondrial carrier homolog 2 (MTCH2), an obesity susceptibility gene, as a negative regulator of energy homeostasis across flies, rodents, and humans. Notably, adipose-specific MTCH2 depletion in mice protects against high-fat-diet (HFD)-induced obesity and metabolic disorders. Mechanistically, MTCH2 deficiency promotes energy expenditure by stimulating thermogenesis in brown adipose tissue (BAT) and browning of subcutaneous white adipose tissue (scWAT), accompanied by upregulated UCP1 protein expression, enhanced mitochondrial biogenesis, and increased lipolysis in BAT and scWAT. Using integrated RNA sequencing and proteomic analyses, this study demonstrates that MTCH2 is a key suppressor of thermogenesis by negatively regulating autophagy via Bcl-2-dependent mechanism. These findings highlight MTCH2's critical role in energy homeostasis and reveal a previously unrecognized link between MTCH2, thermogenesis, and autophagy in adipose tissue biology, positioning MTCH2 as a promising therapeutic target for obesity and related metabolic disorders. This study provides new opportunities to develop treatments that enhance energy expenditure.
Collapse
Affiliation(s)
- Xin‐Yuan Zhao
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ben‐Chi Zhao
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Hui‐Lin Li
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ying Liu
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Bei Wang
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - An‐Qi Li
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Tian‐Shu Zeng
- Wuhan Union HospitalHuazhong University of Science and TechnologyWuhan430022China
| | - Hannah Xiaoyan Hui
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jia Sun
- Department of EndocrinologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Domagoj Cikes
- Institute of Physiology and PathophysiologyJohannes Kepler University LinzLinz4020Austria
| | - Nele Gheldof
- Ecole Polytechnique de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Jorg Hager
- Nestlé Institute of Health SciencesLausanneCH‐1015Switzerland
| | - Jian‐Xun Mi
- Key Laboratory of Big Data Intelligent ComputingChongqing University of Posts and TelecommunicationsChongqing400065China
- Chongqing Key Laboratory of Image CognitionChongqing University of Posts and TelecommunicationsChongqing400065China
- College of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing400065China
| | - D. Ross Laybutt
- Garvan Institute of Medical ResearchSt Vincent's Clinical SchoolUNSW SydneyDarlinghurstSydneyNSW2010Australia
| | - Yin‐Yue Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Yan‐Chuan Shi
- Neuroendocrinology GroupGarvan Institute of Medical ResearchDarlinghurstSydneyNSW2010Australia
- St Vincent's Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNSW2010Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional GenomicsCharles Perkins Centre and School of Life & Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Qiao‐Ping Wang
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Guangdong Provincial Key Laboratory of DiabetologyGuangzhou Key Laboratory of Mechanistic and Translational Obesity ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- State Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
6
|
Qin CH, Zhang SM, Huo XO, Song RP, Ling J. Effects of SB939 are mediated by STAT3 to inhibit breast cancer cell metastasis-related genes. Oncol Lett 2025; 29:236. [PMID: 40151421 PMCID: PMC11948958 DOI: 10.3892/ol.2025.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
The histone deacetylase inhibitor pracinostat (SB939) may inhibit metastasis of triple-negative breast cancer by downregulating fibronectin (FN1) expression through the STAT3 signaling pathway. SB939 exhibits low cytotoxicity and is a potential targeted agent against breast cancer. The present study investigated the value of STAT3 and FN1 as breast cancer treatment targets and integrated cancer databases and bioinformatics tools to evaluate the effect of SB939 on breast cancer metastasis. Gene Set Enrichment Analysis, Gene Expression Profiling Interactive Analysis, Gene Expression Database of Normal and Tumor Tissues 2, The University of Alabama at Birmingham Cancer data analysis portal, GeneMANIA, Search Tool for the Retrieval of Interacting Genes/Proteins, LinkedOmics and Tumor Immune Estimation Resource databases were used in the present study. SB939 inhibited enrichment of the STAT3 pathway and decreased the expression of FN1. FN1 and STAT3 expression was markedly higher in breast cancer tissues compared with normal tissues. Kaplan-Meier curves demonstrated that increased expression of STAT3 and FN1 was associated with low survival in patients with breast cancer with overall, recurrence-free and disease-specific survival and FN1 having the strongest association with MMP2, which facilitating extracellular matrix degradation and metastatic niche formation. Furthermore, MMP2 exhibits crosstalk STAT3 to induce metastasis of breast cancer cells. To conclude, SB939 may be used as a small molecule compound for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Chen-Hui Qin
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Shu-Min Zhang
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Xiao-Ou Huo
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Ruo-Piao Song
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Jun Ling
- Clinical Laboratory Department, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
7
|
Sun Y, Zhang Z, Wang Y, Wu X, Sun Y, Lou H, Xu J, Yao J, Cong D. Hidden pathway: the role of extracellular matrix in type 2 diabetes mellitus-related sarcopenia. Front Endocrinol (Lausanne) 2025; 16:1560396. [PMID: 40309438 PMCID: PMC12040695 DOI: 10.3389/fendo.2025.1560396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Type 2 diabetes mellitus-related sarcopenia (T2DMRS) is a common complication in elderly and advanced diabetes patients that affects long-term prognosis and quality of life. Skeletal muscle is the main unit of glucose metabolism, and it is surrounded by extracellular matrix (ECM), which is a microenvironment that acts as an efficient highway system. The ECM is essential for cellular communication and nutrient transport and supports muscle cell growth and repair. When this "ECM highway" fails to function effectively because of damage or blockage, the development of T2DMRS can be triggered or exacerbated. In recent years, the ECM has been widely demonstrated to play a critical role in insulin resistance and skeletal muscle regeneration. However, how the remodeling of skeletal muscle ECM components specifically affects the T2DMRS mechanism of action has not been scientifically described in detail. In this review, we comprehensively summarize the T2DMRS-related mechanisms of ECM remodeling, suggesting that collagen and integrins may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yiping Sun
- School of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yufeng Wang
- Department of Science and Technology, Changchun University of Chinese Medicine, Changchun, China
| | - Xingquan Wu
- Department of Tuina, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yahui Sun
- Department of Tuina, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Huijuan Lou
- Department of Tuina, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jing Xu
- School of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Junjie Yao
- School of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Deyu Cong
- Department of Tuina, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Xiong T, Wang K. Reconstructing the hepatocellular carcinoma microenvironment: the current status and challenges of 3D culture technology. Discov Oncol 2025; 16:506. [PMID: 40208520 PMCID: PMC11985711 DOI: 10.1007/s12672-025-02290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC), with high incidence and mortality rates among digestive system diseases, has become a focal point for researchers. However, the more we learn about HCC, the more apparent it becomes that our understanding is still superficial. The successes and failures of numerous studies underscore the urgent need for precision medicine in cancer treatment. A crucial aspect of preclinical research in precision medicine is the experimental model, particularly cell culture models. Among these, 3D cell culture models can effectively integrate and simulate the tumor microenvironment, closely reflecting the in vivo conditions of patients. This capability provides a solid theoretical foundation for personalized treatment approaches. In this review, we first outline the common in vitro 3D cell culture models and examine the essential elements within the tumor microenvironment, followed by insights into the current state and future developments of 3D in vitro cell models for HCC.
Collapse
Affiliation(s)
- Ting Xiong
- Division of Hepato-Biliary-Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Guo L, Han M, Xu J, Zhou W, Shi H, Chen S, Pang W, Zhang X, Duan Y, Yin Y, Li F. snRNA-Seq and Spatial Transcriptome Reveal Cell-Cell Crosstalk Mediated Metabolic Regulation in Porcine Skeletal Muscle. J Cachexia Sarcopenia Muscle 2025; 16:e13752. [PMID: 40079370 PMCID: PMC11904818 DOI: 10.1002/jcsm.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Cell-cell crosstalk between myogenic, adipogenic and immune cells in skeletal muscle to regulate energy metabolism and lipid deposition has received considerable attention. The specific mechanisms of interaction between the different cells in skeletal muscle are still unclear. METHODS Using integrated analysis of snRNA-seq and spatial transcriptome, the gene expression profile of longissimus dorsi (LD) muscle was compared between adult Taoyuan black (TB, obese, native Chinese breed) and Duroc (lean) pigs. RESULTS TB pig had more intramuscular fat (IMF) deposition (3.91%, p = 0.0244) and higher slow myofiber proportion (17.13%, p < 0.0001) compared with Duroc pig (IMF, 2.38%; slow myofiber, 6.92%) at the age of 180 days. We identified eight cell populations in porcine LD muscle. Five subpopulations of myonuclei and 10 subclusters of fibro/adipogenic progenitors (FAPs) were defined by marker genes. CellChat analysis revealed that communication between immune cells and other cells via the BMP and EGF signalling pathway was only observed in Duroc and not in TB pig. Both snRNA-seq and spatial transcriptome pointed out that FAPs are the important source of secretory proteins. A total of 35 upregulated and 23 downregulated differentially expressed genes (DEGs) were annotated as secretory, one upregulated and 36 downregulated secretory DEGs were identified between TB and Duroc pigs in FAPs by snRNA-seq and FAPs-high regions by spatial transcriptome, respectively. The distribution of FAPs was accompanied by the divergent myofiber-type composition. The expression level of slow myofiber marker gene (MYH7) was higher in both FAPs-high and FAPs-low regions of TB compared with Duroc pig (p < 0.0001), and expression level of fast myofiber maker gene (MYH1) was upregulated in FAPs-high region of Duroc compared with FAPs-high region of TB (p < 0.0001) and FAPs-low region of Duroc pig (p = 0.0002). The metabolic differences of myofibers between TB and Duroc pigs were mainly concentrated in energy, lipid and nitrogen metabolism-related pathway (p < 0.05). The significant correlation (R > 0.4, p < 0.05) between secretory and metabolism-related DEGs with spatial aggregation was verified by regression analysis for random region extraction (area of 25 spots, n = 400) from spatial transcriptome, and we speculated that the alteration of secretory proteins forming the microenvironment might regulate myofiber metabolism via target genes such as IRS1, PLPP1 and SLC38A2. CONCLUSIONS Our study provides new insights into skeletal muscle microenvironment that contributes to metabolic regulation and new methods and resources to study cell-cell communication in skeletal muscle.
Collapse
Affiliation(s)
- Liu Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengmeng Han
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junfei Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Wenyue Zhou
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Hanjing Shi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Sisi Chen
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xing Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaChina
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Chen J, Xiang J, Zhou M, Huang R, Zhang J, Cui Y, Jiang X, Li Y, Zhou R, Xin H, Li J, Li L, Lam SM, Zhu J, Chen Y, Yang Q, Xie Z, Shui G, Deng F, Zhang Z, Li MD. Dietary timing enhances exercise by modulating fat-muscle crosstalk via adipocyte AMPKα2 signaling. Cell Metab 2025:S1550-4131(25)00065-8. [PMID: 40088888 DOI: 10.1016/j.cmet.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
Feeding rhythms regulate exercise performance and muscle energy metabolism. However, the mechanisms regulating adipocyte functions remain unclear. Here, using multi-omics analyses, involving (phospho-)proteomics and lipidomics, we found that day-restricted feeding (DRF) regulates diurnal rhythms of the mitochondrial proteome, neutral lipidome, and nutrient-sensing pathways in mouse gonadal white adipose tissue (GWAT). Adipocyte-specific knockdown of Prkaa2 (the gene encoding AMPKα2) impairs physical endurance. This defect is associated with altered rhythmicity in acyl-coenzyme A (CoA) metabolism-related genes, a loss of rhythmicity in the GWAT lipidome, and circadian remodeling of serum metabolites-in particular, lactate and succinate. We also found that adipocyte Prkaa2 regulates muscle clock genes during DRF. Notably, oral administration of the AMPK activator C29 increases endurance and muscle functions in a time-of-day manner, which requires intact adipocyte AMPKα2 signaling. Collectively, our work defines adipocyte AMPKα2 signaling as a critical regulator of circadian metabolic coordination between fat and muscle, thereby enhancing exercise performance.
Collapse
Affiliation(s)
- Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Jing Xiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610072, China
| | - Jianxin Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China; Department of Cardiology, The 960th Hospital of the PLA Joint Service Support Force, Jinan 250000, China
| | - Yuanting Cui
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Yang Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Runchao Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Lihua Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou, China
| | - Jianfang Zhu
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Yanxiu Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Qingyuan Yang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China.
| |
Collapse
|
11
|
Mei J, Yang K, Zhang X, Luo Z, Tian M, Fan H, Chu J, Zhang Y, Ding J, Xu J, Cai Y, Yin Y. Intratumoral Collagen Deposition Supports Angiogenesis Suggesting Anti-angiogenic Therapy in Armored and Cold Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409147. [PMID: 39823457 PMCID: PMC11904994 DOI: 10.1002/advs.202409147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/05/2025] [Indexed: 01/19/2025]
Abstract
A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types. As a result, armored & cold tumors exhibit the highest angiogenic activity in lung adenocarcinoma (LUAD). Single-cell and spatial transcriptomics reveal close interactions and spatial co-localization of fibroblasts and endothelial cells. In vitro experiments demonstrate that collagen stimulates tumor cells to express vascular endothelial growth factor A (VEGFA) and directly enhances vessel formation and endothelial cell proliferation through sex determining region Y box 18 (SOX18) upregulation. Collagen inhibition via multiple approaches effectively suppresses tumor angiogenesis in vivo. In addition, armored & cold tumors display superior responsiveness to anti-angiogenic therapy in advanced LUAD cohorts. Post-immunotherapy resistance, the transformation into armored & cold tumors emerges as a potential biomarker for selecting anti-angiogenic therapy. In summary, collagen deposition is shown to drive angiogenesis across various cancers, providing a novel and actionable framework to refine therapeutic strategies combining chemotherapy with anti-angiogenic treatments.
Collapse
Affiliation(s)
- Jie Mei
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Kai Yang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Xinkang Zhang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Zhiwen Luo
- Department of Sports MedicineHuashan Hospital Affiliated to Fudan UniversityShanghai200040P. R. China
| | - Min Tian
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Hanfang Fan
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Jiahui Chu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Yan Zhang
- Departments of GynecologyThe Women's Hospital Affiliated to Jiangnan UniversityWuxi214023China
| | - Junli Ding
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Junying Xu
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Yun Cai
- Central LaboratoryChangzhou Jintan First People's HospitalThe Affiliated Jintan Hospital of Jiangsu UniversityChangzhouJiangsu213200P. R. China
| | - Yongmei Yin
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
12
|
Chen J, Xiang J, Zhou M, Huang R, Zhang J, Cui Y, Jiang X, Li Y, Zhou R, Xin H, Li J, Li L, Lam SM, Zhu J, Chen Y, Yang Q, Xie Z, Shui G, Deng F, Zhang Z, Li MD. Dietary timing enhances exercise by modulating fat-muscle crosstalk via adipocyte AMPKα2 signaling. Cell Metab 2025. [DOI: pmid: 40088888 doi: 10.1016/j.cmet.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
13
|
Wang Z, Ou Y, Zhu X, Zhou Y, Zheng X, Zhang M, Li S, Yang SN, Juntti-Berggren L, Berggren PO, Zheng X. Differential Regulation of miRNA and Protein Profiles in Human Plasma-Derived Extracellular Vesicles via Continuous Aerobic and High-Intensity Interval Training. Int J Mol Sci 2025; 26:1383. [PMID: 39941151 PMCID: PMC11818269 DOI: 10.3390/ijms26031383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Both continuous aerobic training (CAT) and high-intensity interval training (HIIT) are recommended to promote health and prevent diseases. Exercise-induced circulating extracellular vesicles (EX-EVs) have been suggested to play essential roles in mediating organ crosstalk, but corresponding molecular mechanisms remain unclear. To assess and compare the systemic effects of CAT and HIIT, five healthy male volunteers were assigned to HIIT and CAT, with a 7-day interval between sessions. Plasma EVs were collected at rest or immediately after each training section, prior to proteomics and miRNA profile analysis. We found that the differentially expressed (DE) miRNAs in EX-EVs were largely involved in the regulation of transcriptional factors, while most of the DE proteins in EX-EVs were identified as non-secreted proteins. Both CAT and HIIT play common roles in neuronal signal transduction, autophagy, and cell fate regulation. Specifically, CAT showed distinct roles in cognitive function and substrate metabolism, while HIIT was more associated with organ growth, cardiac muscle function, and insulin signaling pathways. Interestingly, the miR-379 cluster within EX-EVs was specifically regulated by HIIT, involving several biological functions, including neuroactive ligand-receptor interaction. Furthermore, EX-EVs likely originate from various tissues, including metabolic tissues, the immune system, and the nervous system. Our study provides molecular insights into the effects of CAT and HIIT, shedding light on the roles of EX-EVs in mediating organ crosstalk and health promotion.
Collapse
Affiliation(s)
- Zhenghao Wang
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Xiaowei Zheng
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Meixia Zhang
- Research Laboratory of Macular Disease, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Sheyu Li
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| |
Collapse
|
14
|
Zhou XH, Luo YX, Yao XQ. Exercise-driven cellular autophagy: A bridge to systematic wellness. J Adv Res 2025:S2090-1232(24)00613-1. [PMID: 39756575 DOI: 10.1016/j.jare.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood. AIM OF REVIEW This review explores the molecular mechanisms of exercise-induced autophagy in various tissues, focusing on key transduction pathways. It examines how different types of exercise trigger specific autophagic responses, supporting cellular balance and addressing systemic dysfunctions. The review also highlights the signaling pathways involved, their roles in protecting organ function, reducing disease risk, and promoting longevity, offering a clear understanding of the link between exercise and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Exercise-induced autophagy is governed by highly coordinated and dynamic pathways integrating direct and indirect mechanical forces and biochemical signals, linking physical activity to cellular and systemic health across multiple organ systems. Its activation is influenced by exercise modality, intensity, duration, and individual biological characteristics, including age, sex, and muscle fiber composition. Aerobic exercises primarily engage AMPK and mTOR pathways, supporting mitochondrial quality and cellular homeostasis. Anaerobic training activates PI3K/Akt signaling, modulating molecules like FOXO3a and Beclin1 to drive muscle autophagy and repair. In pathological contexts, exercise-induced autophagy enhances mitochondrial function, proteostasis, and tissue regeneration, benefiting conditions like sarcopenia, neurodegeneration, myocardial ischemia, metabolic disorders, and cancer. However, excessive exercise may lead to autophagic overactivation, leading to muscle atrophy or pathological cardiac remodeling. This underscores the critical need for balanced exercise regimens to maximize therapeutic efficacy while minimizing risks. Future research should prioritize identifying reliable biomarkers, optimizing exercise protocols, and integrating exercise with pharmacological strategies to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xiao-Han Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
15
|
Liu M, Chen P, Wei B, Tan HL, Zhao YX, Ai L, Li N, Jiang YK, Lin J, Li SJ, Chang S. FN1 shapes the behavior of papillary thyroid carcinoma through alternative splicing of EDB region. Sci Rep 2025; 15:327. [PMID: 39747903 PMCID: PMC11695688 DOI: 10.1038/s41598-024-83369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Papillary thyroid cancer (PTC) is often characterized by indolent behavior, small tumors with slow cell proliferation and a tendency to metastasize to cervical lymph node simultaneously, and the molecular mechanisms underlying that remain poorly understood. In this study, FN1 was the hottest gene of PTC and distinctive expression in PTC cells. FN1 deficiency severely inhibited the p53 signaling pathway, especially cyclin proteins, resulting in increased cell growth but hampered invasion. The alternatively splicing EDB region of FN1 was exclusively expressed in tumors, which impacted integrin β1 (ITGB1) bonding FN1 and its secretion process, resulting in completely distinct roles of two isoforms that FN1 including and skipping EDB domain. The isoform EDB(-)FN1 intracellularly inhibited tumor proliferation by upregulating p21 expression, whereas extracellular EDB(+)FN1 promoted lymph node metastasis via the VEGF signaling pathway in vitro and in vivo. Moreover, the alternative splicing EDB region of FN1 was modulated by p53-targeted protein ZMAT3 which activated cell migration and lymphoangiogenesis. Collectively, combined with p53-induced proteins, FN1 played both anti- and pro-cancer roles owing to EDB domain alternative splicing. FN1 is a potential determinant behind the characteristic behavior of PTC, which may contribute to a deeper understanding of the peculiarity of PTC and provide a promising target for regional lymph node metastasis.
Collapse
Affiliation(s)
- Mian Liu
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, China
| | - Pei Chen
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Bo Wei
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Hai-Long Tan
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Ya-Xin Zhao
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Lei Ai
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Ning Li
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Ying-Ke Jiang
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Jing Lin
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Shi-Jin Li
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Shi Chang
- Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Xiangya Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Xiangya Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
16
|
Zeng H, Chen N, Chen F, Zhong X, Yang L, Lu Y, Chen M, Shen M, Wang S, Chen S, Cao J, Zhang X, Zhao J, Xu Y, Wang J, Hu M. Exercise alleviates hematopoietic stem cell injury following radiation via the carnosine/Slc15a2-p53 axis. Cell Commun Signal 2024; 22:582. [PMID: 39627813 PMCID: PMC11613893 DOI: 10.1186/s12964-024-01959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
Ionizing radiation (IR) can cause severe dysfunction of hematopoietic stem cells (HSCs), leading to acute or prolonged myelosuppression. In recent years, physical exercise has been recognized as a healthy lifestyle as it can fight a variety of diseases. However, whether it provides protection against IR is not fully understood. In this study, we revealed that long-term moderate exercise mitigated IR-induced hematopoietic injury by generating carnosine from skeletal muscles. We found that exercised mice displayed reduced loss of HSC number and function after IR, accompanied by alleviated bone marrow damage. Interestingly, these effects were largely abrogated by specific deletion of carnosine synthase Carns1 in skeletal muscles. In contrast, carnosine treatment protected HSCs against IR-induced injury. Mechanistically, we demonstrated that exercise-generated carnosine was specifically transported to HSCs via Slc15a2 and then inhibited p53 transcriptional activity by directly interacting with its core DNA-binding domain, which led to downregulation of the p53 target genes p21 and Puma, thus promoting the proliferation and survival and inhibiting the senescence of irradiated HSCs. More importantly, a similar role of the carnosine/Slc15a2-p53 axis was observed in human cord blood-derived HSCs. Collectively, our data reveal that moderate exercise or carnosine supplementation may be potential antiradiation strategies.
Collapse
Affiliation(s)
- Hao Zeng
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naicheng Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoyi Zhong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital, Kidney Center of PLA, Third Military Medical University, Chongqing, 400037, China
| | - Lijing Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yukai Lu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital, Kidney Center of PLA, Third Military Medical University, Chongqing, 400037, China
| | - Yang Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mengjia Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| |
Collapse
|
17
|
Arden C, Park SH, Yasasilka XR, Lee EY, Lee MS. Autophagy and lysosomal dysfunction in diabetes and its complications. Trends Endocrinol Metab 2024; 35:1078-1090. [PMID: 39054224 DOI: 10.1016/j.tem.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Autophagy is critical for energy homeostasis and the function of organelles such as endoplasmic reticulum (ER) and mitochondria. Dysregulated autophagy due to aging, environmental factors, or genetic predisposition can be an underlying cause of not only diabetes through β-cell dysfunction and metabolic inflammation, but also diabetic complications such as diabetic kidney diseases (DKDs). Dysfunction of lysosomes, effector organelles of autophagic degradation, due to metabolic stress or nutrients/metabolites accumulating in metabolic diseases is also emerging as a cause or aggravating element in diabetes and its complications. Here, we discuss the etiological role of dysregulated autophagy and lysosomal dysfunction in diabetes and a potential role of autophagy or lysosomal modulation as a new avenue for treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Seo H Park
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Xaviera Riani Yasasilka
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Eun Y Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea; Division of Endocrinology, Department of Internal Medicine and Department of Microbiology and Immunology, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
18
|
Shen A, Dai L, Zhou D, Zhou P. Fibronectin 1 serves as a potential diagnostic, immunological and prognostic biomarker for glioblastoma patients. Asian J Surg 2024:S1015-9584(24)02231-0. [PMID: 39366869 DOI: 10.1016/j.asjsur.2024.09.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Affiliation(s)
- Ao Shen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lirui Dai
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Dongjie Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Peizhi Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Chen Y, Zhang Y, Jin X, Hong S, Tian H. Exerkines: Benign adaptation for exercise and benefits for non-alcoholic fatty liver disease. Biochem Biophys Res Commun 2024; 726:150305. [PMID: 38917635 DOI: 10.1016/j.bbrc.2024.150305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Exercise has multiple beneficial effects on human metabolic health and is regarded as a "polypill" for various diseases. At present, the lack of physical activity usually causes an epidemic of chronic metabolic syndromes, including obesity, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Remarkably, NAFLD is emerging as a serious public health issue and is associated with the development of cirrhosis and hepatocellular carcinoma. Unfortunately, specific drug therapies for NAFLD and its more severe form, non-alcoholic steatohepatitis (NASH), are currently unavailable. Lifestyle modification is the foundation of treatment recommendations for NAFLD and NASH, especially for exercise. There are under-appreciated organs that crosstalk to the liver during exercise such as muscle-liver crosstalk. Previous studies have reported that certain exerkines, such as FGF21, GDF15, irisin, and adiponectin, are beneficial for liver metabolism and have the potential to be targeted for NAFLD treatment. In addition, some of exerkines can be modified for the new proteins and get enhanced functions, like IL-6/IC7Fc. Another importance of exercise is the physiological adaptation that combats metabolic diseases. Thus, this review aims to summarize the known exerkines and utilize a multi-omics mining tool to identify more exerkines for the future research. Overall, understanding the mechanisms by which exercise-induced exerkines exert their beneficial effects on metabolic health holds promise for the development of novel therapeutic strategies for NAFLD and related diseases.
Collapse
Affiliation(s)
- Yang Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yan Zhang
- Clinical Laboratory, Suzhou Yong Ding Hospital, Suzhou, 215200, China
| | - Xingsheng Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
20
|
Tao X, Xu X, Xu Y, Yang Q, Yang T, Zhou X, Xue H, Ren X, Luo F. Association between physical activity and visceral adiposity index (VAI) in U.S. population with overweight or obesity: a cross-sectional study. BMC Public Health 2024; 24:2314. [PMID: 39187794 PMCID: PMC11348595 DOI: 10.1186/s12889-024-19810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Previous studies have revealed the effects of different physical activity (PA) types on visceral adipose tissue (VAT) accumulation in individuals with overweight/obesity. However, the independent association (especially the dose-response relationship) between PA and VAT in individuals with and without overweight/obesity remains less explored. Visceral adiposity index (VAI), calculated from waist circumference, body mass index (BMI), triglyceride and high-density lipoprotein cholesterol, is a novel indicator of VAT. This study aims to elucidate the association between PA and VAI in participants with and without overweight/obesity. METHODS Participants who are overweight or obese and with complete data on VAI, PA, and other essential covariates from the National Health and Nutrition Examination Survey (NHANES) database (2015-2018) were included in this study. PA was evaluated by the PA questionnaire and converted into metabolic equivalent task (MET) hours per week (MET-h/wk) based on the suggested MET scores. Multivariate linear regression models were used to identify the association between PA and VAI. Subgroup analyses, combined with interaction tests and restricted cubic spline (RCS) regression analyses, were utilized to explore the stability and nonlinearity of PA-VAI association, respectively. RESULTS A total of 4, 312 participants with complete data on PA and VAI was included in this study, with 3, 441 of them being overweight or obese. After adjusting for all potential covariates, increased PA was found to be significantly associated with remarkable lower level of VAI in all participants (β = -0.0004, P = 0.003), participants with (β = -0.0013, P = 0.012) and without (β = -0.0004, P = 0.003) overweight/obesity. Subgroup analyses and interaction tests revealed that the PA-VAI association was not modified by other covariates in individuals with overweight/obesity. Furthermore, RCS analyses revealed that PA was significantly, linearly and negatively associated with VAI in all participants, participants with and without overweight/obesity (all P < 0.05, all P for nonlinearity > 0.05). Noteworthily, as opposed to individuals without overweight/obesity, PA was significantly associated with lower VAI in participants with overweight/obesity after exceeding the threshold of 150 MET-h/wk. CONCLUSION Increased PA was significantly associated with lower level of VAI, but a higher level of PA (> 150 MET-h/wk) was needed to obtain significantly lower level of VAI in individuals with overweight/obesity.
Collapse
Affiliation(s)
- XiaoLiang Tao
- Department of Orthopaedics, National & Regional United Engineering Lab of Tissue Engineering, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiang Xu
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - YaoXin Xu
- Department of Orthopaedics, National & Regional United Engineering Lab of Tissue Engineering, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - QianKun Yang
- Department of Orthopaedics, National & Regional United Engineering Lab of Tissue Engineering, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - TaoTao Yang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiang Zhou
- College of Basic Medicine, Army Medical University, Cadet Brigade 4, Chongqing, 400038, China
| | - Hao Xue
- Department of Orthopaedics, National & Regional United Engineering Lab of Tissue Engineering, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - XiaoQin Ren
- Department of Orthopaedics, National & Regional United Engineering Lab of Tissue Engineering, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Fei Luo
- Department of Orthopaedics, National & Regional United Engineering Lab of Tissue Engineering, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
21
|
Guan Y, Spaulding H, Yu Q, Zhang M, Willoughby O, Drake JC, Yan Z. Ulk1 phosphorylation at S555 is not required for endurance training-induced improvements in exercise and metabolic capacity in mice. J Appl Physiol (1985) 2024; 137:223-232. [PMID: 38900860 PMCID: PMC11340693 DOI: 10.1152/japplphysiol.00742.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Endurance exercise training improves exercise capacity as well as skeletal muscle and whole body metabolism, which are hallmarks of high quality-of-life and healthy aging. However, its mechanisms are not yet fully understood. Exercise-induced mitophagy has emerged as an important step in mitochondrial remodeling. Unc-51-like autophagy-activating kinase 1, ULK1, specifically its activation by phosphorylation at serine 555, was discovered as an autophagy driver and to be important for energetic stress-induced mitophagy in skeletal muscle, making it a potential mediator of the beneficial effects of exercise on mitochondrial remodeling. Here, we used CRISPR/Cas9-mediated gene editing and generated knock-in mice with a serine-to-alanine mutation of Ulk1 on serine 555. We now report that these mice displayed normal endurance capacity and cardiac function at baseline with a mild impairment in energy metabolism as indicated by an accelerated increase of respiratory exchange ratio (RER) during acute exercise stress; however, this was completely corrected by 8 wk of voluntary running. Ulk1-S555A mice also retained the exercise-mediated improvements in exercise capacity and metabolic flux. We conclude that Ulk1 phosphorylation at S555 is not required for exercise-mediated improvements of exercise and metabolic capacity in healthy mice.NEW & NOTEWORTHY We have used CRISPR/Cas9-mediated gene editing to generate Ulk1-S555A knock-in mice to show that loss of phosphorylation of Ulk1 at S555 blunted exercise-induced mitophagy and mildly impairs energy metabolism during exercise in healthy mice. However, the knock-in mice retained exercise training-mediated improvements of endurance capacity and energy metabolism during exercise. These findings suggest that exercise-induced mitophagy through Ulk1 activation is not required for the metabolic adaptation and improved exercise capacity in young, healthy mice.
Collapse
Affiliation(s)
- Yuntian Guan
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| | - Hannah Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Qing Yu
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Mei Zhang
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| | - Orion Willoughby
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Zhen Yan
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
- Molecular Physiology and Biological Physics, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
22
|
Yang Q, Yan C, Sun Y, Xie Z, Yang L, Jiang M, Ni J, Chen B, Xu S, Yuan Z, Wu Y, Liu X, Yuan Z, Bai Z. Extracellular Matrix Remodeling Alleviates Memory Deficits in Alzheimer's Disease by Enhancing the Astrocytic Autophagy-Lysosome Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400480. [PMID: 38881515 PMCID: PMC11336928 DOI: 10.1002/advs.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Extracellular matrix (ECM) remodeling is strongly linked to Alzheimer's disease (AD) risk; however, the underlying mechanisms are not fully understood. Here, it is found that the injection of chondroitinase ABC (ChABC), mimicking ECM remodeling, into the medial prefrontal cortex (mPFC) reversed short-term memory loss and reduced amyloid-beta (Aβ) deposition in 5xFAD mice. ECM remodeling also reactivated astrocytes, reduced the levels of aggrecan in Aβ plaques, and enhanced astrocyte recruitment to surrounding plaques. Importantly, ECM remodeling enhanced the autophagy-lysosome pathway in astrocytes, thereby mediating Aβ clearance and alleviating AD pathology. ECM remodeling also promoted Aβ plaque phagocytosis by astrocytes by activating the astrocytic phagocytosis receptor MERTK and promoting astrocytic vesicle circulation. The study identified a cellular mechanism in which ECM remodeling activates the astrocytic autophagy-lysosomal pathway and alleviates AD pathology. Targeting ECM remodeling may represent a potential therapeutic strategy for AD and serve as a reference for the treatment of this disease.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Chengxiang Yan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yahan Sun
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Liang Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Ming Jiang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Beining Chen
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Neurobiology, Interdisciplinary InnoCenter for Organoids, School of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Sen Xu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhaoyue Yuan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yanyan Wu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Xia Liu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zengqiang Yuan
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Zhantao Bai
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| |
Collapse
|
23
|
Zheng Y, Zhao L, Xiong Z, Huang C, Yong Q, Fang D, Fu Y, Gu S, Chen C, Li J, Zhu Y, Liu J, Liu F, Li Y. Ursolic acid targets secreted phosphoprotein 1 to regulate Th17 cells against metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2024; 30:449-467. [PMID: 38623614 PMCID: PMC11261229 DOI: 10.3350/cmh.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) has become an increasingly important health challenge, with a substantial rise linked to changing lifestyles and global obesity. Ursolic acid, a natural pentacyclic triterpenoid, has been explored for its potential therapeutic effects. Given its multifunctional bioactive properties, this research further revealed the pharmacological mechanisms of ursolic acid on MASLD. METHODS Drug target chips and bioinformatics analysis were combined in this study to explore the potential therapeutic effects of ursolic acid on MASLD. Molecular docking simulations, surface plasmon resonance analyses, pull-down experiments, and co-immunoprecipitation assays were used to verify the direct interactions. Gene knockdown mice were generated, and high-fat diets were used to validate drug efficacy. Furthermore, initial CD4+ T cells were isolated and stimulated to demonstrate our findings. RESULTS In this study, the multifunctional extracellular matrix phosphorylated glycoprotein secreted phosphoprotein 1 (SPP1) was investigated, highlighting its capability to induce Th17 cell differentiation, amplifying inflammatory cascades, and subsequently promoting the evolution of MASLD. In addition, this study revealed that in addition to the canonical TGF-β/IL-6 cytokine pathway, SPP1 can directly interact with ITGB1 and CD44, orchestrating Th17 cell differentiation via their joint downstream ERK signaling pathway. Remarkably, ursolic acid intervention notably suppressed the protein activity of SPP1, suggesting a promising avenue for ameliorating the immunoinflammatory trajectory in MASLD progression. CONCLUSION Ursolic acid could improve immune inflammation in MASLD by modulating SPP1-mediated Th17 cell differentiation via the ERK signaling pathway, which is orchestrated jointly by ITGB1 and CD44, emerging as a linchpin in this molecular cascade.
Collapse
Affiliation(s)
- Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhekun Xiong
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Chaoyuan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiuhong Yong
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Fang
- Medical Affairs Department, Ton-Bridge Medical Technology Co., Ltd., Zhuhai, China
| | - Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Zheng D, Hong X, He X, Lin J, Fan S, Wu J, Liang Z, Chen S, Yan L, Ren M, Wang W. Intermittent Fasting-Improved Glucose Homeostasis Is Not Entirely Dependent on Caloric Restriction in db/db Male Mice. Diabetes 2024; 73:864-878. [PMID: 38502858 PMCID: PMC11109801 DOI: 10.2337/db23-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Intermittent fasting (IF), which involves prolonged fasting intervals accompanied by caloric restriction (CR), is an effective dietary treatment for obesity and diabetes. Although IF offers many benefits, it is difficult to determine whether these benefits are the consequences of CR. Every-other-day feeding (EODF) is a commonly used IF research model. This study was designed to identify factors, in addition to CR, responsible for the effects of EODF and the possible underlying mechanisms. Diabetic db/db mice were divided into three groups: ad libitum (AL), meal feeding (MF), and EODF. The MF model was used to attain a level of CR comparable to that of EODF, with food distribution evenly divided between 10:00 a.m. and 6:00 p.m., thereby minimizing the fasting interval. EODF yielded greater improvements in glucose homeostasis than MF in db/db mice by reducing fasting glucose levels and enhancing glucose tolerance. However, these effects on glucose metabolism were less pronounced in lean mice. Furthermore, ubiquitination of the liver-specific glucocorticoid (GC) receptor (GR) facilitated its degradation and downregulation of Kruppel-like factor 9 (KLF9), which ultimately suppressed liver gluconeogenesis in diabetic EODF mice. Although GR and KLF9 might mediate the metabolic benefits of EODF, the potential benefits of EODF might be limited by elevated serum GC levels in diabetic EODF mice. Overall, this study suggests that the metabolic benefits of EODF in improving glucose homeostasis are independent of CR, possibly because of the downstream effects of liver-specific GR degradation. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Dinghao Zheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Xiaosi Hong
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Xiaodan He
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Jianghong Lin
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Shujin Fan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Jinli Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Zhuoxian Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Wei Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
- Department of Endocrinology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
26
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
27
|
Sun X, Zhang B, Sun K, Li F, Hu D, Chen J, Kong F, Xie Y. Liver-Derived Ketogenesis via Overexpressing HMGCS2 Promotes the Recovery of Spinal Cord Injury. Adv Biol (Weinh) 2024; 8:e2300481. [PMID: 37990936 DOI: 10.1002/adbi.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The liver is the major ketogenic organ of the body, and ketones are reported to possess favorable neuroprotective effects. This study aims to elucidate whether ketone bodies generated from the liver play a critical role in bridging the liver and spinal cord. Mice model with a contusive spinal cord injury (SCI) surgery is established, and SCI induces significant histological changes in mice liver. mRNA-seq of liver tissue shows the temporal changes of ketone bodies-related genes, β-hydroxybutyrate dehydrogenase (BDH1) and solute carrier family 16 (monocarboxylic acid transporters), member 6 (SLC16A6). Then, an activated ketogenesis model is created with adult C57BL/6 mice receiving the tail intravenous injection of GPAAV8-TBG-Mouse-Hmgcs2-CMV- mCherry -WPRE (HMGCS2liver ) and mice receiving equal AAV8-Null being the control group (Vectorliver ). Then, the mice undergo either a contusive SCI or sham surgery. The results show that overexpression of HMG-CoA synthase (Hmgcs2) in mice liver dramatically alleviates SCI-mediated pathological changes and promotes ketogenesis in the liver. Amazingly, liver-derived ketogenesis evidently alleviates neuron apoptosis and inflammatory microglia activation and improves the recovery of motor function of SCI mice. In conclusion, a liver-spinal cord axis can be bridged via ketone bodies, and enhancing the production of the ketone body within the liver has neuroprotective effects on traumatic SCI.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Bin Zhang
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Kaiqiang Sun
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Fudong Li
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Dongping Hu
- Shanghai Zechong Biotechnology Co., Ltd., Shanghai, China
| | - Juxiang Chen
- Department of Surgery, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Fanqi Kong
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Yang Xie
- Department of Surgery, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
28
|
Wei W, Raun SH, Long JZ. Molecular Insights From Multiomics Studies of Physical Activity. Diabetes 2024; 73:162-168. [PMID: 38241506 PMCID: PMC10796296 DOI: 10.2337/dbi23-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/04/2023] [Indexed: 01/21/2024]
Abstract
Physical activity confers systemic health benefits and provides powerful protection against disease. There has been tremendous interest in understanding the molecular effectors of exercise that mediate these physiologic effects. The modern growth of multiomics technologies-including metabolomics, proteomics, phosphoproteomics, lipidomics, single-cell RNA sequencing, and epigenomics-has provided unparalleled opportunities to systematically investigate the molecular changes associated with physical activity on an organism-wide scale. Here, we discuss how multiomics technologies provide new insights into the systemic effects of physical activity, including the integrative responses across organs as well as the molecules and mechanisms mediating tissue communication during exercise. We also highlight critical unanswered questions that can now be addressed using these high-dimensional tools and provide perspectives on fertile future research directions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Sarafan ChEM-H, Stanford University, Stanford, CA
| | - Steffen H. Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Sarafan ChEM-H, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA
| |
Collapse
|
29
|
Mok J, Park JH, Yeom SC, Park J. PROKR1-CREB-NR4A2 axis for oxidative muscle fiber specification and improvement of metabolic function. Proc Natl Acad Sci U S A 2024; 121:e2308960121. [PMID: 38232288 PMCID: PMC10823220 DOI: 10.1073/pnas.2308960121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic disorders are characterized by an imbalance in muscle fiber composition, and a potential therapeutic approach involves increasing the proportion of oxidative muscle fibers. Prokineticin receptor 1 (PROKR1) is a G protein-coupled receptor that plays a role in various metabolic functions, but its specific involvement in oxidative fiber specification is not fully understood. Here, we investigated the functions of PROKR1 in muscle development to address metabolic disorders and muscular diseases. A meta-analysis revealed that the activation of PROKR1 upregulated exercise-responsive genes, particularly nuclear receptor subfamily 4 group A member 2 (NR4A2). Further investigations using ChIP-PCR, luciferase assays, and pharmacological interventions demonstrated that PROKR1 signaling enhanced NR4A2 expression by Gs-mediated phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in both mouse and human myotubes. Genetic and pharmacological interventions showed that the PROKR1-NR4A2 axis promotes the specification of oxidative muscle fibers in both myocytes by promoting mitochondrial biogenesis and metabolic function. Prokr1-deficient mice displayed unfavorable metabolic phenotypes, such as lower lean mass, enlarged muscle fibers, impaired glucose, and insulin tolerance. These mice also exhibited reduced energy expenditure and exercise performance. The deletion of Prokr1 resulted in decreased oxidative muscle fiber composition and reduced activity in the Prokr1-CREB-Nr4a2 pathway, which were restored by AAV-mediated Prokr1 rescue. In summary, our findings highlight the activation of the PROKR1-CREB-NR4A2 axis as a mechanism for increasing the oxidative muscle fiber composition, which positively impacts overall metabolic function. This study lays an important scientific foundation for the development of effective muscular-metabolic therapeutics with unique mechanisms of action.
Collapse
Affiliation(s)
- Jongsoo Mok
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea, 25354
| | - Jeong Hwan Park
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Pyeongchang, Seoul National University, Republic of Korea, 25354
| | - Su Chong Yeom
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea, 25354
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Pyeongchang, Seoul National University, Republic of Korea, 25354
| | - Joonghoon Park
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea, 25354
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Pyeongchang, Seoul National University, Republic of Korea, 25354
| |
Collapse
|
30
|
Wang S, Ding Q, Xiu A, Xia Y, Wang G, Zhang C. Upregulation of ATG9b by propranolol promotes autophagic cell death of hepatic stellate cells to improve liver fibrosis. J Cell Mol Med 2024; 28:e18047. [PMID: 37970991 PMCID: PMC10826435 DOI: 10.1111/jcmm.18047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Proranolol has long been recommended to prevent variceal bleeding in patients with cirrhosis. However, the mechanisms of propranolol in liver fibrosis have not yet been thoroughly elucidated. Autophagic cell death (ACD) of activated hepatic stellate cells (HSCs) is important in the alleviation of liver fibrosis. Our study aims to assess the mechanisms of propranolol regulating HSC ACD and liver fibrosis. ACD of HSCs was investigated using lentivirus transfection. The molecular mechanism was determined using a PCR profiler array. The role of autophagy-related protein 9b (ATG9b) in HSC ACD was detected using co-immunoprecipitation and co-localization of immunofluorescence. Changes in the signalling pathway were detected by the Phospho Explorer antibody microarray. Propranolol induces ACD and apoptosis in HSCs. ATG9b upregulation was detected in propranolol-treated HSCs. ATG9b upregulation promoted ACD of HSCs and alleviated liver fibrosis in vivo. ATG9b enhanced the P62 recruitment to ATG5-ATG12-LC3 compartments and increased the co-localization of P62 with ubiquitinated proteins. The PI3K/AKT/mTOR pathway is responsible for ATG9b-induced ACD in activated HSCs, whereas the p38/JNK pathway is involved in apoptosis. This study provides evidence for ATG9b as a new target gene and propranolol as an agent to alleviate liver fibrosis by regulating ACD of activated HSCs.
Collapse
Affiliation(s)
- Sining Wang
- Department of GastroenterologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Qian Ding
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Aiyuan Xiu
- Department of GastroenterologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Yifu Xia
- Department of GastroenterologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Guangchuan Wang
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Chunqing Zhang
- Department of GastroenterologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
31
|
Chen M, Zhu JY, Mu WJ, Luo HY, Li Y, Li S, Yan LJ, Li RY, Guo L. Cdo1-Camkk2-AMPK axis confers the protective effects of exercise against NAFLD in mice. Nat Commun 2023; 14:8391. [PMID: 38110408 PMCID: PMC10728194 DOI: 10.1038/s41467-023-44242-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
Exercise is an effective non-pharmacological strategy for ameliorating nonalcoholic fatty liver disease (NAFLD), but the underlying mechanism needs further investigation. Cysteine dioxygenase type 1 (Cdo1) is a key enzyme for cysteine catabolism that is enriched in liver, whose role in NAFLD remains poorly understood. Here, we show that exercise induces the expression of hepatic Cdo1 via the cAMP/PKA/CREB signaling pathway. Hepatocyte-specific knockout of Cdo1 (Cdo1LKO) decreases basal metabolic rate of the mice and impairs the effect of exercise against NAFLD, whereas hepatocyte-specific overexpression of Cdo1 (Cdo1LTG) increases basal metabolic rate of the mice and synergizes with exercise to ameliorate NAFLD. Mechanistically, Cdo1 tethers Camkk2 to AMPK by interacting with both of them, thereby activating AMPK signaling. This promotes fatty acid oxidation and mitochondrial biogenesis in hepatocytes to attenuate hepatosteatosis. Therefore, by promoting hepatic Camkk2-AMPK signaling pathway, Cdo1 acts as an important downstream effector of exercise to combat against NAFLD.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, 200438, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
32
|
Meng D, Ai S, Spanos M, Shi X, Li G, Cretoiu D, Zhou Q, Xiao J. Exercise and microbiome: From big data to therapy. Comput Struct Biotechnol J 2023; 21:5434-5445. [PMID: 38022690 PMCID: PMC10665598 DOI: 10.1016/j.csbj.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise is a vital component in maintaining optimal health and serves as a prospective therapeutic intervention for various diseases. The human microbiome, comprised of trillions of microorganisms, plays a crucial role in overall health. Given the advancements in microbiome research, substantial databases have been created to decipher the functionality and mechanisms of the microbiome in health and disease contexts. This review presents an initial overview of microbiomics development and related databases, followed by an in-depth description of the multi-omics technologies for microbiome. It subsequently synthesizes the research pertaining to exercise-induced modifications of the microbiome and diseases that impact the microbiome. Finally, it highlights the potential therapeutic implications of an exercise-modulated microbiome in intestinal disease, obesity and diabetes, cardiovascular disease, and immune/inflammation-related diseases.
Collapse
Affiliation(s)
- Danni Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Songwei Ai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiaohui Shi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, Bucharest 020031, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest 011062, Romania
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
33
|
Wong W. Metabolically fitter with fibronectin. Sci Signal 2023; 16:eadi3398. [PMID: 37098121 DOI: 10.1126/scisignal.adi3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Activation of hepatic autophagy by skeletal muscle-secreted fibronectin underlies the metabolic benefits of exercise.
Collapse
Affiliation(s)
- Wei Wong
- Science Signaling, AAAS, Washington, DC 20005, USA.
| |
Collapse
|
34
|
Greenhill C. The metabolic benefits of exercise-induced hepatic autophagy. Nat Rev Endocrinol 2023; 19:254. [PMID: 36882641 DOI: 10.1038/s41574-023-00823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|