1
|
Gu W, Huang Z, Fan Y, Li T, Yu X, Chen Z, Hu Y, Li A, Zhang F, Fu Y. Peripheral blood microbiome signature and Mycobacterium tuberculosis-derived rsRNA as diagnostic biomarkers for tuberculosis in human. J Transl Med 2025; 23:204. [PMID: 39972378 PMCID: PMC11837313 DOI: 10.1186/s12967-025-06190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major global health issue. Early diagnosis of TB is still a challenge. Studies are seeking non-sputum biomarker-based TB test. Emerging evidence indicates potential significance of blood microbiome signatures for diseases. However, blood microbiome RNA profiles are unknown in TB. We aimed to characterize the blood microbiome of TB patients and identify Mycobacterium tuberculosis (Mtb) genome-derived small RNA molecules to serve as diagnostic biomarkers for TB. METHODS RNA sequencing data of the blood from TB patients and healthy controls were retrieved from the NCBI-SRA database for analyzing the blood microbiome and identifying rRNA-derived small RNA (rsRNA) of Mtb. Small RNA-seq was performed on plasma exosomes from TB patients and healthy controls. The levels of the candidate Mtb rsRNAs were determined by real-time quantitative reverse transcription PCR (RT-qPCR) on plasma from a separate cohort of 73 TB patients and 62 healthy controls. RESULTS The blood microbiome of TB patients consisted of RNA signals from bacteria, fungi, archaea, and viruses, with bacteria accounting for more than 97% of the total. Reduced blood microbial diversity and abundance of 6 Mycobacterium-associated bacterial genera, including Mycobacterium, Priestia, Nocardioides, Agrobacterium, Bradyrhizobium, and Escherichia, were significantly altered in the blood of TB patients. A diagnostic model for TB based on the 6 genera achieved an area under the curve (AUC) of 0.8945. rsRNAs mapped to the Mtb genome were identified from blood and plasma exosomes of TB patients. RT-qPCR results showed that 2 Mtb-derived rsRNAs, 16 S-L1 and 16 S-L2, could be used as diagnostic biomarkers to differentiate TB patients from healthy controls, with a high co-diagnostic efficacy (AUC = 0.7197). CONCLUSIONS A panel of blood microbiome signatures and Mtb-derived rsRNAs can serve as blood biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Wei Gu
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Zhigang Huang
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yunfan Fan
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Department of Clinical Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Ting Li
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Department of Clinical Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Xinyuan Yu
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Zhiyuan Chen
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yan Hu
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Aimei Li
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Yingmei Fu
- Department of Microbiology, School of Basic Medical Sciences, WU Lien-Teh Institute, Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Zhang K, Chen X, Shi X, Yang Z, Yang L, Liu D, Yu F. Endophytic Bacterial Community, Core Taxa, and Functional Variations Within the Fruiting Bodies of Laccaria. Microorganisms 2024; 12:2296. [PMID: 39597685 PMCID: PMC11596330 DOI: 10.3390/microorganisms12112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Macrofungi do not exist in isolation but establish symbiotic relationships with microorganisms, particularly bacteria, within their fruiting bodies. Herein, we examined the fruiting bodies' bacteriome of seven species of the genus Laccaria collected from four locations in Yunnan, China. By analyzing bacterial diversity, community structure, and function through 16S rRNA sequencing, we observed the following: (1) In total, 4,840,291 high-quality bacterial sequences obtained from the fruiting bodies were grouped into 16,577 amplicon sequence variants (ASVs), and all samples comprised 23 shared bacterial ASVs. (2) The Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex was found to be the most abundant and presumably coexisting bacterium. (3) A network analysis revealed that endophytic bacteria formed functional groups, which were dominated by the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Novosphingobium, and Variovorax. (4) The diversity, community structure, and dominance of ecological functions (chemoheterotrophy and nitrogen cycling) among endophytic bacteria were significantly shaped by geographic location, habitat, and fungal genotype, rather than fruiting body type. (5) A large number of the endophytic bacteria within Laccaria are bacteria that promote plant growth; however, some pathogenic bacteria that pose a threat to human health might also be present. This research advances our understanding of the microbial ecology of Laccaria and the factors shaping its endophytic bacterial communities.
Collapse
Affiliation(s)
- Kaixuan Zhang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Zhenyan Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Lian Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| |
Collapse
|
3
|
Kolesova EP, Chernyavsky MA, Vanyurkin AG, Verkhovskaya EV, Zaykova EK, Kalinina OV, Sitkin SI, Maslyansky AL, Kvan VV, Vasilyeva EY, Yakovlev AN, Babenko AY, Konradi AO, Shlyakhto EV. Features of the atherosclerotic plaque microbiome in patients after carotid endarterectomy. RUSSIAN JOURNAL OF CARDIOLOGY 2024; 29:6145. [DOI: 10.15829/1560-4071-2024-6145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2025]
Abstract
Aim. To study the microbiome of atherosclerotic plaque biopsies in patients who underwent carotid endarterectomy (CEA).Material and methods. In this study, the microbiota profile of 76 atherosclerotic plaque samples obtained during CEA was analyzed using high-throughput sequencing of 16S rRNA V4 region. The proportion of patients without restenosis included in the study was 20%. The median follow-up of patients was 1,9 years (range, 1,4-2,25).Results. Taxonomic analysis revealed that the plaque microbiome is characterized by a wide diversity of gram-negative bacteria, including bacteria that are widespread in the environment. Bacteria most represented in plaques belong to four following families: Caulobacteraceae, Rhizobiaceae, Sphingobacteriaceae and Weeksellaceae. Linear discriminant analysis Effect Size (LEfSe) revealed a significantly higher representation of the microbial marker OTU_21, belonging to the Sphingomonadaceae family, in the atherosclerotic plaque microbiome of patients with ≥50% restenosis and Cloacibacterium (OTU_67), belonging to the Weeksellaceae family, in patients with >70% restenosis.Conclusion. The obtained data emphasize the importance of studying the atherosclerotic plaque microbiome and suggest that microorganisms of various origins, including those that have not previously been considered as risk factors, can play a pathogenetic role in both atherogenesis and restenosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A. L. Maslyansky
- Almazov National Medical Research Center; St. Petersburg State University
| | - V. V. Kvan
- Almazov National Medical Research Center
| | | | | | | | | | | |
Collapse
|
4
|
Zhang X, Hu J, Li Y, Tang J, Yang K, Zhong A, Liu Y, Zhang T. Gallbladder microbial species and host bile acids biosynthesis linked to cholesterol gallstone comparing to pigment individuals. Front Cell Infect Microbiol 2024; 14:1283737. [PMID: 38529471 PMCID: PMC10962445 DOI: 10.3389/fcimb.2024.1283737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Gallstones are crystalline deposits in the gallbladder that are traditionally classified as cholesterol, pigment, or mixed stones based on their composition. Microbiota and host metabolism variances among the different types of gallstones remain largely unclear. Here, the bile and gallstone microbial species spectra of 29 subjects with gallstone disease (GSD, 24 cholesterol and 5 pigment) were revealed by type IIB restriction site-associated DNA microbiome sequencing (2bRAD-M). Among them (21 subjects: 18 cholesterol and 3 pigment), plasma samples were subjected to liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics. The microbiome yielded 896 species comprising 882 bacteria, 13 fungi, and 1 archaeon. Microbial profiling revealed significant enrichment of Cutibacterium acnes and Microbacterium sp005774735 in gallstone and Agrobacterium pusense and Enterovirga sp013044135 in the bile of cholesterol GSD subjects. The metabolome revealed 2296 metabolites, in which malvidin 3-(6''-malonylglucoside), 2-Methylpropyl glucosinolate, and ergothioneine were markedly enriched in cholesterol GSD subjects. Metabolite set enrichment analysis (MSEA) demonstrated enriched bile acids biosynthesis in individuals with cholesterol GSD. Overall, the multi-omics analysis revealed that microbiota and host metabolism interaction perturbations differ depending on the disease type. Perturbed gallstone type-related microbiota may contribute to unbalanced bile acids metabolism in the gallbladder and host, representing a potential early diagnostic marker and therapeutic target for GSD.
Collapse
Affiliation(s)
- Xinpeng Zhang
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Junqing Hu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yi Li
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jichao Tang
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Kaijin Yang
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Ayan Zhong
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| |
Collapse
|
5
|
Kaur J, Mudgal G, Chand K, Singh GB, Perveen K, Bukhari NA, Debnath S, Mohan TC, Charukesi R, Singh G. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Sci Rep 2022; 12:21330. [PMID: 36494408 PMCID: PMC9734154 DOI: 10.1038/s41598-022-25225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
A peculiar bacterial growth was very often noticed in leaf-initiated tissue cultures of Sansevieria trifasciata, a succulent belonging to the Asparagaceae family. The isolate left trails of some highly viscous material on the walls of the suspension vessels or developed a thick overlay on semisolid media without adversities in plant growth. FTIR identified this substance to be an extracellular polysaccharide. Various morphological, biochemical tests, and molecular analyses using 16S rRNA, atpD, and recA genes characterized this isolate JAS1 as a novel strain of Agrobacterium pusense. Its mucoidal growth over Murashige and Skoog media yielded enormous exopolysaccharide (7252 mg l-1), while in nutrient agar it only developed fast-growing swarms. As a qualifying plant growth-promoting bacteria, it produces significant indole-3-acetic acid (86.95 mg l-1), gibberellic acid (172.98 mg l-1), ammonia (42.66 µmol ml-1). Besides, it produces siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase, fixes nitrogen, forms biofilms, and productively solubilizes soil inorganic phosphates, and zinc. Under various treatments with JAS1, wheat and chickpea resulted in significantly enhanced shoot and root growth parameters. PGP effects of JAS1 positively enhanced plants' physiological growth parameters reflecting significant increments in overall chlorophyll, carotenoids, proline, phenols, flavonoids, and sugar contents. In addition, the isolated strain maintained both plant and soil health under an intermittent soil drying regime, probably by both its PGP and EPS production attributes, respectively.
Collapse
Affiliation(s)
- Jaspreet Kaur
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gaurav Mudgal
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kartar Chand
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gajendra B. Singh
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kahkashan Perveen
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Najat A. Bukhari
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Sandip Debnath
- grid.440987.60000 0001 2259 7889Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, Birbhum, West Bengal 731236 India
| | - Thotegowdanapalya C. Mohan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Rajulu Charukesi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Gaurav Singh
- Stress Signaling to the Nucleus, CNRS-Institute of Molecular Biology of Plants, 12 Rue du General-Zimmer, 67000 Strasbourg, France
| |
Collapse
|
6
|
Park JH, Kim TS, Park H. The First Case of Azorhizobium caulinodans Bacteremia in a Patient with Leukemia. Ann Lab Med 2022; 42:494-496. [PMID: 35177574 PMCID: PMC8859566 DOI: 10.3343/alm.2022.42.4.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jae Hyeon Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| |
Collapse
|
7
|
Lee S, Fan P, Liu T, Yang A, Boughton RK, Pepin KM, Miller RS, Jeong KC. Transmission of antibiotic resistance at the wildlife-livestock interface. Commun Biol 2022; 5:585. [PMID: 35705693 PMCID: PMC9200806 DOI: 10.1038/s42003-022-03520-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic-resistant microorganisms (ARMs) are widespread in natural environments, animals (wildlife and livestock), and humans, which has reduced our capacity to control life threatening infectious disease. Yet, little is known about their transmission pathways, especially at the wildlife-livestock interface. This study investigated the potential transmission of ARMs and antibiotic resistance genes (ARGs) between cattle and wildlife by comparing gut microbiota and ARG profiles of feral swine (Sus scrofa), coyotes (Canis latrans), cattle (Bos taurus), and environmental microbiota. Unexpectedly, wild animals harbored more abundant ARMs and ARGs compared to grazing cattle. Gut microbiota of cattle was significantly more similar to that of feral swine captured within the cattle grazing area where the home range of both species overlapped substantially. In addition, ARMs against medically important antibiotics were more prevalent in wildlife than grazing cattle, suggesting that wildlife could be a source of ARMs colonization in livestock. Analysis of microbiome data from feral swine, coyotes, domesticated cattle, and the surrounding environment reveals that wild animals harbor more abundant antibiotic-resistant organisms than livestock, and might act as a source of antibiotic-resistant microbes in outbreaks.
Collapse
Affiliation(s)
- Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ting Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anni Yang
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.,National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Ave., Fort Collins, CO, 80521, USA
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Wildlife Ecology and Conservation, University of Florida, Ona, FL, 33865, USA
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Ave., Fort Collins, CO, 80521, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, 2150 Center Dr., Fort Collins, CO, 80523, USA
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA. .,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Agrobacterium species bacteraemia, Switzerland, 2008 to 2019: a molecular epidemiological study. Antimicrob Resist Infect Control 2022; 11:47. [PMID: 35264215 PMCID: PMC8908629 DOI: 10.1186/s13756-022-01086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Agrobacterium spp. are infrequent agents of bloodstream infections linked to healthcare-associated outbreaks. However, it is unclear if outbreaks also occur across larger geographic areas. Triggered by two local clusters from putative point sources, our aim was to detect potential additional clusters in Switzerland. Methods We performed a nationwide descriptive study of cases in Switzerland based on a prospective surveillance system (Swiss Centre for Antibiotic Resistance, anresis.ch), from 2008 to 2019. We identified patients with Agrobacterium spp. isolated from blood cultures and used a survey to collect clinical-epidemiological information and susceptibility testing results. We performed whole genome sequencing (WGS) of available clinical isolates and determined their relatedness by single nucleotide polymorphism (SNP) variant calling analysis. Results We identified a total of 36 cases of Agrobacterium spp. from blood samples over 10 years. Beyond previously known local clusters, no new ones were identified. WGS-based typing was performed on 22 available isolates and showed no clonal relationships between newly identified isolates or to those from the known clusters, with all isolates outside these clusters being at least 50 SNPs apart. Conclusion and relevance Agrobacterium spp. bacteraemia is infrequently detected and, given that it may be healthcare-associated and stem from a point source, occurrence of multiple episodes should entail an outbreak investigation. With the help of the national antimicrobial resistance surveillance system we identified multiple clinical cases of this rare pathogen but found no evidence by WGS that suggested a nation-wide outbreak. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01086-y.
Collapse
|
9
|
Castellano-Hinojosa A, Correa-Galeote D, Ramírez-Bahena MH, Tortosa G, González-López J, Bedmar EJ, Peix Á. Agrobacterium leguminum sp. nov., isolated from nodules of Phaseolus vulgaris in Spain. Int J Syst Evol Microbiol 2021; 71. [PMID: 34870578 DOI: 10.1099/ijsem.0.005120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two endophytic strains, coded MOVP5T and MOPV6, were isolated from nodules of Phaseolus vulgaris plants grown on agricultural soil in Southeastern Spain, and were characterized through a polyphasic taxonomy approach. Their 16S rRNA gene sequences showed 99.3 and 99.4 %, 98.9 and 99.6 %, and 99.0 and 98.7% similarity to 'A. deltaense' YIC 4121T, A. radiobacter LGM 140T, and A. pusense NRCPB10T, respectively. Multilocus sequence analysis based on sequences of recA and atpD genes suggested that these two strains could represent a new Agrobacterium species with less than 96.5 % similarity to their closest relatives. PCR amplification of the telA gene, involved in synthesis of protelomerase, confirmed the affiliation of strains MOPV5T and MOPV6 to the genus Agrobacterium. Whole genome average nucleotide identity and digital DNA-DNA hybridization average values were less than 95.1 and 66.7 %, respectively, with respect to its closest related species. Major fatty acids in strain MOPV5T were C18 : 1 ω7c/C18 : 1 ω6c in summed feature 8, C19 : 0 cyclo ω8c, C16 : 0 and C16 : 0 3-OH. Colonies were small to medium, pearl-white coloured on YMA at 28 °C and growth was observed at 10-42 °C, pH 5.0-10.0 and with 0.0-0.5 % (w/v) NaCl. The DNA G+C content was 59.9 mol%. These two strains differ from all other genomovars of Agrobacterium found so far, including those that have not yet given a Latin name. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strain MOPV5T as representing a novel species of Agrobacterium, for which the name Agrobacterium leguminum sp. nov. is proposed. The type strain is MOPV5T (=CECT 30096T=LMG 31779T).
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, 18080-Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada. Campus Cartuja, 18071-Granada, Spain
| | - David Correa-Galeote
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, 18080-Granada, Spain
| | | | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, 18080-Granada, Spain
| | - Jesús González-López
- Department of Microbiology, Faculty of Pharmacy, University of Granada. Campus Cartuja, 18071-Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, 18080-Granada, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|
10
|
Rios-Galicia B, Villagómez-Garfias C, De la Vega-Camarillo E, Guerra-Camacho JE, Medina-Jaritz N, Arteaga-Garibay RI, Villa-Tanaca L, Hernández-Rodríguez C. The Mexican giant maize of Jala landrace harbour plant-growth-promoting rhizospheric and endophytic bacteria. 3 Biotech 2021; 11:447. [PMID: 34631348 DOI: 10.1007/s13205-021-02983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/04/2021] [Indexed: 01/02/2023] Open
Abstract
The giant landrace of maize Jala is a native crop cultured in Nayarit and Jalisco States in the occident of México. In this study, after screening 374 rhizospheric and endophytic bacteria isolated from rhizospheric soil, root, and seed tissues of maize Jala, a total of 16 bacterial strains were selected for their plant-growth-promoting potential and identified by 16S rRNA phylogenetic analysis. The isolates exhibited different combinations of phenotypic traits, including solubilisation of phosphate from hydroxyapatite, production of a broad spectrum of siderophores such as cobalt, iron, molybdenum, vanadium, or zinc (Co2+, Fe3+, Mo2 +, V5+, Zn2+), and nitrogen fixation capabilities, which were detected in both rhizospheric and endophytic strains. Additional traits such as production of 1-aminocyclopropane-1-carboxylate deaminase and a high-rate production of Indoleacetic Acid were exclusively detected on endophytic isolates. Among the selected strains, the rhizospheric Burkholderia sp., and Klebsiella variicola, and the endophytic Pseudomonas protegens significantly improved the growth of maize plants in greenhouse assays and controlled the infection against Fusarium sp. 50 on fresh maize cobs. These results present the first deep approach on handling autochthonous microorganisms from native maize with a potential biotechnological application in sustainable agriculture as biofertilizers or biopesticides.
Collapse
Affiliation(s)
- Bibiana Rios-Galicia
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Catalina Villagómez-Garfias
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Jairo Eder Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Nora Medina-Jaritz
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Boulevard de la Biodiversidad No. 400, Rancho Las Cruces, 47600 Tepatitlán de Morelos, Jalisco Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| |
Collapse
|
11
|
Chaiya L, Gavinlertvatana P, Teaumroong N, Pathom-aree W, Chaiyasen A, Sungthong R, Lumyong S. Enhancing Teak ( Tectona grandis) Seedling Growth by Rhizosphere Microbes: A Sustainable Way to Optimize Agroforestry. Microorganisms 2021; 9:microorganisms9091990. [PMID: 34576884 PMCID: PMC8465541 DOI: 10.3390/microorganisms9091990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
With its premium wood quality and resistance to pests, teak is a valuable tree species remarkably required for timber trading and agroforestry. The nursery stage of teak plantation needs critical care to warrant its long-term productivity. This study aimed to search for beneficial teak rhizosphere microbes and assess their teak-growth-promoting potentials during nursery stock preparation. Three teak rhizosphere/root-associated microbes, including two teak rhizobacteria (a nitrogen-fixing teak root endophyte-Agrobacterium sp. CGC-5 and a teak rhizosphere actinobacterium-Kitasatospora sp. TCM1-050) and an arbuscular mycorrhizal fungus (Claroideoglomus sp. PBT03), were isolated and used in this study. Both teak rhizobacteria could produce in vitro phytohormones (auxins) and catalase. With the pot-scale assessments, applying these rhizosphere microbes in the form of consortia offered better teak-growth-promoting activities than the individual applications, supported by significantly increased teak seedling biomass. Moreover, teak-growth-promoting roles of the arbuscular mycorrhizal fungus were highly dependent upon the support by other teak rhizobacteria. Based on our findings, establishing the synergistic interactions between beneficial rhizosphere microbes and teak roots was a promising sustainable strategy to enhance teak growth and development at the nursery stage and reduce chemical inputs in agroforestry.
Collapse
Affiliation(s)
- Leardwiriyakool Chaiya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (L.C.); (W.P.-a.)
| | | | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (L.C.); (W.P.-a.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amornrat Chaiyasen
- Soil Science Research Group, Agricultural Production Science Research and Development Division, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Rungroch Sungthong
- Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, 67084 Strasbourg, France
- Correspondence: (R.S.); (S.L.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (L.C.); (W.P.-a.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence: (R.S.); (S.L.)
| |
Collapse
|
12
|
Kang B, Maeshige T, Okamoto A, Kataoka Y, Yamamoto S, Rikiishi K, Tani A, Sawada H, Suzuki K. The Presence of the Hairy-Root-Disease-Inducing (Ri) Plasmid in Wheat Endophytic Rhizobia Explains a Pathogen Reservoir Function of Healthy Resistant Plants. Appl Environ Microbiol 2020; 86:e00671-20. [PMID: 32631868 PMCID: PMC7440801 DOI: 10.1128/aem.00671-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
A large number of strains in the Rhizobium radiobacter species complex (biovar 1 Agrobacterium) have been known as causative pathogens for crown gall and hairy root diseases. Strains within this complex were also found as endophytes in many plant species with no symptoms. The aim of this study was to reveal the endophyte variation of this complex and how these endophytic strains differ from pathogenic strains. In this study, we devised a simple but effective screening method by exploiting the high resolution power of mass spectrometry. We screened endophyte isolates from young wheat and barley plants, which are resistant to the diseases, and identified seven isolates from wheat as members of the R. radiobacter species complex. Through further analyses, we assigned five strains to the genomovar (genomic group) G1 and two strains to G7 in R. radiobacter Notably, these two genomovar groups harbor many known pathogenic strains. In fact, the two G7 endophyte strains showed pathogenicity on tobacco, as well as the virulence prerequisites, including a 200-kbp Ri plasmid. All five G1 strains possessed a 500-kbp plasmid, which is present in well-known crown gall pathogens. These data strongly suggest that healthy wheat plants are reservoirs for pathogenic strains of R. radiobacterIMPORTANCE Crown gall and hairy root diseases exhibit very wide host-plant ranges that cover gymnosperm and dicot plants. The Rhizobium radiobacter species complex harbors causative agents of the two diseases. Recently, endophyte isolates from many plant species have been assigned to this species complex. We isolated seven endophyte strains belonging to the species complex from wheat plants and revealed their genomovar affiliations and plasmid profile. The significance of this study is the finding of the genomovar correlation between the endophytes and the known pathogens, the presence of a virulence ability in two of the seven endophyte strains, and the high ratio of the pathogenic strains in the endophyte strains. This study therefore provides convincing evidence that could unravel the mechanism that maintains pathogenic agents of this species and sporadically delivers them to susceptible plants.
Collapse
Affiliation(s)
- Byoungwoo Kang
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Taichi Maeshige
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Aya Okamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Yui Kataoka
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Hiroyuki Sawada
- Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Katsunori Suzuki
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Casanova C, Lo Priore E, Egli A, Seth-Smith HMB, Räber L, Ott D, Pflüger V, Droz S, Marschall J, Sommerstein R. Agrobacterium spp. nosocomial outbreak assessment using rapid MALDI-TOF MS based typing, confirmed by whole genome sequencing. Antimicrob Resist Infect Control 2019; 8:171. [PMID: 31700617 PMCID: PMC6829841 DOI: 10.1186/s13756-019-0619-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background A number of episodes of nosocomial Agrobacterium spp. bacteremia (two cases per year) were observed at Bern University Hospital, Switzerland, from 2015 to 2017. This triggered an outbreak investigation. Methods Cases of Agrobacterium spp. bacteremias that occurred between August 2011 and February 2017 were investigated employing line lists, environmental sampling, rapid protein- (MALDI-TOF MS), and genome-based typing (pulsed field gel electrophoresis and whole genome sequencing) of the clinical isolates. Results We describe a total of eight bacteremia episodes due to A. radiobacter (n = 2), Agrobacterium genomovar G3 (n = 5) and A. pusense (n = 1). Two tight clusters were observed by WGS typing, representing the two A. radiobacter isolates (cluster I, isolated in 2015) and four of the Agrobacterium genomovar G3 isolates (cluster II, isolated in 2016 and 2017), suggesting two different point sources. The epidemiological investigations revealed two computer tomography (CT) rooms as common patient locations, which correlated with the two outbreak clusters. MALDI-TOF MS permitted faster evaluation of strain relatedness than DNA-based methods. High resolution WGS-based typing confirmed the MALDI-TOF MS clustering. Conclusions We report clinical and epidemiological characteristics of two outbreak clusters with Agrobacterium. spp. bacteremia likely acquired during CT contrast medium injection and highlight the use of MALDI-TOF MS as a rapid tool to assess relatedness of rare gram-negative pathogens in an outbreak investigation.
Collapse
Affiliation(s)
- Carlo Casanova
- 1Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Elia Lo Priore
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| | - Adrian Egli
- 3Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,4Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Helena M B Seth-Smith
- 3Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,4Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Ott
- Department of Radiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Sara Droz
- 1Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| |
Collapse
|
14
|
Munson E, Carroll KC. An Update on the Novel Genera and Species and Revised Taxonomic Status of Bacterial Organisms Described in 2016 and 2017. J Clin Microbiol 2019; 57:e01181-18. [PMID: 30257907 PMCID: PMC6355528 DOI: 10.1128/jcm.01181-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recognition and acknowledgment of novel bacterial taxonomy and nomenclature revisions can impact clinical practice, disease epidemiology, and routine clinical microbiology laboratory operations. The Journal of Clinical Microbiology (JCM) herein presents its biannual report summarizing such changes published in the years 2016 and 2017, as published and added by the International Journal of Systematic and Evolutionary Microbiology Noteworthy discussion centers around descriptions of novel Corynebacteriaceae and an anaerobic mycolic acid-producing bacterium in the suborder Corynebacterineae; revisions within the Propionibacterium, Clostridium, Borrelia, and Enterobacter genera; and a major reorganization of the family Enterobacteriaceae. JCM intends to sustain this series of reports as advancements in molecular genetics, whole-genome sequencing, and studies of the human microbiome continue to produce novel taxa and clearer understandings of bacterial relatedness.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363-3368. [DOI: 10.1099/ijsem.0.002974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
Kuchibiro T, Hirayama K, Houdai K, Nakamura T, Ohnuma K, Tomida J, Kawamura Y. First case report of sepsis caused by Rhizobium pusense in Japan. JMM Case Rep 2018; 5:e005135. [PMID: 29568532 PMCID: PMC5857370 DOI: 10.1099/jmmcr.0.005135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
Introduction Species of the genus Rhizobium are opportunistic, usually saprophytic, glucose-non-fermenting, Gram-negative bacilli found in agricultural soil. Rhizobium pusense infections are the least common Rhizobium infections and have low incidence. Case presentation Herein, we report the first case of sepsis with R. pusense in Japan in a 67-year-old Japanese woman with a history of hyperlipidaemia, hypertension, diabetes, hypothyroidism and osteoporosis. She had undergone cerebrovascular treatment because she was diagnosed with a subarachnoid haemorrhage. The results of postoperative blood culture showed oxidase-positive, urease-positive, non-lactose-fermenting Gram-stain-negative rods. Using the Vitek2 system, the isolate was distinctly identified as Rhizobium radiobacter. However, 16S rRNA gene sequencing showed 99.93 % similarity with the type strain of R. pusense and 99.06 % similarity with the type strain of R. radiobacter. Additional gene sequencing analysis using recA (97.2 %) and atpD (96.2 %) also showed that the isolated strain is most closely related to R. pusense. The patient was cured by treatment using intravenous meropenem (3 g/d) for 4 weeks and was discharged safely. Conclusion The definite source of sepsis was unknown. However, the possibility of having been infected through the catheter during the cerebrovascular operation was speculated.
Collapse
Affiliation(s)
- Tomokazu Kuchibiro
- Department of Clinical Laboratory, Naga Municipal Hospital, 1282 Uchita, Kinokawa, Wakayama, 649-6414, Japan
| | - Katsuhisa Hirayama
- Department of Neurosurgery Medicine, Naga Municipal Hospital, 1282 Uchita, Kinokawa, Wakayama, 649-6414, Japan
| | - Katsuyuki Houdai
- Department of Clinical Laboratory, Naga Municipal Hospital, 1282 Uchita, Kinokawa, Wakayama, 649-6414, Japan
| | - Tatsuya Nakamura
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunokichou, Chuo-ku, Kobe City, Hyogo, 650-0017, Japan
| | - Kenichirou Ohnuma
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunokichou, Chuo-ku, Kobe City, Hyogo, 650-0017, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya City, Aichi, 464-8650, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya City, Aichi, 464-8650, Japan
| |
Collapse
|
17
|
Urai M, Aizawa T, Imamura K, Hamamoto H, Sekimizu K. Characterization of the chemical structure and innate immune-stimulating activity of an extracellular polysaccharide from Rhizobium sp. strain M2 screened using a silkworm muscle contraction assay. Drug Discov Ther 2017; 11:238-245. [PMID: 29021503 DOI: 10.5582/ddt.2017.01045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We screened innate immunostimulant-producing bacteria using a silkworm muscle contraction assay, and isolated Rhizobium sp. strain M2 from soil. We purified the innate immunostimulant from strain M2, and characterized the chemical structure by nuclear magnetic resonance spectroscopy and chemical analyses. The innate immunostimulant (M2 EPS) comprised glucose, galactose, pyruvic acid, and succinic acid with a molar ratio of 6.8:1.0:0.9:0.4, and had a succinoglycan-like high molecular-weight heteropolysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the M2 EPS structure chemically, and found that the activity was increased by removal of the succinic and pyruvic acid substitutions. Strong acid hydrolysis completely inactivated the M2 EPS. Unmasking of the β-1,3/6-glucan structure of the side-chain by deacylation and depyruvylation may enhance the innate immune-stimulating activity of M2 EPS. These findings suggest that the succinoglycan-like polysaccharide purified from strain M2 has innate immune-stimulating activity, and its glycan structure is necessary for the activity.
Collapse
Affiliation(s)
- Makoto Urai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture
| | - Tomoko Aizawa
- Department of Bioscience in Daily Life, College of Bioresource Sciences, Nihon University
| | - Katsutoshi Imamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiroshi Hamamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Teikyo University Institute of Medical Mycology
| | - Kazuhisa Sekimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Genome Pharmaceuticals Institute Co., Ltd.,Teikyo University Institute of Medical Mycology
| |
Collapse
|
18
|
Aguilar A, Peralta H, Mora Y, Díaz R, Vargas-Lagunas C, Girard L, Mora J. Genomic Comparison of Agrobacterium pusense Strains Isolated from Bean Nodules. Front Microbiol 2016; 7:1720. [PMID: 27833604 PMCID: PMC5081363 DOI: 10.3389/fmicb.2016.01720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alejandro Aguilar
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Humberto Peralta
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Yolanda Mora
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Rafael Díaz
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Carmen Vargas-Lagunas
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Lourdes Girard
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Jaime Mora
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|