1
|
Mediati DG, Dan W, Lalaouna D, Dinh H, Pokhrel A, Rowell KN, Michie KA, Stinear TP, Cain AK, Tree JJ. The 3' UTR of vigR is required for virulence in Staphylococcus aureus and has expanded through STAR sequence repeat insertions. Cell Rep 2024; 43:114082. [PMID: 38583155 DOI: 10.1016/j.celrep.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| | - William Dan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David Lalaouna
- Université de Strasbourg, CNRS, ARN UPR 9002, Strasbourg, France
| | - Hue Dinh
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Alaska Pokhrel
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia; School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Keiran N Rowell
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Katharine A Michie
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Amy K Cain
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Pouget C, Chatre C, Lavigne JP, Pantel A, Reynes J, Dunyach-Remy C. Effect of Antibiotic Exposure on Staphylococcus epidermidis Responsible for Catheter-Related Bacteremia. Int J Mol Sci 2023; 24:ijms24021547. [PMID: 36675063 PMCID: PMC9863639 DOI: 10.3390/ijms24021547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Coagulase-negative staphylococci (CoNS) and especially Staphylococcus epidermidis are responsible for health care infections, notably in the presence of foreign material (e.g., venous or central-line catheters). Catheter-related bacteremia (CRB) increases health care costs and mortality. The aim of our study was to evaluate the impact of 15 days of antibiotic exposure (ceftobiprole, daptomycin, linezolid and vancomycin) at sub-inhibitory concentration on the resistance, fitness and genome evolution of 36 clinical strains of S. epidermidis responsible for CRB. Resistance was evaluated by antibiogram, the ability to adapt metabolism by the Biofilm Ring test® and the in vivo nematode virulence model. The impact of antibiotic exposure was determined by whole-genome sequencing (WGS) and biofilm formation experiments. We observed that S. epidermidis strains presented a wide variety of virulence potential and biofilm formation. After antibiotic exposure, S. epidermidis strains adapted their fitness with an increase in biofilm formation. Antibiotic exposure also affected genes involved in resistance and was responsible for cross-resistance between vancomycin, daptomycin and ceftobiprole. Our data confirmed that antibiotic exposure modified bacterial pathogenicity and the emergence of resistant bacteria.
Collapse
Affiliation(s)
- Cassandra Pouget
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Clotilde Chatre
- Department of Infectious and Tropical Diseases, CH Perpignan, 66000 Perpignan, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Jacques Reynes
- Department of Infectious and Tropical Diseases, IRD UMI 233, INSERM U1175, CHU Montpellier, University Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
- Correspondence: ; Tel.: +33-4-6668-3202
| |
Collapse
|
4
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
5
|
Surgical mesh coatings for infection control and temperature sensing: An in-vitro investigation. OPENNANO 2021. [DOI: 10.1016/j.onano.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
In-Vitro Cytotoxicity and Clinical Correlates of MRSA Bacteremia. Antimicrob Agents Chemother 2021; 66:e0155921. [PMID: 34748383 DOI: 10.1128/aac.01559-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections are associated with significant morbidity and mortality. MRSA secretes a number of virulence factors and pore-forming toxins that enable tissue invasion. Prior studies have found associations between decreased toxin production and poor outcomes in invasive MRSA infection, particularly in pneumonia. In this retrospective observational cohort study of MRSA bacteremia in adult patients 2007-2015, we examined whether cytotoxicity was associated with 30-day mortality. Isolates were obtained from 776 patients and screened for cytotoxicity in a human HL-60 cell model, antimicrobial susceptibility and spa type, and clinical data were abstracted from charts. We did not find an association between low cytotoxic activity and 30-day mortality in univariate logistic regression analyses. There was a difference in distribution of the genotypes across cytotoxicity phenotypes, with spa-CC008 accounting for a larger proportion of isolates in the high cytotoxicity group. Isolates with a skin and soft tissue primary infective site had a higher median cytotoxicity. There was no association between cytotoxicity and host factors such as age or comorbidity burden. The isolates in our study came from heterogeneous primary sites of infection and were predominantly from spa-CC002 and spa-CC008 lineages, so it is possible that findings in prior studies reflect a different distribution in genotypes and clinical syndromes. Overall, in this large study of cytotoxicity of MRSA bloodstream isolates, we did not find the low cytotoxicity phenotype to be predictive of poor outcomes in MRSA bacteremia.
Collapse
|
7
|
Volk CF, Burgdorf S, Edwardson G, Nizet V, Sakoulas G, Rose WE. Interleukin (IL)-1β and IL-10 Host Responses in Patients With Staphylococcus aureus Bacteremia Determined by Antimicrobial Therapy. Clin Infect Dis 2021; 70:2634-2640. [PMID: 31365924 DOI: 10.1093/cid/ciz686] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Patient interleukin (IL)-1β and IL-10 responses early in Staphylococcus aureus bacteremia (SaB) are associated with bacteremia duration and mortality. We hypothesized that these responses vary depending on antimicrobial therapy, with particular interest in whether the superiority of β-lactams links to key cytokine pathways. METHODS Three medical centers included 59 patients with SaB (47 methicillin-resistant S. aureus [MRSA], 12 methicillin-sensitive S. aureus [MSSA]) from 2015-2017. In the first 48 hours, patients were treated with either a β-lactam (n = 24), including oxacillin, cefazolin, or ceftaroline, or a glyco-/lipopeptide (n = 35), that is, vancomycin or daptomycin. Patient sera from days 1, 3, and 7 were assayed for IL-1β and IL-10 by enzyme-linked immunosorbent assay and compared using the Mann-Whitney U test. RESULTS On presentation, IL-10 was elevated in mortality (P = .008) and persistent bacteremia (P = .034), while no difference occurred in IL-1β. Regarding treatment groups, IL-1β and IL-10 were similar prior to receiving antibiotic. Patients treated with β-lactam had higher IL-1β on days 3 (median +5.6 pg/mL; P = .007) and 7 (+10.9 pg/mL; P = .016). Ex vivo, addition of the IL-1 receptor antagonist anakinra to whole blood reduced staphylococcal killing, supporting an IL-1β functional significance in SaB clearance. β-lactam-treated patients had sharper declines in IL-10 than vancomycin or daptomycin -treated patients over 7 days. CONCLUSIONS These data underscore the importance of β-lactams for SaB, including consideration that the adjunctive role of β-lactams for MRSA in select patients helps elicit favorable host cytokine responses.
Collapse
Affiliation(s)
- Cecilia F Volk
- School of Pharmacy, University of Wisconsin-Madison, La Jolla
| | - Sarah Burgdorf
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | | | - Victor Nizet
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | - George Sakoulas
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, La Jolla
| |
Collapse
|
8
|
Jin Y, Yu X, Zhang S, Kong X, Chen W, Luo Q, Zheng B, Xiao Y. Comparative Analysis of Virulence and Toxin Expression of Vancomycin-Intermediate and Vancomycin-Sensitive Staphylococcus aureus Strains. Front Microbiol 2020; 11:596942. [PMID: 33193280 PMCID: PMC7661696 DOI: 10.3389/fmicb.2020.596942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
Previous studies on vancomycin-intermediate Staphylococcus aureus (VISA) have mainly focused on drug resistance, the evolution of differences in virulence between VISA and vancomycin-sensitive S. aureus (VSSA) requires further investigation. To address this issue, in this study, we compared the virulence and toxin profiles of pair groups of VISA and VSSA strains, including a series of vancomycin-resistant induced S. aureus strains—SA0534, SA0534-V8, and SA0534-V16. We established a mouse skin infection model to evaluate the invasive capacity of VISA strains, and found that although mice infected with VISA had smaller-sized abscesses than those infected with VSSA, the abscesses persisted for a longer period (up to 9 days). Infection with VISA strains was associated with a lower mortality rate in Galleria mellonella larvae compared to infection with VSSA strains (≥ 40% vs. ≤ 3% survival at 28 h). Additionally, VISA were more effective in colonizing the nasal passage of mice than VSSA, and in vitro experiments showed that while VISA strains were less virulent they showed enhanced intracellular survival compared to VSSA strains. RNA sequencing of VISA strains revealed significant differences in the expression levels of the agr, hla, cap, spa, clfB, and sbi genes and suggested that platelet activation is only weakly induced by VISA. Collectively, our findings indicate that VISA is less virulent than VSSA but has a greater capacity to colonize human hosts and evade destruction by the host innate immune system, resulting in persistent and chronic S. aureus infection.
Collapse
Affiliation(s)
- Ye Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Yu
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Chen
- Department of Laboratory Medicine, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Differential Induction of Type I and III Interferons by Staphylococcus aureus. Infect Immun 2020; 88:IAI.00352-20. [PMID: 32690637 DOI: 10.1128/iai.00352-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of bacterial pneumonia, and we have shown previously that type I interferon (IFN) contributes to the pathogenesis of this disease. In this study, we screened 75 S. aureus strains for their ability to induce type I and III IFN. Both cytokine pathways were differentially stimulated by various S. aureus strains independently of their isolation sites or methicillin resistance profiles. These induction patterns persisted over time, and type I and III IFN generation differentially correlated with tumor necrosis factor alpha production. Investigation of one isolate, strain 126, showed a significant defect in type I IFN induction that persisted over several time points. The lack of induction was not due to differential phagocytosis, subcellular location, or changes in endosomal acidification. A correlation between reduced type I IFN induction levels and decreased autolysis and lysostaphin sensitivity was found between strains. Strain 126 had a decreased rate of autolysis and increased resistance to lysostaphin degradation and host cell-mediated killing. This strain displayed decreased virulence in a murine model of acute pneumonia compared to USA300 (current epidemic strain and commonly used in research) and had reduced capacity to induce multiple cytokines. We observed this isolate to be a vancomycin-intermediate S. aureus (VISA) strain, and reduced Ifnb was observed with a defined mutation in walK that induces a VISA phenotype. Overall, this study demonstrates the heterogeneity of IFN induction by S. aureus and uncovered an interesting property of a VISA strain in its inability to induce type I IFN production.
Collapse
|
10
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
11
|
Antagonistic Effect of Colistin on Vancomycin Activity against Methicillin-Resistant Staphylococcus aureus in In Vitro and In Vivo Studies. Antimicrob Agents Chemother 2020; 64:AAC.01925-19. [PMID: 32041713 DOI: 10.1128/aac.01925-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 12/28/2022] Open
Abstract
As concerns arise that the vancomycin MIC of methicillin-resistant Staphylococcus aureus (MRSA) could be increased by concurrent colistin administration, we evaluated the effect of colistin on vancomycin efficacy against MRSA via in vitro and in vivo studies. Among MRSA blood isolates collected in a tertiary-care hospital, we selected representative strains from community-associated MRSA strains (CA-MRSA; ST72-MRSA-SCCmec IV) and hospital-acquired MRSA strains (HA-MRSA; ST5-MRSA-SCCmec II). USA CA-MRSA (USA300), HA-MRSA (USA100), N315 (New York/Japan clone), and a MRSA standard strain (ATCC 43300) were used for comparison. We performed checkerboard assays to identify changes in the vancomycin MIC of MRSA following colistin exposure and evaluated the effect of a vancomycin-colistin combination using time-kill assays. We also assessed the in vivo antagonistic effect by administering vancomycin, colistin, and a combination of these two in a neutropenic murine thigh infection model. In the checkerboard assays, vancomycin MICs of all MRSA strains except N315 were increased by from 0.25 to 0.75 μg/ml following colistin exposure. However, the time-kill assays indicated antagonism only against ST5-MRSA and USA100, when the vancomycin concentration was twice the MIC. In the murine thigh infection model with ST5-MRSA and USA100, vancomycin monotherapy reduced the number of CFU/muscle >1 log10 compared to a combination treatment after 24 h in ST5-MRSA, indicating an antagonistic effect of colistin on vancomycin treatment. This study suggests that exposure to colistin may reduce the susceptibility to vancomycin of certain MRSA strains. Combination therapy with vancomycin and colistin for multidrug-resistant pathogens might result in treatment failure for concurrent MRSA infection.
Collapse
|
12
|
Dai Y, Gao C, Chen L, Chang W, Yu W, Ma X, Li J. Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Uses the VraSR Regulatory System to Modulate Autophagy for Increased Intracellular Survival in Macrophage-Like Cell Line RAW264.7. Front Microbiol 2019; 10:1222. [PMID: 31214151 PMCID: PMC6554704 DOI: 10.3389/fmicb.2019.01222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
The VraSR two-component system is a vancomycin resistance-associated sensor/regulator that is upregulated in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) strains. VISA/hVISA show reduced susceptibility to vancomycin and an increased ability to evade host immune responses, resulting in enhanced clinical persistence. However, the underlying mechanism remains unclear. Recent studies have reported that S. aureus strains have developed some strategies to survive within the host cell by using autophagy processes. In this study, we confirmed that clinical isolates with high vraR expression showed increased survival in murine macrophage-like RAW264.7 cells. We constructed isogenic vraSR deletion strain Mu3ΔvraSR and vraSR-complemented strain Mu3ΔvraSR-C to ascertain whether S. aureus uses the VraSR system to modulate autophagy for increasing intracellular survival in RAW264.7. Overall, the survival of Mu3ΔvraSR in RAW264.7 cells was reduced at all infection time points compared with that of the Mu3 wild-type strain. Mu3ΔvraSR-infected RAW264.7 cells also showed decreased transcription of autophagy-related genes Becn1 and Atg5, decreased LC3-II turnover and increased p62 degradation, and fewer visible punctate LC3 structures. In addition, we found that inhibition of autophagic flux significantly increased the survival of Mu3ΔvraSR in RAW264.7 cells. Together, these results demonstrate that S. aureus uses the VraSR system to modulate host-cell autophagy processes for increasing its own survival within macrophages. Our study provides novel insights into the impact of VraSR on bacterial infection and will help to further elucidate the relationship between bacteria and the host immune response. Moreover, understanding the autophagic pathway in vraSR associated immunity has potentially important implications for preventing or treating VISA/hVISA infection.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Caihong Gao
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Li Chen
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Wenjiao Chang
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Wenwei Yu
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Xiaoling Ma
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, China.,Department of Infectious Diseases, Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Brignoli T, Manetti AGO, Rosini R, Haag AF, Scarlato V, Bagnoli F, Delany I. Absence of Protein A Expression Is Associated With Higher Capsule Production in Staphylococcal Isolates. Front Microbiol 2019; 10:863. [PMID: 31133995 PMCID: PMC6523524 DOI: 10.3389/fmicb.2019.00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen, and a leading cause of soft tissue and blood stream infections. One of the causes of its success as a pathogen is the peculiar array of immune evasion factors through which the bacterium avoids host defenses, where the staphylococcal protein A (SpA) plays a major role thanks to its IgG binding activities. Moreover, SpA has recently been proposed as a promising vaccine antigen. In this study, we evaluated the expression of SpA in a collection of staphylococcal strains, about 7% of which did not express SpA (SpA- strains), despite the presence of the gene. By a comparative genomic analysis, we identified that a mutation in the spa 5′ UTR sequence affecting the RBS is responsible for the loss of SpA in a subset of SpA- strains. Using a high-throughput qRT-PCR approach on a selected panel of virulence-related genes, we identified that the SpA- phenotype is associated with lower spa transcript levels and increased expression and production of capsule as well as other changes in the transcription of several key virulence factors. Our data suggest that the SpA- phenotype has occurred in geographically distinct strains through different molecular mechanisms including both mutation, leading likely to translation alterations, and transcriptional deregulation. Furthermore, we provide evidence that SpA- strains are highly susceptible to phagocytic uptake mediated by anti-capsule antibodies. These data suggest that S. aureus may alter its virulence factor expression pattern as an adaptation to the host or environment. Vaccination strategies targeting both SpA and capsule could therefore result in broader coverage against staphylococcal isolates than SpA alone.
Collapse
Affiliation(s)
- Tarcisio Brignoli
- GSK Vaccines, Siena, Italy.,Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | - Andreas F Haag
- GSK Vaccines, Siena, Italy.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
14
|
Gyssens IC. Animal models for research in human infectious diseases. CMI editorial policy. Clin Microbiol Infect 2019; 25:649-650. [PMID: 30986559 DOI: 10.1016/j.cmi.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- I C Gyssens
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Faculty of Medicine, Research Group of Immunology and Biochemistry, Hasselt University, Hasselt, Belgium; CMI Editorial Office, UK.
| |
Collapse
|
15
|
Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0057-2018. [PMID: 30900543 PMCID: PMC11590431 DOI: 10.1128/microbiolspec.gpp3-0057-2018] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through de novo mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of S. aureus infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that S. aureus employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
16
|
Taglialegna A, Varela MC, Rosato RR, Rosato AE. VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection. mSphere 2019; 4:e00557-18. [PMID: 30760612 PMCID: PMC6374592 DOI: 10.1128/msphere.00557-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/20/2019] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes implicated in cell membrane and cell wall metabolism. Adaptations aimed at surviving antimicrobial pressure can affect bacterial physiology and modify in vivo aptitude and pathogenesis. In this study, clinical DAP-susceptible (DAPs) and DAP-resistant (DAPr) MRSA isolates were used to investigate associations between DAP resistance and staphylococcal virulence. We previously found that VraSR is a critical sensor of cell membrane/wall homeostasis associated with DAP acquisition during MRSA infection. The present study found that DAPr CB1634 and CB5014 MRSA strains with vraSR upregulation were less virulent than their susceptible counterparts, CB1631 and CB5013. Differential gene-transcription profile analysis revealed that DAPr CB1634 had decreased agr two-component system expression, virulence factors, and highly suppressed hemolysis activity. Functional genetic analysis performed in DAPr CB1634 strains using vraSR inactivation followed by gene complementation found that vraSR acted as a transcriptional agrA regulator. These results indicated that VraSR has a broad range of regulatory functions. VraSR also appeared to affect DAPr adherence to epithelial cells, which would affect DAPr strain colonization and survival in the host. The correlation between DAP resistance and decreased virulence was also found in the CB5013 (DAPs) and CB5014 (DAPr) pair. Taken together, these findings are the first evidence that DAP resistance and MRSA virulence are tightly connected and involve compromised expression of regulatory and virulence determinants.IMPORTANCE Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host.
Collapse
Affiliation(s)
- Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Maria C Varela
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
17
|
Lee GY, Kang KM, Back SH, Baek JY, Kim SH, Park JH, Yang SJ. Adaptations of Vancomycin-Intermediate Sequence Type 72 Methicillin-Resistant Staphylococcus aureus for Daptomycin Nonsusceptibility. Microb Drug Resist 2018; 24:1489-1496. [PMID: 29927700 DOI: 10.1089/mdr.2018.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Korea, the major clonal type of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is sequence type 72 (ST72) with staphylococcal cassette chromosome mec (SCCmec) type IV (ST72-MRSA-IV). In this study, we used a previously well-characterized isogenic pair of ST72 vancomycin (VAN) susceptible-and VAN intermediate-MRSA strains (VSSA303 and VISA072) and several VSSA strains complemented with plasmids expressing single-point mutated genes (dprAG196C, femAF92C, vraRE127K, and vraSRE127K) identified in the VISA strain. Using the strain set, we assessed the (1) susceptibilities to daptomycin (DAP) and cationic antimicrobial peptides (CAMPs), (2) alterations in cell envelope phenotypes, such as cell wall autolysis, surface positive charge, and membrane potential (ΔΨ), (3) transcriptional expression profiles of genes involved in surface charge regulation and changes of ΔΨ, and (4) cytokine stimulation profiles in murine macrophages. The vraRE127K mutation could enhance surface positive charge through mprF- and dltABCD-independent mechanisms with thickened cell wall. However, none of the single-point mutated genes increased DAP resistance. The DAP nonsusceptible (DAP-NS) phenotype observed in VISA072 strain likely resulted from the combined effects of low ΔΨ and increased positive surface charge. These results suggest that physicochemical alterations in cell envelope are involved in the survival response of DAP-NS VISA072 in sites of infections.
Collapse
Affiliation(s)
- Gi Yong Lee
- 1 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Korea
| | - Kyung Mi Kang
- 1 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Korea
| | - Seung Hyun Back
- 1 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Korea
| | - Jin Yang Baek
- 2 Asia Pacific Foundation for Infectious Diseases (APFID) , Seoul, Korea
- 3 Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | - So Hyun Kim
- 2 Asia Pacific Foundation for Infectious Diseases (APFID) , Seoul, Korea
- 3 Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | - Jong-Hwan Park
- 4 Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University , Gwangju, Korea
| | - Soo-Jin Yang
- 1 School of Bioresources and Bioscience, Chung-Ang University , Anseong, Korea
| |
Collapse
|
18
|
Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz TL, Smeltzer MS. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 2017; 8:1776-1790. [PMID: 28910576 PMCID: PMC5810510 DOI: 10.1080/21505594.2017.1373926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism.
Collapse
Affiliation(s)
- Joseph S Rom
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Danielle N Atwood
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Karen E Beenken
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Daniel G Meeker
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Allister J Loughran
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Horace J Spencer
- b Department of Biostatistics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Tamara L Lantz
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Mark S Smeltzer
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Department of Orthopaedic Surgery , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,d Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|