1
|
Pilliol V, Mahmoud Abdelwadoud B, Aïcha H, Lucille T, Gérard A, Hervé T, Michel D, Ghiles G, Elodie T. Methanobrevibacter oralis: a comprehensive review. J Oral Microbiol 2024; 16:2415734. [PMID: 39502191 PMCID: PMC11536694 DOI: 10.1080/20002297.2024.2415734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Methanobrevibacter oralis (M. oralis) has predominated human oral microbiota methanogenic archaea as far back as the Palaeolithic era in Neanderthal populations and gained dominance from the 18th century onwards. M. oralis was initially isolated from dental plaque samples collected from two apparently healthy individuals allowing its first characterization. The culture of M. oralis is fastidious and has been the subject of several studies to improve its laboratory growth. Various PCR methods are used to identify M. oralis, targeting either the 16S rRNA gene or the mcrA gene. However, only one RTQ-PCR system, based on a chaperonin gene, offers specificity, and allows for microbial load quantification. Next-generation sequencing contributed five draft genomes, each approximately 2.08 Mb (±0.052 Mb) with a 27.82 (±0.104) average GC%, and two ancient metagenomic assembled genomes. M. oralis was then detected in various oral cavity sites in healthy individuals and those diagnosed with oral pathologies, notably periodontal diseases, and endodontic infections. Transmission pathways, possibly involving maternal milk and breastfeeding, remain to be clarified. M. oralis was further detected in brain abscesses and respiratory tract samples, bringing its clinical significance into question. This review summarizes the current knowledge about M. oralis, emphasizing its prevalence, associations with dysbiosis and pathologies in oral and extra-oral situations, and symbiotic relationships, with the aim of paving the way for further investigations.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Boualam Mahmoud Abdelwadoud
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Hamiech Aïcha
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Tellissi Lucille
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Aboudharam Gérard
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Tassery Hervé
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Drancourt Michel
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Grine Ghiles
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Terrer Elodie
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| |
Collapse
|
2
|
Jiang H, Zeng W, Zhang X, Peng A, Cao D, Zhu F. Gut Microbiome variation in patients with early-stage mild-to-moderate intracerebral hemorrhage: A pilot study exploring therapeutic targets. J Stroke Cerebrovasc Dis 2024; 33:108001. [PMID: 39265858 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The significant morbidity and mortality rates of acute intracerebral hemorrhage (ICH) are well-known around the world. The link between gut microbiota and different types of strokes is becoming more studied. The goal of this study was to look at the relationships between intestinal flora and early-stage mild-to-moderate ICH (emICH), and to provide a new perspective for adjunctive treatment of emICH. METHODS Fecal samples from 100 participants with emICH (n=50) and healthy individuals (n=50) in this study were collected as well as analyzed utilizing 16S rRNA gene amplicon sequencing in order to characterize the gut microbial community. RESULTS Distinct microbial communities are present within each group, with emICH patients exhibiting a diminished diversity and uniformity in their microbial profiles. A notable shift in the gut microbiota composition of emICH patients has been observed, characterized by an upsurge in pro-inflammatory microbes belonging to the Euryarchaeota phylum and a concurrent decline in beneficial Bacteroidetes species. Concurrently, significant associations and patterns among operational taxonomic units (OTUs) were identified in emICH patients. A panel of biomarkers (WAL_1855D, Methanobrevibacter, Streptococcus, Bacteroides, Coprococcus, Lachnospira) has been effectively utilized to distinguish emICH patients from healthy individuals, with an area under the curve (AUC) of 0.845. Additionally, an analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation uncovered several perturbed pathways in emICH patients, predominantly those related to metabolic processes and the inflammatory response. Moreover, predictive profiling of the microbiome's phenotypic traits suggests that emICH patients are likely to harbor a higher prevalence of Gram-negative bacteria and potential opportunistic pathogens compared to healthy controls. CONCLUSIONS The gut microbiota ecosystem of emICH patients is disrupted, characterized primarily by an increase in pro-inflammatory microbiota, elevated inflammatory signaling pathways, and metabolic dysregulation. Furthermore, microbiota modulation may be seen as a novel approach for the adjunctive treatment of emICH.
Collapse
Affiliation(s)
- Haixiao Jiang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Wei Zeng
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xiaoli Zhang
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Aijun Peng
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Demao Cao
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Fei Zhu
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Eichorn FC, Kameda-Smith M, Fong C, Graham AK, Main C, Lu JQ. Polymicrobial brain abscesses: A complex condition with diagnostic and therapeutic challenges. J Neuropathol Exp Neurol 2024; 83:798-807. [PMID: 38874452 DOI: 10.1093/jnen/nlae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Brain abscesses (BA) are focal parenchymal infections that remain life-threatening conditions. Polymicrobial BAs (PBAs) are complex coinfections of bacteria or bacterial and nonbacterial pathogens such as fungi or parasites, with diagnostic and therapeutic challenges. In this article, we comprehensively review the prevalence, pathogenesis, clinical manifestations, and microbiological, histopathological, and radiological features of PBAs, as well as treatment and prognosis. While PBAs and monomicrobial BAs have some similarities such as nonspecific clinical presentations, PBAs are more complex in their pathogenesis, pathological, and imaging presentations. The diagnostic challenges of PBAs include nonspecific imaging features at early stages and difficulties in identification of some pathogens by routine techniques without the use of molecular analysis. Imaging of late-stage PBAs demonstrates increased heterogeneity within lesions, which corresponds to variable histopathological features depending on the dominant pathogen-induced changes in different areas. This heterogeneity is particularly marked in cases of coinfections with nonbacterial pathogens such as Toxoplasma gondii. Therapeutic challenges in the management of PBAs include initial medical therapy for possibly underrecognized coinfections prior to identification of multiple pathogens and subsequent broad-spectrum antimicrobial therapy to eradicate identified pathogens. PBAs deserve more awareness to facilitate prompt and appropriate treatment.
Collapse
Affiliation(s)
- Frances-Claire Eichorn
- Department of Pathology and Molecular Medicine/Diagnostic and Molecular Pathology, McMaster University, Hamilton, Canada
| | | | - Crystal Fong
- Department of Radiology/Neuroradiology, McMaster University, Hamilton, Canada
| | - Alice K Graham
- Department of Pathology and Molecular Medicine/Diagnostic and Molecular Pathology, McMaster University, Hamilton, Canada
| | - Cheryl Main
- Department of Pathology and Molecular Medicine/Microbiology, McMaster University, Hamilton, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine/Diagnostic and Molecular Pathology, McMaster University, Hamilton, Canada
| |
Collapse
|
4
|
Hassani Y, Aboudharam G, Drancourt M, Grine G. The discovery of Candidatus Nanopusillus phoceensis sheds light on the diversity of the microbiota nanoarchaea. iScience 2024; 27:109488. [PMID: 38595798 PMCID: PMC11001627 DOI: 10.1016/j.isci.2024.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/11/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
To further assess the spectrum of nanoarchaea in human microbiota, we prospectively searched for nanoarchaea in 110 leftover stool specimens, using the complementary approaches of PCR-sequencing screening, fluorescent in situ hybridization, scanning electron microscopy and metagenomics. These investigations yielded a nanoarchaea, Candidatus Nanopusillus phoceensis sp. nov., detected in stool samples by specific PCR-based assays. Microscopic observations indicated its close contact with the archaea Methanobrevibacter smithii. Genomic sequencing revealed 607,775-bp contig with 24.5% G + C content encoding 30 tRNAs, 3 rRNA genes, and 1,403 coding DNA sequences, of which 719 were assigned to clusters of orthologous groups. Ca. Nanopusillus phoceensis is only the second nanoarchaea to be detected in humans, expanding our knowledge of the repertoire of nanoarchaea associated with the human microbiota and encouraging further research to explore the repertoire of this emerging group of nanomicrobes in clinical samples.
Collapse
Affiliation(s)
- Yasmine Hassani
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Gerard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- Ecole de Médecine Dentaire, Aix-Marseille Université, 13005 Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Ghiles Grine
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- Ecole de Médecine Dentaire, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
5
|
Hassani Y, Aboudharam G, Drancourt M, Grine G. Current knowledge and clinical perspectives for a unique new phylum: Nanaorchaeota. Microbiol Res 2023; 276:127459. [PMID: 37557061 DOI: 10.1016/j.micres.2023.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Nanoarchaea measuring less than 500 nm and encasing an average 600-kb compact genome have been studied for twenty years, after an estimated 4193-million-year evolution. Comprising only four co-cultured representatives, these symbiotic organisms initially detected in deep-sea hydrothermal vents and geothermal springs, have been further distributed in various environmental ecosystems worldwide. Recent isolation by co-culture of Nanopusillus massiliensis from the unique ecosystem of the human oral cavity, prompted us to review the evolutionary diversity of nanaorchaea resulting in a rapidly evolving taxonomiy. Regardless of their ecological niche, all nanoarchaea share limited metabolic capacities correlating with an obligate ectosymbiotic or parasitic lifestyle; focusing on the dynamics of nanoarchaea-bacteria nanoarchaea-archaea interactions at the morphological and metabolic levels; highlighting proteins involved in nanoarchaea attachment to the hosts, as well metabolic exchanges between both organisms; and highlighting clinical nanoarchaeology, an emerging field of research in the frame of the recent discovery of Candidate Phyla radiation (CPR) in human microbiota. Future studies in clinical nanobiology will expand knowledge of the nanaorchaea repertoire associated with human microbiota and diseases, to improve our understanding of the diversity of these nanoorganims and their intreactions with microbiota and host tissues.
Collapse
Affiliation(s)
- Yasmine Hassani
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; IHU Méditerranée Infection, Marseille 13005, France
| | - Gérard Aboudharam
- IHU Méditerranée Infection, Marseille 13005, France; Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - Michel Drancourt
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; IHU Méditerranée Infection, Marseille 13005, France
| | - Ghiles Grine
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France.
| |
Collapse
|
6
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
7
|
Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, de Souza HSP. Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:3464. [PMID: 35408838 PMCID: PMC8998182 DOI: 10.3390/ijms23073464] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbe-host communication is essential to maintain vital functions of a healthy host, and its disruption has been associated with several diseases, including Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD). Although individual members of the intestinal microbiota have been associated with experimental IBD, identifying microorganisms that affect disease susceptibility and phenotypes in humans remains a considerable challenge. Currently, the lack of a definition between what is healthy and what is a dysbiotic gut microbiome limits research. Nevertheless, although clear proof-of-concept of causality is still lacking, there is an increasingly evident need to understand the microbial basis of IBD at the microbial strain, genomic, epigenomic, and functional levels and in specific clinical contexts. Recent information on the role of diet and novel environmental risk factors affecting the gut microbiome has direct implications for the immune response that impacts the development of IBD. The complexity of IBD pathogenesis, involving multiple distinct elements, suggests the need for an integrative approach, likely utilizing computational modeling of molecular datasets to identify more specific therapeutic targets.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Siane Lopes Bittencourt Rosas
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Beatriz Elias Ribeiro
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Ygor Marinho
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Heitor S. P. de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| |
Collapse
|
8
|
Hassani Y, Saad J, Terrer E, Aboudharam G, Giancarlo B, Silvestri F, Raoult D, Drancourt M, Grine G. Introducing clinical nanorachaeaology: Isolation by co-culture of Nanopusillus massiliensis sp. nov. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100100. [PMID: 35005659 PMCID: PMC8718826 DOI: 10.1016/j.crmicr.2021.100100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The first ever detection in human microbiota of nanoarchaea. Detection and co-isolation of nanoarchaea new species in human oral microbiota. These data suggest the contribution of methanogens to the perinatal development of intestinal microbiota and physiology. Extended our knowledge of human microbiota diversity. Opening a new field of research in clinical microbiology here referred to as clinical nanoarchaeology.
Background Nanoarchaeota, obligate symbiont of some environmental archaea with reduced genomes, have been described in marine thermal vent environments, yet never detected in hosts, including humans. Methods Here, using laboratory tools geared towards the detection of nanoarchaea including PCR-sequencing, WGS, microscopy and culture. Results We discovered a novel nanoarchaea, Nanopusillus massiliensis, detected in dental plate samples by specific PCR-based assays. Combining fluorescent in situ hybridization (FISH) with scanning electron microscopy disclosed close contacts between N. massiliensis and the archaea Methanobrevibacter oralis in these samples. Culturing one sample yielded co-isolation of M. oralis and N. massiliensis with a 606,935-bp genome, with 23.6% GC encoded 16 tRNA, 3 rRNA and 942 coding DNA sequences, of which 400 were assigned to clusters of orthologous groups. Conclusion The discovery of N. massiliensis, made publicly available in collection, extended our knowledge of human microbiota diversity, opening a new field of research in clinical microbiology here referred to as clinical nanoarchaeology.
Collapse
Affiliation(s)
- Y. Hassani
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - J. Saad
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - E. Terrer
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - G. Aboudharam
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - B Giancarlo
- Private practice Marseille France, Marseille, France
| | - F. Silvestri
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - D. Raoult
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - M. Drancourt
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - G. Grine
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
- Corresponding author at: Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France.
| |
Collapse
|
9
|
Ma Z, Yan S, Dong H, Wang H, Luo Y, Wang X. Case Report: Metagenomics Next-Generation Sequencing Can Help Define the Best Therapeutic Strategy for Brain Abscesses Caused by Oral Pathogens. Front Med (Lausanne) 2021; 8:644130. [PMID: 33693022 PMCID: PMC7937709 DOI: 10.3389/fmed.2021.644130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Brain abscesses are associated with an increased long-term risk of new seizures and increased mortality within several years after infection. Common microorganisms that cause brain abscesses include bacteria, fungi, and mycoplasma. We report a 75-year-old man with a brain abscess caused by Prevotella denticola, an oral pathogen. Based on the clinical condition, we suspected that the patient had a blood-borne brain abscess, and he received antibiotics and systemic supportive treatment. The patient developed shock for the second time after negative Gram-staining results. Metagenomics next-generation sequencing showed one strain from the oral microbiome, confirming our hypothesis, and targeted antibiotic treatment was administered quickly. Thus, we report a case in which genomic analysis was the critical factor in determining the best antimicrobial therapy for administration.
Collapse
Affiliation(s)
- Zhonghui Ma
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoxin Dong
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huifen Wang
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonggang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Guindo CO, Davoust B, Drancourt M, Grine G. Diversity of Methanogens in Animals' Gut. Microorganisms 2020; 9:microorganisms9010013. [PMID: 33374535 PMCID: PMC7822204 DOI: 10.3390/microorganisms9010013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
Methanogens are members of anaerobe microbiota of the digestive tract of mammals, including humans. However, the sources, modes of acquisition, and dynamics of digestive tract methanogens remain poorly investigated. In this study, we aimed to expand the spectrum of animals that could be sources of methanogens for humans by exploring methanogen carriage in animals. We used real-time PCR, PCR-sequencing, and multispacer sequence typing to investigate the presence of methanogens in 407 fecal specimens collected from nine different mammalian species investigated here. While all the negative controls remained negative, we obtained by PCR-sequencing seven different species of methanogens, of which three (Methanobrevibacter smithii, Methanobrevibacter millerae and Methanomassiliicoccus luminyensis) are known to be part of the methanogens present in the human digestive tract. M. smithii was found in 24 cases, including 12/24 (50%) in pigs, 6/24 (25%) in dogs, 4/24 (16.66%) in cats, and 1/24 (4.16%) in both sheep and horses. Genotyping these 24 M. smithii revealed five different genotypes, all known in humans. Our results are fairly representative of the methanogen community present in the digestive tract of certain animals domesticated by humans, and other future studies must be done to try to cultivate methanogens here detected by molecular biology to better understand the dynamics of methanogens in animals and also the likely acquisition of methanogens in humans through direct contact with these animals or through consumption of the meat and/or milk of certain animals, in particular cows.
Collapse
Affiliation(s)
- Cheick Oumar Guindo
- IHU Méditerranée Infection, 13005 Marseille, France; (C.O.G.); (M.D.)
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Bernard Davoust
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Michel Drancourt
- IHU Méditerranée Infection, 13005 Marseille, France; (C.O.G.); (M.D.)
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Ghiles Grine
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
- Faculty of Odontology, Aix-Marseille Université, 13005 Marseille, France
- Correspondence: ; Tel.: +33-(0)4-13-73-24-01; Fax: +33-(0)-13-73-24-02
| |
Collapse
|
11
|
Detection of Methanobrevobacter smithii and Methanobrevibacter oralis in Lower Respiratory Tract Microbiota. Microorganisms 2020; 8:microorganisms8121866. [PMID: 33256156 PMCID: PMC7760608 DOI: 10.3390/microorganisms8121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Methanogens, the sole microbes producing methane, are archaea commonly found in human anaerobic microbiota. Methanogens are emerging as opportunistic pathogens associated with dysbiosis and are also detected and cultured in anaerobic abscesses. Their presence in the respiratory tract is yet unknown. As a preliminary answer, prospective investigation of 908 respiratory tract samples using polyphasic approach combining PCR-sequencing, real-time PCR, fluorescent in situ hybridization (FISH), and methanogens culture was carried out. Methanobrevibacter smithii and Methanobrevibacter oralis DNA sequences, were detected in 21/527 (3.9%) sputum samples, 2/188 (1.06%) bronchoalveolar lavages, and none of 193 tracheo-bronchial aspirations. Further, fluorescence in situ hybridization detected methanogens in three sputum investigated specimens with stick morphology suggesting M. oralis and in another one bronchoalveolar lavage sample investigated, diplococal morphology suggesting M. smithii. These observations extend the known territory of methanogens to the respiratory tract and lay the foundations for further interpretation of their detection as pathogens in any future cases of isolation from bronchoalveolar lavages and the lungs.
Collapse
|
12
|
Abstract
Host-associated microbial communities have an important role in shaping the health and fitness of plants and animals. Most studies have focused on the bacterial, fungal or viral communities, but often the archaeal component has been neglected. The archaeal community, the so-called archaeome, is now increasingly recognized as an important component of host-associated microbiomes. It is composed of various lineages, including mainly Methanobacteriales and Methanomassiliicoccales (Euryarchaeota), as well as representatives of the Thaumarchaeota. Host-archaeome interactions have mostly been delineated from methanogenic archaea in the gastrointestinal tract, where they contribute to substantial methane production and are potentially also involved in disease-relevant processes. In this Review, we discuss the diversity and potential roles of the archaea associated with protists, plants and animals. We also present the current understanding of the archaeome in humans, the specific adaptations involved in interaction with the resident microbial community as well as with the host, and the roles of the archaeome in both health and disease.
Collapse
|
13
|
Guindo CO, Drancourt M, Grine G. Digestive tract methanodrome: Physiological roles of human microbiota-associated methanogens. Microb Pathog 2020; 149:104425. [PMID: 32745665 DOI: 10.1016/j.micpath.2020.104425] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Methanogens are the archaea most commonly found in humans, in particular in the digestive tract and are an integral part of the digestive microbiota. They are present in humans from the earliest moments of life and represent the only known source of methane production to date. They are notably detected in humans by microscopy, fluorescent in situ hybridization, molecular biology including PCR-sequencing, metagenomics, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and culture. Methanogens present in the human digestive tract play major roles, in particular the use of hydrogen from the fermentation products of bacteria, thus promoting digestion. They are also involved in the transformation of heavy metals and in the use of trimethylamine produced by intestinal bacteria, thus preventing major health problems, in particular cardiovascular diseases. Several pieces of evidence suggest their close physical contacts with bacteria support symbiotic metabolism. Their imbalance during dysbiosis is associated with many pathologies in humans, particularly digestive tract diseases such as Crohn's disease, ulcerative colitis, diverticulosis, inflammatory bowel disease, irritable bowel syndrome, colonic polyposis, and colorectal cancer. There is a huge deficit of knowledge and partially contradictory information concerning human methanogens, so much remains to be done to fully understand their physiological role in humans. It is necessary to develop new methods for the identification and culture of methanogens from clinical samples. This will permit to isolate new methanogens species as well as their phenotypic characterization, to explore their genome by sequencing and to study the population dynamics of methanogens by specifying in particular their exact role within the complex flora associated with the mucous microbiota of human.
Collapse
Affiliation(s)
- C O Guindo
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - M Drancourt
- IHU Méditerranée Infection, Marseille, France
| | - G Grine
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, UFR Odontologie, Marseille, France.
| |
Collapse
|
14
|
Drancourt M, Djemai K, Gouriet F, Grine G, Loukil A, Bedotto M, Levasseur A, Lepidi H, Bou-Khalil J, Khelaifia S, Raoult D. Methanobrevibacter smithii archaemia in febrile patients with bacteremia, including those with endocarditis. Clin Infect Dis 2020; 73:e2571-e2579. [PMID: 32668457 DOI: 10.1093/cid/ciaa998] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/10/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The spectrum of infections caused by the emerging opportunistic pathogens methanogens which escape routine detection remains to be described. To determine the prevalence of archaemia, we searched for methanogens in the blood of febrile patients using specific tools. METHODS We conducted a prospective study at Institut Hospitalier Universitaire Méditerranée Infection, Marseille, France, September 2018 - April 2020, enrolling 7,716 blood culture samples routinely collected in patients with fever. Blood samples were screened by specific PCR assays for the presence of methanogens. Positive samples were observed by autofluorescence and electron microscopy, analyzed by metagenomics and cultured using previously developed methods. Blood culture bottles experimentally inoculated were used as controls. The presence of methanogens in vascular and cardiac tissues was assessed by indirect immunofluorescence, fluorescent in situ hybridization and PCR-based investigations. RESULTS PCR detection attempted in 7,716 blood samples, was negative in all 1,312 aerobic bottles and 810 bacterial culture-negative anaerobic bottles. PCRs were positive in 27/5,594 (0.5%) bacterial culture-positive anaerobic bottles that contained cultures collected from 26 patients. Sequencing confirmed Methanobrevibacter smithii associated with staphylococci in 14 patients, fermentative Enterobacteriaceae in nine patients and streptococci in three patients. Metagenomics confirmed M. smithii in five blood samples, and M. smithii was isolated via culture in broth from two samples; the genomes of these two isolates were sequenced. Blood cultures experimentally inoculated with Enterobacteriaceae, Staphylococcus epidermidis or Staphylococcus hominis yielded hydrogen, but no methane, authentifying observational data.Three patients, all diagnosed with infectious mitral endocarditis, were diagnosed by microscopy, PCR-based detections and culture: we showed M. smithii microscopically and by a specific PCR followed by sequencing method in two of three cardiovascular tissues. CONCLUSIONS Using appropriate methods of detection, M. smithii is demonstrated as causing archaemia and endocarditis in febrile patients who are coinfected by bacteria.
Collapse
Affiliation(s)
- Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Kenza Djemai
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Frédérique Gouriet
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Ghiles Grine
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Ahmed Loukil
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Marielle Bedotto
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Hubert Lepidi
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | | | | | - Didier Raoult
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
15
|
Sereme Y, Mezouar S, Grine G, Mege JL, Drancourt M, Corbeau P, Vitte J. Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases. Clin Rev Allergy Immunol 2020; 57:456-466. [PMID: 31522353 DOI: 10.1007/s12016-019-08766-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Archaea, which form one of four domains of life alongside Eukarya, Bacteria, and giant viruses, have long been neglected as components of the human microbiota and potential opportunistic infectious pathogens. In this review, we focus on methanogenic Archaea, which rely on hydrogen for their metabolism and growth. On one hand, methanogenic Archaea in the gut are functional associates of the fermentative digestion of dietary fibers, favoring the production of beneficial short-chain fatty acids and likely contributing to the weaning reaction during the neonatal window of opportunity. On the other hand, methanogenic Archaea trigger the activation of innate and adaptive responses and the generation of specific T and B cells in animals and humans. In mouse models, lung hypersensitivity reactions can be induced by inhaled methanogenic Archaea mimicking human professional exposure to organic dust. Changes in methanogenic Archaea of the microbiota are detected in an array of dysimmune conditions comprising inflammatory bowel disease, obesity, malnutrition, anorexia, colorectal cancer, and diverticulosis. At the subcellular level, methanogenic Archaea are activators of the TLR8-dependent NLRP3 inflammasome, modulate the release of antimicrobial peptides and drive the production of proinflammatory, Th-1, Th-2, and Th-17 cytokines. Our objective was to introduce the most recent and major pieces of evidence supporting the involvement of Archaea in the balance between health and dysimmune diseases, with a particular focus on atopic and allergic conditions.
Collapse
Affiliation(s)
- Youssouf Sereme
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
- IRD, APHM, MEPHI, Aix Marseille University, Marseille, France
| | - Soraya Mezouar
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
- IRD, APHM, MEPHI, Aix Marseille University, Marseille, France
| | - Ghiles Grine
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
- IRD, APHM, MEPHI, Aix Marseille University, Marseille, France
| | - Jean Louis Mege
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
- IRD, APHM, MEPHI, Aix Marseille University, Marseille, France
- APHM, Hôpital Timone, Service de Bactériologie - Epidémiologie - Hygiène hospitalière, Aix-Marseille University, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
- IRD, APHM, MEPHI, Aix Marseille University, Marseille, France
| | - Pierre Corbeau
- Institute of Human Genetics, UMR9002, CNRS-Montpellier University, Montpellier, France
- Montpellier University, Montpellier, France
- Immunology Department, University Hospital, Nîmes, France
| | - Joana Vitte
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France.
- IRD, APHM, MEPHI, Aix Marseille University, Marseille, France.
- APHM, Hôpital Timone, Service de Bactériologie - Epidémiologie - Hygiène hospitalière, Aix-Marseille University, Marseille, France.
| |
Collapse
|
16
|
Guindo CO, Terrer E, Chabrière E, Aboudharam G, Drancourt M, Grine G. Culture of salivary methanogens assisted by chemically produced hydrogen. Anaerobe 2019; 61:102128. [PMID: 31759176 DOI: 10.1016/j.anaerobe.2019.102128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
Methanogen cultures require hydrogen produced by fermentative bacteria such as Bacteroides thetaiotaomicron (biological method). We developed an alternative method for hydrogen production using iron filings and acetic acid with the aim of cultivating methanogens more efficiently and more quickly (chemical method). We developed this new method with a reference strain of Methanobrevibacter oralis, compared the method to the biological reference method with a reference strain of Methanobrevibacter smithii and finally applied the method to 50 saliva samples. Methanogen colonies counted using ImageJ software were identified using epifluorescence optical microscopy, real-time PCR and PCR sequencing. For cultures containing pure strains of M. oralis and M. smithii, colonies appeared three days postinoculation with the chemical method versus nine days with the biological method. The average number of M. smithii colonies was significantly higher with the chemical method than with the biological method. There was no difference in the delay of observation of the first colonies in the saliva samples between the two methods. However, the average number of colonies was significantly higher with the biological method than with the chemical method at six days and nine days postinoculation (Student's test, p = 0.005 and p = 0.04, respectively). The chemical method made it possible to isolate four strains of M. oralis and three strains of M. smithii from the 50 saliva samples. Establishing the chemical method will ease the routine isolation and culture of methanogens.
Collapse
Affiliation(s)
- Cheick O Guindo
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Elodie Terrer
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France; Aix-Marseille-Univ, Faculty of Odontology, Marseille, France
| | - Eric Chabrière
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France; Aix-Marseille-Univ, Faculty of Odontology, Marseille, France
| | - Michel Drancourt
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France; Aix-Marseille-Univ, Faculty of Odontology, Marseille, France
| |
Collapse
|
17
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
18
|
Sogodogo E, Fellag M, Loukil A, Nkamga VD, Michel J, Dessi P, Fournier PE, Drancourt M. Nine Cases of Methanogenic Archaea in Refractory Sinusitis, an Emerging Clinical Entity. Front Public Health 2019; 7:38. [PMID: 30886840 PMCID: PMC6409293 DOI: 10.3389/fpubh.2019.00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/13/2019] [Indexed: 01/24/2023] Open
Abstract
The authors report the cases of 9 patients eventually diagnosed with methanogenic archaea refractory or recalcitrant chronic rhinosinusitis, a condition known to involve various anaerobic bacteria but in which the role of methanogenic archaea is unknown. The authors retrospectively searched these microorganisms by PCR in surgically-collected sinusal pus specimens from patients diagnosed with refractory sinusitis, defined by the persistance of sinus inflammation and related-symptoms for more than 12 weeks despite appropriate treatment. Of the 116 tested sinus surgical specimens, 12 (10.3%) from 9 patients (six females, three males; aged 20-71 years) were PCR-positive. These specimens were further investigated by fluorescence in-situ hybridization, PCR amplicon-sequencing and culture. Methanobrevibacter smithii was documented in four patients and Methanobrevibacter oralis in another four, one of whom was also culture-positive. They were associated with a mixed flora including Gram-positive and Gram-negative bacteria. In the latter patient, "Methanobrevibacter massiliense" was the sole microorganism detected. These results highlight methanogenic archaea as being part of a mixed anaerobic flora involved in refractory sinusitis, and suggest that the treatment of this condition should include an antibiotic active against methanogens, notably a nitroimidazole derivative.
Collapse
Affiliation(s)
- Elisabeth Sogodogo
- Aix Marseille University, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Mustapha Fellag
- Aix Marseille University, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Ahmed Loukil
- Aix Marseille University, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Justin Michel
- Assistance Publique-Hôpitaux de Marseille, Service ORL et Chirurgie Cervico-Faciale, Hôpital de la Conception, Marseille, France
| | - Patrick Dessi
- Assistance Publique-Hôpitaux de Marseille, Service ORL et Chirurgie Cervico-Faciale, Hôpital de la Conception, Marseille, France
| | | | - Michel Drancourt
- Aix Marseille University, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
19
|
Sogodogo E, Drancourt M, Grine G. Methanogens as emerging pathogens in anaerobic abscesses. Eur J Clin Microbiol Infect Dis 2019; 38:811-818. [DOI: 10.1007/s10096-019-03510-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/02/2023]
|
20
|
Bodilsen J, Brouwer MC, Nielsen H, Van De Beek D. Anti-infective treatment of brain abscess. Expert Rev Anti Infect Ther 2018; 16:565-578. [PMID: 29909695 DOI: 10.1080/14787210.2018.1489722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Brain abscess is an uncommon and potentially life-threatening infection of the CNS that can be caused by a range of different pathogens including bacteria, fungi, and parasites. A multidisciplinary approach is important and anti-infective treatment remains crucial. Here, we review anti-infective treatment of brain abscess. Areas covered: We used the terms '(Brain abscess[ti] AND (antibiotic* OR treatment)) NOT case report'), to conduct a search in the PubMed. Additional papers were identified by cross-reference checking and by browsing textbooks of infectious diseases and neurology. COMMENTARY Empiric treatment of bacterial brain abscess consists of cefotaxime and metronidazole with the addition of vancomycin if meticilline-resistant Staphylococcus aureus is suspected. For severely immuno-suppressed patients, for example transplant recipients, voriconazole and trimethoprim-sulfamethoxazole or sulfadiazine should be added. Increased knowledge of the pharmacokinetic profile of anti-infective treatments may help to improve the treatment of brain abscess. Future studies should address efficacy and safety of continuous abscess drainage, mode of anti-infective administration (continuous vs. bolus), and anti-infective treatments in immuno-suppressed patients.
Collapse
Affiliation(s)
- Jacob Bodilsen
- a Departments of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark (JB, HN) and Neurology, Amsterdam Neuroscience , Academic Medical Centre, Amsterdam , The Netherlands (MCB, DvdB)
| | - Matthijs C Brouwer
- a Departments of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark (JB, HN) and Neurology, Amsterdam Neuroscience , Academic Medical Centre, Amsterdam , The Netherlands (MCB, DvdB)
| | - Henrik Nielsen
- a Departments of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark (JB, HN) and Neurology, Amsterdam Neuroscience , Academic Medical Centre, Amsterdam , The Netherlands (MCB, DvdB)
| | - Diederik Van De Beek
- a Departments of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark (JB, HN) and Neurology, Amsterdam Neuroscience , Academic Medical Centre, Amsterdam , The Netherlands (MCB, DvdB)
| |
Collapse
|