1
|
Mukadi-Bamuleka D, Bulabula-Penge J, Jacobs BKM, De Weggheleire A, Edidi-Atani F, Mambu-Mbika F, Legand A, Klena JD, Fonjungo PN, Mbala-Kingebeni P, Makiala-Mandanda S, Kajihara M, Takada A, Montgomery JM, Formenty P, Muyembe-Tamfum JJ, Ariën KK, van Griensven J, Ahuka-Mundeke S. Head-to-head comparison of diagnostic accuracy of four Ebola virus disease rapid diagnostic tests versus GeneXpert® in eastern Democratic Republic of the Congo outbreaks: a prospective observational study. EBioMedicine 2023; 91:104568. [PMID: 37084479 PMCID: PMC10148093 DOI: 10.1016/j.ebiom.2023.104568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Ebola virus disease (EVD) outbreaks have emerged in Central and West Africa. EVD diagnosis relies principally on RT-PCR testing with GeneXpert®, which has logistical and cost restrictions at the peripheral level of the health system. Rapid diagnostic tests (RDTs) would offer a valuable alternative at the point-of-care to reduce the turn-around time, if they show good performance characteristics. We evaluated the performance of four EVD RDTs against the reference standard GeneXpert® on stored EVD positive and negative blood samples collected between 2018 and 2021 from outbreaks in eastern Democratic Republic of the Congo (DRC). METHODS We conducted a prospective and observational study in the laboratory on QuickNavi-Ebola™, OraQuick® Ebola Rapid Antigen, Coris® EBOLA Ag K-SeT, and Standard® Q Ebola Zaïre Ag RDTs using left-over archived frozen EDTA whole blood samples. We randomly selected 450 positive and 450 negative samples from the EVD biorepositories in DRC, across a range of GeneXpert® cycle threshold values (Ct-values). RDT results were read by three persons and we considered an RDT result as "positive", when it was flagged as positive by at least two out of the three readers. We estimated the sensitivity and specificity through two independent generalized (logistic) linear mixed models (GLMM). FINDINGS 476 (53%) of 900 samples had a positive GeneXpert Ebola result when retested. The QuickNavi-Ebola™ showed a sensitivity of 56.8% (95% CI 53.6-60.0) and a specificity of 97.5% (95% CI 96.2-98.4), the OraQuick® Ebola Rapid Antigen test displayed 61.6% (95% CI 57.0-65.9) sensitivity and 98.1% (95% CI 96.2-99.1) specificity, the Coris® EBOLA Ag K-SeT showed 25.0% (95% CI 22.3-27.9) sensitivity and 95.9% (95% CI 94.2-97.1) specificity, and the Standard® Q Ebola Zaïre Ag displayed 21.6% (95% CI 18.1-25.7) sensitivity and 99.1% (95% CI 97.4-99.7) specificity. INTERPRETATION None of the RDTs evaluated approached the "desired or acceptable levels" for sensitivity set out in the WHO target product profile, while all of the tests met the "desired level" for specificity. Nevertheless, the QuickNavi-Ebola™ and OraQuick® Ebola Rapid Antigen Test demonstrated the most favorable profiles, and may be used as frontline tests for triage of suspected-cases while waiting for RT-qPCR confirmatory testing. FUNDING Institute of Tropical Medicine Antwerp/EDCTP PEAU-EBOV-RDC project.
Collapse
Affiliation(s)
- Daniel Mukadi-Bamuleka
- Institut National de Recherche Biomédicale, INRB, Kinshasa, Democratic Republic of the Congo; Rodolphe Mérieux INRB-Goma Laboratory, Goma, North Kivu, Democratic Republic of the Congo; Service de Microbiologie, Departement de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Democratic Republic of the Congo.
| | - Junior Bulabula-Penge
- Institut National de Recherche Biomédicale, INRB, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Departement de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Democratic Republic of the Congo
| | | | | | - François Edidi-Atani
- Institut National de Recherche Biomédicale, INRB, Kinshasa, Democratic Republic of the Congo; Rodolphe Mérieux INRB-Goma Laboratory, Goma, North Kivu, Democratic Republic of the Congo; Service de Microbiologie, Departement de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Democratic Republic of the Congo
| | - Fabrice Mambu-Mbika
- Institut National de Recherche Biomédicale, INRB, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Departement de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Democratic Republic of the Congo
| | - Anaïs Legand
- Health Emergencies Program, World Health Organization, Geneva, Switzerland
| | - John D Klena
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Placide Mbala-Kingebeni
- Institut National de Recherche Biomédicale, INRB, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Departement de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Democratic Republic of the Congo
| | - Sheila Makiala-Mandanda
- Institut National de Recherche Biomédicale, INRB, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Departement de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Democratic Republic of the Congo
| | - Masahiro Kajihara
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Pierre Formenty
- Health Emergencies Program, World Health Organization, Geneva, Switzerland
| | - Jean-Jacques Muyembe-Tamfum
- Institut National de Recherche Biomédicale, INRB, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Departement de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Democratic Republic of the Congo
| | - Kevin K Ariën
- Institute of Tropical Medicine, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | | | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicale, INRB, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Departement de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
2
|
Dagens AB, Rojek A, Sigfrid L, Plüddemann A. The diagnostic accuracy of rapid diagnostic tests for Ebola virus disease: a systematic review. Clin Microbiol Infect 2023; 29:171-181. [PMID: 36162724 DOI: 10.1016/j.cmi.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ebola virus disease (EVD) is a dangerous condition that can cause an epidemic. Several rapid diagnostic tests (RDTs) have been developed to diagnose EVD. These RDTs promise to be quicker and easier to use than the current reference standard diagnostic test, PCR. OBJECTIVES To assess the diagnostic accuracy of RDTs for EVD. METHODS A systematic review of diagnostic accuracy studies. DATA SOURCES The following bibliographic databases were searched from inception to present: MEDLINE (Ovid), Embase, Global Health, Cochrane Central Register of Controlled Trials, WHO Global Index Medicus database, Web of Science, PROSPERO register of Systematic Reviews, and Clinical Trials.Gov. STUDY ELIGIBILITY CRITERIA Diagnostic accuracy studies. PARTICIPANTS Patients presenting to the Ebola treatment units with symptoms of EVD. INTERVENTIONS RDTs; reference standard, RT-PCR. ASSESSMENT OF RISK OF BIAS Quality Assessment of Diagnostic Accuracy Studies-2 tool. METHODS OF DATA SYNTHESIS Summary estimates of diagnostic accuracy study were produced for each device type. Subgroup analyses were performed for RDT type and specimen material. A sensitivity analysis was performed to assess the effect of trial design and bias. RESULTS We included 15 diagnostic accuracy studies. The summary estimate of sensitivity for lateral flow assays was 86.1% (95% CI, 86-86.2%), with specificity of 97% (95% CI, 96.1-97.9%). The summary estimate for rapid PCR devices was sensitivity of 96.2% (95% CI, 95.3-97.9%), with a specificity of 96.8% (95% CI, 95.3-97.9%). Pre-specified subgroup analyses demonstrated that RDTs were effective on a range of specimen material. Overall, the risk of bias throughout the included studies was low, but it was high in patient selection and uncertain in the flow and timing domains. CONCLUSIONS RDTs possess both high sensitivity and specificity compared with RT-PCR among symptomatic patients presenting to the Ebola treatment units. Our findings support the use of RDTs as a 'rule in' test to expedite treatment and vaccination.
Collapse
Affiliation(s)
- Andrew B Dagens
- Epidemic Research Group Oxford, University of Oxford, Oxford, United Kingdom.
| | - Amanda Rojek
- Epidemic Research Group Oxford, University of Oxford, Oxford, United Kingdom
| | - Louise Sigfrid
- Epidemic Research Group Oxford, University of Oxford, Oxford, United Kingdom
| | - Annette Plüddemann
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Wang Z, Bennett RS, Roehler M, Guillon G, Fischl MJ, Donadi MC, Makovetz J, Holmes N, Zaveri T, Toolan E, Gontz HL, Yearwood GD, Logue J, Bohannon JK, Mistretta L, Byrum R, Ragland D, St. Claire M, Kurtz LA, Miller T, Reed MR, Young J, Lee J, Hensley LE, Kardos K, Berry JD. Development and Clinical Evaluation of a Rapid Point of Care Test for Ebola Virus Infection in Humans. Viruses 2023; 15:336. [PMID: 36851550 PMCID: PMC9961446 DOI: 10.3390/v15020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The genus Ebolavirus contains multiple species of viruses that are highly contagious and lethal, often causing severe hemorrhagic fever. To minimize the global threat from Ebola virus disease (EVD), sustainable, field-appropriate tools are needed to quickly screen and triage symptomatic patients and conduct rapid screening of cadavers to ensure proper handling of human remains. The OraQuick® Ebola Rapid Antigen Test is an in vitro diagnostic single-use immunoassay for the qualitative detection of Ebola virus antigens that detects all known species within the genus Ebolavirus. Here, we report the performance of the OraQuick® Ebola Rapid Antigen Test and provide a comparison of its performance with other rapid diagnostic tests (RDTs) for EVD. OraQuick® Ebola demonstrated clinical sensitivity of 84.0% in archived EVD patient venous whole-blood (WB) samples, 90.9% in Ebola virus-infected monkey fingerstick samples, and 97.1% in EVD patient cadaver buccal swabs, as well as clinical specificity of 98.0-100% in venous WB samples and 99.1-100% in contrived saliva samples. It is the only 510(k)-cleared Ebola rapid test, has analytical sensitivity as good as or better than all RDT comparators for EVD, and can detect the Sudan virus. Our data demonstrate that the OraQuick® Ebola Rapid Antigen Test is a sensitive and specific assay that can be used for rapid detection of EBOV in humans and could support efforts for EVD-specific interventions and control over outbreaks.
Collapse
Affiliation(s)
- Zheng Wang
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
- Bristol Myers Squibb, Princeton, NJ 08540, USA
| | - Richard S. Bennett
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | - Jim Makovetz
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
| | | | - Toral Zaveri
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
| | - Eamon Toolan
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
| | | | - Graham D. Yearwood
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
- Bristol Myers Squibb, Princeton, NJ 08540, USA
| | - James Logue
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - J. Kyle Bohannon
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Lisa Mistretta
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Dan Ragland
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Marisa St. Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Lisa A. Kurtz
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
| | | | | | - Janean Young
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
| | - John Lee
- Biomedical Advanced Research and Development Authority (BARDA), U.S. Department of Health & Human Services, Washington, DC 20201, USA
| | - Lisa E. Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Keith Kardos
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
| | - Jody D. Berry
- OraSure Technologies, Inc., Bethlehem, PA 18015, USA
| |
Collapse
|
4
|
Bettini A, Lapa D, Garbuglia AR. Diagnostics of Ebola virus. Front Public Health 2023; 11:1123024. [PMID: 36908455 PMCID: PMC9995846 DOI: 10.3389/fpubh.2023.1123024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Ebola is a highly pathogenic virus, which in humans reaches a mortality rate above 50%. Due to a lack of laboratories in territories where Ebola viruses are endemic and the limited number of surveillance programmes, tests for the confirmation of suspected cases of Ebola are often performed in Reference Laboratories. While this provides guarantees regarding the accuracy of results, the shipment of samples to a centralized facility where the diagnostic test can be performed and the time required to achieve the results takes several days, which increases costs and entails delays in the isolation of positive subjects and therapeutic intervention with negative consequences both for patients and the community. Molecular tests have been the most frequently used tool in Ebola diagnosis in recent outbreaks. One of the most commonly used molecular tests is the Real-Star Altona, which targets a conserved area of the L gene. This assay showed different sensitivities depending on the Ebola virus: 471 copies/mL (EBOV) and 2871 copies/ml (SUDAN virus). The Cepheid system also showed good sensitivity (232 copies/mL). The LAMP platform is very promising because, being an isothermal reaction, it does not require high-precision instrumentation and can be considered a Point of Care (PoC) tool. Its analytical sensitivity is 1 copy/reaction. However, since data from real life studies are not yet available, it is premature to give any indications on its feasibility. Moreover, in November 2014, the WHO recommended the development of rapid diagnostic tests (RDT) according to ASSURED criteria. Several RDT assays have since been produced, most of which are rapid tests based on the search for antibody anti-Ebola viral proteins with immunochromatographic methods. Several viral antigens are used for this purpose: VP40, NP and GP. These assays show different sensitivities according to the protein used: VP40 57.4-93.1%, GP 53-88.9% and 85% for NP compared to reference molecular assays. From these results, it can be deduced that no RDT reaches the 99% sensitivity recommended by the WHO and therefore any RDT negative results in suspected cases should be confirmed with a molecular test.
Collapse
Affiliation(s)
- Aurora Bettini
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani (IRCCS), Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani (IRCCS), Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani (IRCCS), Rome, Italy
| |
Collapse
|
5
|
Muzembo BA, Kitahara K, Ohno A, Ntontolo NP, Ngatu NR, Okamoto K, Miyoshi SI. Rapid diagnostic tests versus RT-PCR for Ebola virus infections: a systematic review and meta-analysis. Bull World Health Organ 2022; 100:447-458. [PMID: 35813519 PMCID: PMC9243686 DOI: 10.2471/blt.21.287496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To evaluate the clinical accuracy of rapid diagnostic tests for the detection of Ebola virus. Methods We searched MEDLINE®, Embase® and Web of Science for articles published between 1976 and October 2021 reporting on clinical studies assessing the performance of Ebola virus rapid diagnostic tests compared with reverse transcription polymerase chain reaction (RT-PCR). We assessed study quality using the QUADAS-2 criteria. To estimate the pooled sensitivity and specificity of these rapid diagnostic tests, we used a bivariate random-effects meta-analysis. Findings Our search identified 113 unique studies, of which nine met the inclusion criteria. The studies were conducted in the Democratic Republic of the Congo, Guinea, Liberia and Sierra Leone and they evaluated 12 rapid diagnostic tests. We included eight studies in the meta-analysis. The pooled sensitivity and specificity of the rapid tests were 86% (95% confidence interval, CI: 80-91) and 95% (95% CI: 91-97), respectively. However, pooled sensitivity decreased to 83% (95% CI: 77-88) after removing outliers. Pooled sensitivity increased to 90% (95% CI: 82-94) when analysis was restricted to studies using the RT-PCR from altona Diagnostics as gold standard. Pooled sensitivity increased to 99% (95% CI: 67-100) when the analysis was restricted to studies using whole or capillary blood specimens. Conclusion The included rapid diagnostic tests did not detect all the Ebola virus disease cases. While the sensitivity and specificity of these tests are moderate, they are still valuable tools, especially useful for triage and detecting Ebola virus in remote areas.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530, Japan
| | - Kei Kitahara
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
| | - Ayumu Ohno
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
| | | | - Nlandu Roger Ngatu
- Department of Public Health, Kagawa University Faculty of Medicine, Miki, Japan
| | - Keinosuke Okamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530, Japan
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530, Japan
| |
Collapse
|
6
|
Mukadi-Bamuleka D, Bulabula-Penge J, De Weggheleire A, Jacobs BKM, Edidi-Atani F, Mambu-Mbika F, Mbala-Kingebeni P, Makiala-Mandanda S, Faye M, Diagne CT, Diagne MM, Faye O, Kajihara M, Faye O, Takada A, Sall AA, Muyembe-Tamfum JJ, van Griensven J, Ariën KK, Ahuka-Mundeke S. Field performance of three Ebola rapid diagnostic tests used during the 2018-20 outbreak in the eastern Democratic Republic of the Congo: a retrospective, multicentre observational study. THE LANCET. INFECTIOUS DISEASES 2022; 22:891-900. [PMID: 35298901 DOI: 10.1016/s1473-3099(21)00675-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Democratic Republic of the Congo has confronted 13 outbreaks of Ebola virus disease since 1976. Rapid diagnostic tests (RDTs) detecting viral antigens have been developed to circumvent difficulties encountered with RT-PCR for diagnosis in remote low-resource settings, but there is still uncertainty about their performance characteristics and usability during outbreaks. We aimed to assess the field performance of three antigen detection RDTs compared with the gold-standard Cepheid GeneXpert Ebola assay results. METHODS We conducted a retrospective, multicentre observational study using complete and de-identified databases of five mobile laboratories (managed by the Institut National de Recherche Biomédicale) to assess the performance of three Ebola virus disease RDTs (QuickNavi-Ebola, OraQuick Ebola Rapid Antigen Test, and Coris EBOLA Ag K-SeT rapid test) run on blood samples of patients with suspected Ebola virus disease in direct comparison with the Cepheid GeneXpert Ebola assay reference test during the 2018-20 outbreak in the eastern Democratic Republic of the Congo. We estimated the sensitivity and specificity of each test through generalised linear mixed models against the GeneXpert Ebola assay reference test and corrected for cycle threshold value and random site effects. FINDINGS 719 (7·9%) of 9157 samples had a positive GeneXpert Ebola assay result. The QuickNavi-Ebola RDT had a sensitivity of 87·4% (95% CI 63·6-96·8) around the mean cycle threshold value and a specificity of 99·6% (99·3-99·8). The OraQuick Ebola Rapid Antigen Test had a sensitivity of 57·4% (95% CI 38·8-75·8) and specificity of 98·3% (97·5-99·0), and the Coris EBOLA Ag K-SeT rapid test had a sensitivity of 38·9% (23·0-63·6) against the GeneXpert Ebola assay reference and specificity of 97·4% (85·3-99·6). The QuickNavi-Ebola RDT showed a robust performance with good sensitivity, particularly with increasing viral loads (ie, low cycle threshold values), and specificity. INTERPRETATION The three RDTs evaluated did not achieve the desired sensitivity and specificity of the WHO target product profile. Although the RDTs cannot triage and rule out Ebola virus infection among clinical suspects, they can still help to sort people with suspected Ebola virus disease into high-risk and low-risk groups while waiting for GeneXpert Ebola assay reference testing. FUNDING None. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Daniel Mukadi-Bamuleka
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.
| | - Junior Bulabula-Penge
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Anja De Weggheleire
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bart K M Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - François Edidi-Atani
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Fabrice Mambu-Mbika
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Placide Mbala-Kingebeni
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Sheila Makiala-Mandanda
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | | | | | - Oumar Faye
- Institut Pasteur de Dakar, Dakar, Senegal
| | - Masahiro Kajihara
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Ayato Takada
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Jean-Jacques Muyembe-Tamfum
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Johan van Griensven
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Steve Ahuka-Mundeke
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
7
|
Couturier C, Wada A, Louis K, Mistretta M, Beitz B, Povogui M, Ripaux M, Mignon C, Werle B, Lugari A, Pannetier D, Godard S, Bocquin A, Mely S, Béavogui I, Hébélamou J, Leuenberger D, Leissner P, Yamamoto T, Lécine P, Védrine C, Chaix J. Characterization and analytical validation of a new antigenic rapid diagnostic test for Ebola virus disease detection. PLoS Negl Trop Dis 2020; 14:e0007965. [PMID: 31951615 PMCID: PMC6992227 DOI: 10.1371/journal.pntd.0007965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/30/2020] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
Hemorrhagic fever outbreaks are difficult to diagnose and control in part because of a lack of low-cost and easily accessible diagnostic structures in countries where etiologic agents are present. Furthermore, initial clinical symptoms are common and shared with other endemic diseases such as malaria or typhoid fever. Current molecular diagnostic methods such as polymerase chain reaction require trained personnel and laboratory infrastructure, hindering diagnostics at the point of need, particularly in outbreak settings. Therefore, rapid diagnostic tests such as lateral flow can be broadly deployed and are typically well-suited to rapidly diagnose hemorrhagic fever viruses, such as Ebola virus. Early detection and control of Ebola outbreaks require simple, easy-to-use assays that can detect very low amount of virus in blood. Here, we developed and characterized an immunoassay test based on immunochromatography coupled to silver amplification technology to detect the secreted glycoprotein of EBOV. The glycoprotein is among the first viral proteins to be detected in blood. This strategy aims at identifying infected patients early following onset of symptoms by detecting low amount of sGP protein in blood samples. The limit of detection achieved by this sGP-targeted kit is 2.2 x 104 genome copies/ml in plasma as assayed in a monkey analytical cohort. Clinical performance evaluation showed a specificity of 100% and a sensitivity of 85.7% when evaluated with plasma samples from healthy controls and patients infected with Zaire Ebola virus from Macenta, Guinea. This rapid and accurate diagnostic test could therefore be used in endemic countries for early detection of infected individuals in point of care settings. Moreover, it could also support efficient clinical triage in hospitals or clinical centers and thus reducing transmission rates to prevent and better manage future severe outbreaks. Ebola virus disease is a severe disease caused by Ebola virus, a member of the filovirus family, which occurs in humans and other primates. Ebola is believed to be zoonotic, however the natural reservoir is unknown. Overlapping symptoms with other endemic diseases, such as malaria and cholera, make accurate diagnostic challenging. Outbreaks of Ebola have been widespread as the consequence of the absence of available rapid, sensitive, specific, robust, and affordable licensed diagnostic test in remote areas, where outbreaks usually start. Here we have established and validated a rapid diagnostic test, which is fast, sensitive, specific, efficient, affordable, and user-friendly. Its analytical characteristics make it suitable for clinical management during Ebola virus outbreaks in remote areas. Of interest, this rapid diagnostic test detects the presence of an early viral antigen, the secreted glycoprotein, found in blood of patients shortly after infection, suggesting that it could be used to identify infected patients shortly after onset of symptoms.
Collapse
Affiliation(s)
| | - Atsuhiko Wada
- FUJIFILM, Ushijima, Kaisei-machi, Ashigarakami-gun Kanagawa, Japan
| | | | | | | | - Moriba Povogui
- Centre de Recherche Et de Formation en Infectiologie de Guinée (CERFIG), République de Guinée
| | | | | | | | | | | | | | - Anne Bocquin
- INSERM Jean Mérieux BSL4 Laboratory, LYON, France
| | | | - Ismaël Béavogui
- CHRS Macenta, c/o Mission Philafricaine, Conakry, République de Guinée
| | - Jean Hébélamou
- CHRS Macenta, c/o Mission Philafricaine, Conakry, République de Guinée
| | - David Leuenberger
- CHRS Macenta, c/o Mission Philafricaine, Conakry, République de Guinée
| | | | - Takeshi Yamamoto
- FUJIFILM, Ushijima, Kaisei-machi, Ashigarakami-gun Kanagawa, Japan
| | | | | | | |
Collapse
|
8
|
Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2019; 106:102375. [PMID: 31806422 DOI: 10.1016/j.jaut.2019.102375] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The genus Ebolavirus from the family Filoviridae is composed of five species including Sudan ebolavirus, Reston ebolavirus, Bundibugyo ebolavirus, Taï Forest ebolavirus, and Ebola virus (previously known as Zaire ebolavirus). These viruses have a large non-segmented, negative-strand RNA of approximately 19 kb that encodes for glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30,40) and an RNA dependent RNA polymerase. These viruses have become a global health concern because of mortality, their rapid dissemination, new outbreaks in West-Africa, and the emergence of a new condition known as "Post-Ebola virus disease syndrome" that resembles inflammatory and autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis with uveitis. However, there are many gaps in the understanding of the mechanisms that may induce the development of such autoimmune-like syndromes. Some of these mechanisms may include a high formation of neutrophil extracellular traps, an uncontrolled "cytokine storm", and the possible formation of auto-antibodies. The likely appearance of autoimmune phenomena in Ebola survivors suppose a new challenge in the management and control of this disease and opens a new field of research in a special subgroup of patients. Herein, the molecular biology, pathogenesis, clinical manifestations, and treatment of Ebola virus disease are reviewed and some strategies for control of disease are discussed.
Collapse
|