1
|
Mao X, Wang J, Xu J, Xu P, Hu H, Li L, Zhang Z, Song Y. Current diagnosing strategies for Mycobacterium tuberculosis and its drug resistance: a review. J Appl Microbiol 2025; 136:lxaf100. [PMID: 40343775 DOI: 10.1093/jambio/lxaf100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/21/2025] [Accepted: 05/08/2025] [Indexed: 05/11/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major global health threat, compounded by the rise of extensively drug-resistant (XDR) and multidrug-resistant (MDR) strains. This review critically examines the current landscape of laboratory diagnostic methods for MTB, encompassing both established techniques and recent advancements. We explore the growth and genetic characteristics of MTB that underpin drug resistance development and detection. We then provide a comparative analysis of smear microscopy, culture-based methods, antigen detection, molecular diagnostics (including nucleic acid amplification tests and whole-genome sequencing), spectroscopic techniques (such as Raman spectroscopy), and mass spectrometry-based approaches. Notably, this review focuses on pathogen-based diagnostic methods, excluding host immune response assays. The strengths and limitations of each method are evaluated in terms of sensitivity, specificity, turnaround time, cost-effectiveness, and suitability for resource-limited settings. Finally, we discuss the future of TB diagnostics, emphasizing the need for integrated, multi-modal platforms, the incorporation of artificial intelligence (AI) for enhanced data analysis, and the development of affordable, point-of-care testing to improve accessibility and impact in high-burden regions. Overcoming current diagnostic challenges is essential for improving patient outcomes and achieving global TB elimination goals.
Collapse
Affiliation(s)
- Xin Mao
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Gaoxin District, Suzhou 215163, China
| | - Jingkai Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Gaoxin District, Suzhou 215163, China
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Junchi Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, 10 Guangqian Road, Xiangcheng District, Suzhou 215163, China
| | - Ping Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, 10 Guangqian Road, Xiangcheng District, Suzhou 215163, China
| | - Huijie Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Gaoxin District, Suzhou 215163, China
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, 88 Keling Road, Gaoxin District, Suzhou 215163, China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Zhiqiang Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Gaoxin District, Suzhou 215163, China
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, 88 Keling Road, Gaoxin District, Suzhou 215163, China
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Gaoxin District, Suzhou 215163, China
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, 88 Keling Road, Gaoxin District, Suzhou 215163, China
| |
Collapse
|
2
|
Guo D, Fan J, Zhang X, Chen S, Du X. Next-generation sequencing assistance in the diagnosis of active tuberculosis following allogeneic hematopoietic stem cell transplantation: A case series. J Infect Chemother 2025; 31:102683. [PMID: 40118380 DOI: 10.1016/j.jiac.2025.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/22/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Tuberculosis poses a rare but life-threatening complication for patients undergoing hematopoietic stem cell transplantation. In a case series spanning January 2020 to January 2024, we evaluated the application of metagenomic Next-Generation Sequencing in the early diagnosis of tuberculosis in patients following allogeneic hematopoietic stem cell transplantation. We identified 9 cases of post-transplant tuberculosis, predominantly pulmonary, with 1 case of disseminated disease. In early fluid samples from patients with post-transplant active tuberculosis, metagenomic next-generation sequencing detected Mycobacterium tuberculosis complex earlier than conventional tests, enabling rapid diagnosis. In this study, metagenomic next-generation sequencing showed a sensitivity of 66.6 % and specificity of 100 %, higher than TB-DNA and Xpert (55.6 %). Concurrently, among mNGS-positive samples, 4 (44.4 %) were from peripheral blood and 3 (33.3 %) from bronchoalveolar lavage fluid. The combination of metagenomic Next-Generation sequencing and Xpert may enhance the capacity for detecting Mycobacterium tuberculosis complex in extrapulmonary specimens from post-transplant patients. The time from symptom onset to Next-Generation Sequencing positivity was 2-76 days, and from transplantation to TB diagnosis was 30-485 days. Despite some fatalities, the majority of patients completed extended anti-tuberculosis treatment and are under regular follow-up, highlighting the value of Next-Generation Sequencing in diagnosing tuberculosis in this high-risk population.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jingchao Fan
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaohan Zhang
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Shiyu Chen
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Elton L, Aydin A, Stoker N, Rofael S, Wildner LM, Abdul JBPAA, Tembo J, Hamid MA, Claujens Chastel MM, Canseco JO, Doyle R, Satta G, O’Grady J, Witney A, Ntoumi F, Zumla A, McHugh TD. A pragmatic pipeline for drug resistance and lineage identification in Mycobacterium tuberculosis using whole genome sequencing. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004099. [PMID: 39928651 PMCID: PMC11809915 DOI: 10.1371/journal.pgph.0004099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/03/2024] [Indexed: 02/12/2025]
Abstract
Delays in accurate diagnosis of drug resistant tuberculosis (DR-TB) can hinder treatment. Whole genome sequencing (WGS) provides more information than standard molecular and phenotypic testing, but commonly used platforms are expensive to implement, and data interpretation requires significant expertise. We aimed to optimise a TB WGS diagnostic pipeline balancing user-friendliness, cost-effectiveness and time to results, whilst ensuring accuracy. Growth conditions, DNA extraction protocols and Oxford Nanopore Technologies (ONT) library preparation kits were compared. ONT was compared with Illumina protocols. Software for basecalling and analysis were evaluated to find the most accurate resistance SNP and lineage predictor. Optimally, a spin-column CTAB DNA extraction method was combined with the RBK110.96 library preparation kit, high accuracy (HAC) basecalling and data analysis using TB-Profiler. Compared with Illumina, the pipeline was concordant for 16/17 (94%) isolates (lineage) and for 17/17 (100%) isolates (resistance SNPs). Our pipeline was 71% (12/17) concordant with phenotypic drug susceptibility test (DST) results. Time-to-diagnosis was around four weeks. This optimised TB sequencing pipeline requires less time and expertise to run and analyse than Illumina, takes less time than phenotypic DSTs and the results are comparable with Illumina. The cost per sample is comparable with other methods. These features make it an important tool for incorporating into routine DR-TB diagnostic pipelines and larger scale drug resistance surveillance in all settings.
Collapse
Affiliation(s)
- Linzy Elton
- Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Alp Aydin
- Oxford Nanopore Technologies plc. Quadram Institute, Rosalind Franklin Road, Norwich Research Park, Norwich, United Kingdom
| | - Neil Stoker
- Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Sylvia Rofael
- Centre for Clinical Microbiology, University College London, London, United Kingdom
- Faculty of Pharmacy, Alexandria University, Cairo, Egypt
| | | | | | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | | | - Mfoutou Mapanguy Claujens Chastel
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Université Marien Ngouabi, Brazzaville, Republic of Congo
| | | | - Ronan Doyle
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Giovanni Satta
- Centre for Clinical Microbiology, University College London, London, United Kingdom
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Justin O’Grady
- Oxford Nanopore Technologies plc. Quadram Institute, Rosalind Franklin Road, Norwich Research Park, Norwich, United Kingdom
| | - Adam Witney
- St George’s, University of London, London, United Kingdom
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, University College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Greif G, Coithino C, Bentancor M, Robello C. Mycobacterium tuberculosis evolution from monoresistance to pre-extensive drug resistance during a prolonged household outbreak. J Clin Tuberc Other Mycobact Dis 2024; 37:100482. [PMID: 39497756 PMCID: PMC11532306 DOI: 10.1016/j.jctube.2024.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Whole genome sequencing (WGS) is sensitive tool for the analysis of tuberculosis transmission and drug-resistance. We used WGS to analyze the Mycobacterium tuberculosis evolution from isoniazid monoresistance to MDR/preXDR during a prolonged household outbreak. The outbreak started with a isoniazid resistant strain (katG S315T mutation) and evolve in two cases to pre-XDR phenotype (with mutations in katG, rpoB, embB, pncA and gyrA genes). Based on WGS data and epidemiological interview we proposed a possible chain of transmission an evolution of the strains. Similar intra-patient and inter-patient acquisition of variability was observed, making difficult to distinguish reinfection or reactivation. Analysis of WGS data together with epidemiological clinical history are discussed in order to distinguish between prolonged infections or transition from latency to reactivation. Classical interview and clinical history taking should be consider to fully understanding WGS data. With a still low incidence of TB cases, Uruguay could use universal WGS of all isolates to reduce time of diagnosis, detect outbreaks and perform public actions to reduce TB incidence.
Collapse
Affiliation(s)
- G. Greif
- Laboratorio de Interacciones Hospedero-Patógeno/Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - C. Coithino
- Comisión Honoraria de Lucha Anti-Tuberculosis y Enfermedades Prevalentes. Departamento de Laboratorio, Montevideo, Uruguay
| | - M.N. Bentancor
- Comisión Honoraria de Lucha Anti-Tuberculosis y Enfermedades Prevalentes. Departamento de Laboratorio, Montevideo, Uruguay
| | - C. Robello
- Laboratorio de Interacciones Hospedero-Patógeno/Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Depto. de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Liu Y, Fang M, Yuan C, Yang Y, Yu L, Li Y, Hu L, Li J. Combining interferon-γ release assays and metagenomic next-generation sequencing for diagnosis of pulmonary tuberculosis: a retrospective study. BMC Infect Dis 2024; 24:1316. [PMID: 39558256 PMCID: PMC11575000 DOI: 10.1186/s12879-024-10206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Rapid diagnosis of pulmonary tuberculosis (PTB) is urgently needed. We aimed to improve diagnosis rates by combining tuberculosis-interferon (IFN)-γ release assays (TB-IGRA) with metagenomic next-generation sequencing (mNGS) for PTB diagnosis. METHODS A retrospective study of 29 PTB and 32 non-TB patients from our hospital was conducted between October 2022 and June 2023. Samples were processed for TB-IGRA and mNGS tests according to the manufacturer's protocol. RESULTS The levels of IFN-γ release in PTB patients were significantly higher than those in non-TB patients (604.15 ± 112.18 pg/mL, and 1.04 ± 0.38 pg/mL, respectively; p < 0.0001). Regarding presenting symptoms or signs, cough and thoracalgia were less common in PTB patients than in non-TB patients (p = 0.001 and p = 0.024, respectively). Total protein and albumin levels in the sera of PTB patients were significantly elevated compared to non-TB patients (p = 0.039 and p = 0.004, respectively). The area under the ROC curve (AUC) for TB-IGRA in PTB diagnosis was 0.939. With an optimal IFN-γ cut-off value of 14.3 pg/mL (Youden's index 0.831), sensitivity was 86.2% and specificity was 96.9%. ROC curve analysis for mNGS and TB-IGRA combined with mNGS showed AUCs of 0.879 and 1, respectively. The AUC of TB-IGRA combined with mNGS was higher than that of TB-IGRA and mNGS alone. CONCLUSIONS TB-IGRA combined with mNGS may be an effective method for diagnosing tuberculosis, and can be used in the clinical diagnosis of PTB.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China.
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China.
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Miaohong Fang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenxi Yuan
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Yang
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Yu
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yasheng Li
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lifen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China.
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China.
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Gao W, Wang W, Li J, Gao Y, Zhang S, Lei H, He L, Li T, He J. Drug-resistance characteristics, genetic diversity, and transmission dynamics of multidrug-resistant or rifampicin-resistant Mycobacterium tuberculosis from 2019 to 2021 in Sichuan, China. Antimicrob Resist Infect Control 2024; 13:125. [PMID: 39396971 PMCID: PMC11472436 DOI: 10.1186/s13756-024-01482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Multidrug- or rifampicin-resistant tuberculosis (TB; MDR/RR-TB) is a significant public health threat. However, the mechanisms involved in its transmission in Sichuan, China are unclear. To provide a scientific basis for MDR/RR-TB control and prevention, we investigated the drug-resistance characteristics, genetic diversity, and transmission dynamics and analyzed the demographic and clinical characteristics of patients to identify risk factors for the acquisition of MDR/RR-TB in Sichuan, Western China. METHODS Whole-genome sequencing was performed using a sample comprised of all MDR/RR-TB strains isolated from patients with pulmonary TB (≥ 15 years) at the 22 surveillance sites in Sichuan province between January 2019 and December 2021, to analyze genotypic drug resistance and genetic diversity. Moreover, we performed statistical analyses of the epidemiological characteristics and risk factors associated with the transmission dynamics of MDR/RR-TB. RESULTS The final analysis included 278 MDR/RR TB strains. Lineage 2.2, the major sub-lineage, accounted for 82.01% (228/278) of isolates, followed by lineage 4.5 (9.72%, 27/278), lineage 4.4 (6.83%, 19/278), and lineage 4.2 (1.44%, 4/278). The drug resistance rates, ranging from high to low, were as follows: isoniazid (229 [82.37%]), streptomycin (177 [63.67%]), ethambutol (144 [51.80%]), pyrazinamide (PZA, 119 [42.81%]), fluoroquinolones (FQs, 93 [33.45%]). Further, the clofazimine, bedaquiline, and delamanid resistance rates were 2.88, 2.88, and 1.04%, respectively. The gene composition cluster rate was 32.37% (90/278). In addition, 83.81% (233/278) of MDR/RR-TB cases were determined to be likely caused by transmission. Finally, patients infected with lineage two strains and strains with the KatG S315T amino acid substitution presented a higher risk of MDR/RR-TB transmission. CONCLUSION Transmission plays a significant role in the MDR/RR-TB burden in Sichuan province, and lineage 2 strains and strains harboring KatG S315T have a high probability of transmission. Further, high levels of FQ and PZA drug resistance suggest an urgent need for drug susceptibility testing prior to designing therapeutic regimens. New anti-TB drugs need to be used standardly and TB strains should be regularly monitored for resistance to these drugs.
Collapse
Affiliation(s)
- Wenfeng Gao
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Weina Wang
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Jing Li
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Yuan Gao
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Shu Zhang
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Hui Lei
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Lu He
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Ting Li
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Jinge He
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Zhang C, Wu Z, Huang X, Zhao Y, Sun Q, Chen Y, Guo H, Liao Q, Wu H, Chen X, Liang A, Dong W, Yu M, Chen Y, Wei W. A Profile of Drug-Resistant Mutations in Mycobacterium tuberculosis Isolates from Guangdong Province, China. Indian J Microbiol 2024; 64:1044-1056. [PMID: 39282200 PMCID: PMC11399372 DOI: 10.1007/s12088-024-01236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 09/18/2024] Open
Abstract
Guangdong Province, China's largest economy, has a high incidence of tuberculosis (TB). At present, there are few reports on the distribution, transmission and drug resistance of Mycobacterium tuberculosis (Mtb) strains in this region. In this study, we performed minimum inhibitory concentration testing for 14 anti-TB drugs and whole-genome sequencing of 713 clinical Mtb isolates from 20,662 sputum culture-positive tuberculosis patients registered at 31 tuberculosis drug resistance surveillance sites covering 20 cities in Guangdong Province from 2016 to 2018. Moreover, we evaluated genome-wide associations between mutations and drug resistance, and further investigated the differences in the MICs of mutations. The epidemiology, drug-resistant phenotypes and whole genome sequencing data of 713 clinical Mtb isolates were analyzed, revealing the lineage distribution and drug-resistant gene profiles in Guangdong Province. WGS combined with quantitative MIC measurements identified several novel loci associated with resistance, of which 16 loci were found to be related to resistance to more than one drug. This study analyzed the lineage distribution, prevalence characteristics and resistance-corresponding gene profiles of Mtb isolates in Guangdong province, and provided a theoretical basis for the formulation of tuberculosis prevention and control policy in the province. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01236-3.
Collapse
Affiliation(s)
- Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Zhuhua Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Xinchun Huang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Yuchuan Zhao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Qi Sun
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
- Present Address: Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmei Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Huixin Guo
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Qinghua Liao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Huizhong Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Xunxun Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Anqi Liang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Wenya Dong
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443 China
| | - Meiling Yu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Yuhui Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
- College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
8
|
Dziri S, Marin J, Quagliaro P, Genestet C, Dumitrescu O, Carbonnelle E, Billard-Pomares T. Optimization of Mycobacterium tuberculosis DNA processing prior to whole genome sequencing. Tuberculosis (Edinb) 2024; 148:102543. [PMID: 39008943 DOI: 10.1016/j.tube.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The process of whole genome sequencing of the Mycobacterium tuberculosis complex is dependent on complete the inactivation of the strain and subsequent DNA extraction. The objective of this study was to optimise the two steps. Firstly, the efficacy of Triton X-100 as a solvent for the inactivation step was evaluated. This solvent has been demonstrated to be effective in killing bacteria and is less toxic than the previously employed chloroform. For the extraction step, two lysis methods were evaluated: enzymatic (B1 protocol) and mechanical (B2 protocol). For whole genome sequencing, the Nextera XT DNA library preparation protocol was performed for both the B1 and B2 protocols. Subsequently, each library was subjected to whole-genome sequencing. The results demonstrated that heat lysis inactivation with Triton was effective, with no bacteria remaining viable following this treatment. The enzymatic and mechanical extraction protocols yielded comparable results in terms of DNA quantity and quality. The sequencing results showed that there was no significant difference in read depths between the two protocols. In conclusion, for MTBC strains, we recommend the use of our Triton inactivation method, which meets biosafety expectations.
Collapse
Affiliation(s)
- Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie Clinique, F-93009, Bobigny, France.
| | - Julie Marin
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000, Bobigny, France
| | - Pauline Quagliaro
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie Clinique, F-93009, Bobigny, France
| | - Charlotte Genestet
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - CNRS UMR5308, 69007, Lyon, France; Institut des Agents Infectieux, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 69004, Lyon, France
| | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - CNRS UMR5308, 69007, Lyon, France; Institut des Agents Infectieux, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 69004, Lyon, France
| | - Etienne Carbonnelle
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie Clinique, F-93009, Bobigny, France; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000, Bobigny, France
| | - Typhaine Billard-Pomares
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie Clinique, F-93009, Bobigny, France; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000, Bobigny, France
| |
Collapse
|
9
|
Che Y, Lu Y, Zhu Y, He T, Li X, Gao J, Gao J, Wang X, Liu Z, Tong F. Surveillance of fluoroquinolones resistance in rifampicin-susceptible tuberculosis in eastern China with whole-genome sequencing-based approach. Front Microbiol 2024; 15:1413618. [PMID: 39050625 PMCID: PMC11266052 DOI: 10.3389/fmicb.2024.1413618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Background Leveraging well-established DNA-level drug resistance mechanisms, whole-genome sequencing (WGS) has emerged as a valuable methodology for predicting drug resistance. As the most effective second-line anti-tuberculosis (anti-TB) drugs, fluoroquinoloness (FQs) are generally used to treat multidrug-resistant tuberculosis (MDR-TB, defined as being resistant to resistant to rifampicin and isoniazid) or rifampicin-resistant tuberculosis (RR-TB). However, FQs are also commonly used in the management of other bacterial infections. There are few published data on the rates of FQs resistance among rifampicin-susceptible TB. The prevalence of FQs resistance among TB patients who are rifampicin-susceptible has not been studied in Zhejiang Province, China. The goal of this study was to provide a baseline characterization of the prevalence of FQs resistance, particularly among rifampicin-susceptible TB in Zhejiang Province, China. Methods Based on WGS, we have investigated the prevalence of FQs resistance among rifampicin-susceptible TB in Zhejiang Province. All pulmonary TB patients with positive cultures who were identified in Zhejiang area during TB drug resistance surveillance from 2018 to 2019 have enrolled in this population-based retrospective study. Results The rate of FQs resistance was 4.6% (32/698) among TB, 4.0% (27/676) among rifampicin-susceptible TB, and 22.7% (5/22) among RR-TB. According to WGS, strains that differ within 12 single-nucleotide polymorphisms (SNPs) were considered to be transmission of FQ-resistant strains. Specifically, 3.7% (1/27) of FQs resistance was caused by the transmission of FQs-resistant strains among the rifampicin-susceptible TB and 40.7% (11/27) of FQs resistance was identified as hetero-resistance. Conclusion The prevalence of FQs resistance among TB patients who were rifampicin-susceptible was severe in Zhejiang. The emergence of FQs resistance in TB isolates that are rifampicin-susceptible was mainly caused by the selection of drug-resistant strains. In order to prevent the emergence of FQs resistance, the WGS-based surveillance system for TB should be urgently established, and clinical awareness of the responsible use of FQs for respiratory infections should be enhanced.
Collapse
Affiliation(s)
- Yang Che
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Yewei Lu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yelei Zhu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tianfeng He
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Junli Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Junshun Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xiaomeng Wang
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhengwei Liu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Tong
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| |
Collapse
|
10
|
Vasanthaiah S, Verma R, Kumar A, Bandari AK, George J, Rastogi M, Manjunath GK, Sharma J, Kumar A, Subramani J, Chawla K, Pandey A. Culture-Free Whole Genome Sequencing of Mycobacterium tuberculosis Using Ligand-Mediated Bead Enrichment Method. Open Forum Infect Dis 2024; 11:ofae320. [PMID: 38957687 PMCID: PMC11218775 DOI: 10.1093/ofid/ofae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Direct whole genome sequencing (WGS) of Mycobacterium tuberculosis (Mtb) can be used as a tool to study drug resistance, mixed infections, and within-host diversity. However, WGS is challenging to obtain from clinical samples due to low number of bacilli against a high background. Methods We prospectively collected 34 samples (sputum, n = 17; bronchoalveolar lavage, n = 13; and pus, n = 4) from patients with active tuberculosis (TB). Prior to DNA extraction, we used a ligand-mediated magnetic bead method to enrich Mtb from clinical samples and performed WGS on Illumina platform. Results Mtb was definitively identified based on WGS from 88.2% (30/34) of the samples, of which 35.3% (12/34) were smear negative. The overall median genome coverage was 15.2% (interquartile range [IQR], 7.7%-28.2%). There was a positive correlation between load of bacilli on smears and genome coverage (P < .001). We detected 58 genes listed in the World Health Organization mutation catalogue in each positive sample (median coverage, 85% [IQR, 61%-94%]), enabling the identification of mutations missed by routine diagnostics. Mutations causing resistance to rifampicin, isoniazid, streptomycin, and ethambutol were detected in 5 of 34 (14.7%) samples, including the rpoB S441A mutation that confers resistance to rifampicin, which is not covered by Xpert MTB/RIF. Conclusions We demonstrate the feasibility of magnetic bead-based enrichment for culture-free WGS of Mtb from clinical specimens, including smear-negative samples. This approach can also be integrated with low-cost sequencing workflows such as targeted sequencing for rapid detection of Mtb and drug resistance.
Collapse
Affiliation(s)
- Shruthi Vasanthaiah
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Renu Verma
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Ajay Kumar
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aravind K Bandari
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - John George
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mona Rastogi
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Jyoti Sharma
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | | | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Deshpande A, Likhar R, Khan T, Omri A. Decoding drug resistance in Mycobacterium tuberculosis complex: genetic insights and future challenges. Expert Rev Anti Infect Ther 2024; 22:511-527. [PMID: 39219506 DOI: 10.1080/14787210.2024.2400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/02/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Tuberculosis (TB), particularly its drug-resistant forms (MDR-TB and XDR-TB), continues to pose a significant global health challenge. Despite advances in treatment and diagnosis, the evolving nature of drug resistance in Mycobacterium tuberculosis (MTB) complicates TB eradication efforts. This review delves into the complexities of anti-TB drug resistance, its mechanisms, and implications on healthcare strategies globally. AREAS COVERED We explore the genetic underpinnings of resistance to both first-line and second-line anti-TB drugs, highlighting the role of mutations in key genes. The discussion extends to advanced diagnostic techniques, such as Whole-Genome Sequencing (WGS), CRISPR-based diagnostics and their impact on identifying and managing drug-resistant TB. Additionally, we discuss artificial intelligence applications, current treatment strategies, challenges in managing MDR-TB and XDR-TB, and the global disparities in TB treatment and control, translating to different therapeutic outcomes and have the potential to revolutionize our understanding and management of drug-resistant tuberculosis. EXPERT OPINION The current landscape of anti-TB drug resistance demands an integrated approach combining advanced diagnostics, novel therapeutic strategies, and global collaborative efforts. Future research should focus on understanding polygenic resistance and developing personalized medicine approaches. Policymakers must prioritize equitable access to diagnosis and treatment, enhancing TB control strategies, and support ongoing research and augmented government funding to address this critical public health issue effectively.
Collapse
Affiliation(s)
- Amey Deshpande
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Rupali Likhar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, LSHGCT's Gahlot Institute of Pharmacy, Navi Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
12
|
Park M, Satta G, Haldar P. Heteroresistance in tuberculosis: are we missing drug-resistant bacteria hiding in plain sight? Thorax 2024; 79:599-600. [PMID: 38604663 DOI: 10.1136/thorax-2024-221409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Mirae Park
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Giovanni Satta
- University College London Centre for Clinical Microbiology, London, UK
| | - Pranabashis Haldar
- Department of Respiratory Sciences, NIHR Respiratory BRC, Glenfield Hospital, University of Leicester, Leicester, UK
| |
Collapse
|
13
|
Yan X, Yang G, Wang Y, Wang Y, Cheng J, Xu P, Qiu X, Su L, Liu L, Geng R, You Y, Liu H, Chu N, Ma L, Nie W. Nanopore sequencing for smear-negative pulmonary tuberculosis-a multicentre prospective study in China. Ann Clin Microbiol Antimicrob 2024; 23:51. [PMID: 38877520 PMCID: PMC11179381 DOI: 10.1186/s12941-024-00714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE In this prospective study, the diagnosis accuracy of nanopore sequencing-based Mycobacterium tuberculosis (MTB) detection was determined through examining bronchoalveolar lavage fluid (BALF) samples from pulmonary tuberculosis (PTB) -suspected patients. Compared the diagnostic performance of nanopore sequencing, mycobacterial growth indicator tube (MGIT) culture and Xpert MTB/rifampin resistance (MTB/RIF) assays. METHODS Specimens collected from suspected PTB cases across China from September 2021 to April 2022 were tested then assay diagnostic accuracy rates were compared. RESULTS Among the 111 suspected PTB cases that were ultimately diagnosed as PTB, the diagnostic rate of nanopore sequencing was statistically significant different from other assays (P < 0.05). Fleiss' kappa values of 0.219 and 0.303 indicated fair consistency levels between MTB detection results obtained using nanopore sequencing versus other assays, respectively. Respective PTB diagnostic sensitivity rates of MGIT culture, Xpert MTB/RIF and nanopore sequencing of 36.11%, 40.28% and 83.33% indicated superior sensitivity of nanopore sequencing. Analysis of area under the curve (AUC), Youden's index and accuracy values and the negative predictive value (NPV) indicated superior MTB detection performance for nanopore sequencing (with Xpert MTB/RIF ranking second), while the PTB diagnostic accuracy rate of nanopore sequencing exceeded corresponding rates of the other methods. CONCLUSIONS In comparison with MGIT culture and Xpert MTB/RIF assays, BALF's nanopore sequencing provided superior MTB detection sensitivity and thus is suitable for testing of sputum-scarce suspected PTB cases. However, negative results obtained using these assays should be confirmed based on additional evidence before ruling out a PTB diagnosis.
Collapse
Affiliation(s)
- Xiaojing Yan
- Medical Quality Control Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China
| | - Guoli Yang
- Tuberculosis Department, Tuberculosis Hospital of Jilin Province (Jilin Provincial Infectious Disease Hospital), Changchun, 130500, PR China
| | - Yunfei Wang
- Department of Medicine, Hangzhou Shengting Medical Technolog, Ltd, Zhejiang, Hangzhou, 310000, PR China
| | - Yuqing Wang
- The Fourth People's Hospital of Qinghai Province, Xining, 510650, PR China
| | - Jie Cheng
- Tuberculosis Department, Anhui Provincial Chest Hospital, Hefei, 230022, PR China
| | - Peisong Xu
- Department of Medicine, Hangzhou Shengting Medical Technolog, Ltd, Zhejiang, Hangzhou, 310000, PR China
| | - Xiaoli Qiu
- Department of Medicine, Hangzhou Shengting Medical Technolog, Ltd, Zhejiang, Hangzhou, 310000, PR China
| | - Lei Su
- Tuberculosis Department, Henan Province Anyang City Tuberculosis Prevention and Control Institute, Henan Province, Anyang City, 455000, PR China
| | - Lina Liu
- Tuberculosis Department, Hengshui Third People's Hospital, Hengshui City, Henan Province, 053099, PR China
| | - Ruixue Geng
- Tuberculosis Department, Hohhot Second Hospital, Hohhot City, Inner Mongolia Autonomous Region, 010020, PR China
| | - Yingxia You
- Tuberculosis Department, Zhengzhou Sixth People's Hospital, Zhengzhou City, Henan Province, 450015, PR China
| | - Hui Liu
- Medical Quality Control Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China
| | - Naihui Chu
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China.
| | - Li Ma
- Department of medical oncology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China.
| | - Wenjuan Nie
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China.
| |
Collapse
|
14
|
Zhao J, Qian C, Jiang Y, He W, Wu W. Drug-Resistant Characteristics, Genetic Diversity, and Transmission Dynamics of Multidrug-Resistant Mycobacterium tuberculosis in Jiangxi, China. Infect Drug Resist 2024; 17:2213-2223. [PMID: 38840971 PMCID: PMC11152055 DOI: 10.2147/idr.s460267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose In this study, we aimed to determine the transmission pattern of multidrug-resistant tuberculosis (MDR-TB) isolates circulating in Jiangxi Province with whole-genome sequencing (WGS). In addition, we also sought to describe mutational resistome of MDR-TB isolates. Patients and Methods A total of 115 MDR-TB isolates determined by the phenotypic proportion method of drug susceptibility testing between January 2018 and December 2022 from provincial drug surveillance (DRS) in Jiangxi were included in our analysis. The demographic data and treatment history were extracted from the National TB Registry System. WGS was used to analyze the genotypic characteristics of drug resistance and transmissions. Results About 62.6% of MDR-TB strains were isolated from cases that received previous anti-tuberculosis treatment. According to the WGS results, 96.5% were genotypic MDR-TB, and more than half of MDR-TB isolates tested were also resistant to streptomycin (59.1%), ethambutol (56.5%), and fluroquinolones (53.0%), while resistance to cycloserine and linezolid was lowest, only in two (1.7%) and one (0.9%) isolate, respectively. Ser450Leu in rpoB (57.9%), Ser315Thr in katG (74.1%), Met306Val in embB (40.0%), Lys43Arg in rpsL (75.0%), Ala90Val in gyrA (32.8%) were predominant mutant types among the rifampin-, isoniazid-, ethambutol-, streptomycin-, fluoroquinolones-resistant isolates, respectively. Lineage 2 (East Asian genotype) occurred at the highest frequency with 97 cases (84.3%), followed by lineage 4 (Euro-American genotype) with 18 cases (15.7%). Additionally, 5 clusters consisting of 10 isolates were identified in the present study, demonstrating a clustering rate of 8.7%. Conclusion MDR/Rifampicin-Resistant (RR)-TB epidemic in this region is driven by lineage 2 clade that also show higher resistance to other anti-tuberculosis drugs. Lower cluster rates compared with a relatively higher proportion of new MDR-TB cases indicate that a considerable number of MDR-TB cases remain undiagnosed.
Collapse
Affiliation(s)
- Jingnan Zhao
- Tuberculosis Control Department, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, 330029, People’s Republic of China
| | - Chengyu Qian
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Youqiao Jiang
- Tuberculosis Control Department, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, 330029, People’s Republic of China
- Young Scientific Research and Innovation Team, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, 330029, People’s Republic of China
| | - Wangrui He
- Tuberculosis Control Department, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, 330029, People’s Republic of China
| | - Wenhua Wu
- Tuberculosis Control Department, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, 330029, People’s Republic of China
| |
Collapse
|
15
|
Quan Z, Li M, Chen Y, Liang J, Takiff H, Gao Q. Performance evaluation of core genome multilocus sequence typing for genotyping of Mycobacterium tuberculosis strains in China: based on multicenter, population-based collection. Eur J Clin Microbiol Infect Dis 2024; 43:297-304. [PMID: 38041721 DOI: 10.1007/s10096-023-04720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE To evaluate the performance of core genome multilocus sequence typing (cgMLST) for genotyping Mycobacterium tuberculosis (M.tuberculosis) Strains in regions where the lineage 2 strains predominate. METHODS We compared clustering by whole-genome SNP typing with cgMLST clustering in the analysis of WGS data of 6240 strains from five regions of China. Using both the receiver operating characteristic (ROC) curve and epidemiological investigation to determine the optimal threshold for defining genomic clustering by cgMLST. The performance of cgMLST was evaluated by quantifying the sensitivity, specificity and concordance of clustering between two methods. Logistic regression was used to gauge the impact of strain genetic diversity and lineage on cgMLST clustering. RESULTS The optimal threshold for cgMLST to define genomic clustering was determined to be ≤ 10 allelic differences between strains. The overall sensitivity and specificity of cgMLST averaged 99.6% and 96.3%, respectively; the concordance of clustering between two methods averaged 97.1%. Concordance was significantly correlated with strain genetic diversity and was 3.99 times (95% CI, 2.94-5.42) higher in regions with high genetic diversity (π > 1.55 × 10-4) compared to regions with low genetic diversity. The difference missed statistical significance, while concordance for lineage 2 strains (96.8%) was less than that for lineage 4 strains (98.3%). CONCLUSION : cgMLST showed a discriminatory power comparable to whole-genome SNP typing and could be used to genotype clinical M.tuberculosis strains in different regions of China. The discriminative power of cgMLST was significantly correlated with strain genetic diversity and was slightly lower with strains from regions with low genetic diversity.
Collapse
Affiliation(s)
- Zhuo Quan
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Meng Li
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Yiwang Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Jialei Liang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Howard Takiff
- Laboratorio de Genética Molecular, CMBC, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela
| | - Qian Gao
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China.
| |
Collapse
|
16
|
Yu M, Zhang C, Xu L, Peng K, Qiu H, Zhuo W, Zhao Y, Wu Z, Chen X, Chen Y, Liao Q, Huang Y, Wei W. Comparison of the MeltPro TB assay and whole-genome sequencing assay for rapid molecular diagnosis of drug resistant tuberculosis in guangdong province. Diagn Microbiol Infect Dis 2024; 108:116128. [PMID: 38007912 DOI: 10.1016/j.diagmicrobio.2023.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Rifampicin (RIF) and multidrug-resistant tuberculosis (TB) are major public health threats. As conventional phenotypic drug susceptibility testing requires two-eight weeks, molecular diagnostic assays are widely used to determine drug resistance. METHODS Clinical Mycobacterium tuberculosis isolates with consistent drug susceptibility results, tested using microbroth dilution and proportion methods in Löwenstein-Jensen medium from patients with TB in Guangdong province were utilized to evaluate MeltPro TB and whole-genome sequencing (WGS) assays in detecting resistance to RIF, isoniazid (INH), ethambutol (EMB), fluoroquinolones (FQ), and streptomycin (SM). Solid phenotypic drug susceptibility testing was used as the gold standard to evaluate the detection capacity of MeltPro TB on clinical sputum samples of patients with TB. RESULTS Similar to WGS, MeltPro TB successfully detected RIF, INH, and SM resistance with sensitivities of 86.3, 84.8, and 86.6 %, respectively. However, the resistant isolate detection rates were only 58.1 and 69.6 % for EMB and FQ-resistant strains. For clinical specimens, MeltPro TB still showed good detectable rates of RIF and INH resistance, with sensitivities of 82.4 % and 95.2 %, respectively. Detectable rates of FQ and EMB resistance were low: 77.8 % and 35.3 %, respectively. CONCLUSIONS MeltPro TB can detect known DNA mutations associated with drug resistance in Mycobacterium tuberculosis strains with comparable efficacy to WGS. For FQ and EMB resistance testing, MeltPro TB requires optimization and is unsuitable for general use. MeltPro TB can be used for diagnosis of RIF and multidrug-resistant tuberculosis to rapidly initiate appropriate anti-TB drug therapy.
Collapse
Affiliation(s)
- Meiling Yu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Liuyue Xu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Kehao Peng
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Haoqing Qiu
- Public Health Medical Center of Puning, Puning 515300, China
| | - Wenji Zhuo
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Yuchuan Zhao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Zhuhua Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Xunxun Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Yanmei Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Qinghua Liao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Yinna Huang
- Public Health Medical Center of Puning, Puning 515300, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China.
| |
Collapse
|
17
|
Chen S, Wang C, Zou Y, Zong Z, Xue Y, Jia J, Dong L, Zhao L, Chen L, Liu L, Chen W, Huang H. Tuberculosis-targeted next-generation sequencing and machine learning: An ultrasensitive diagnostic strategy for paucibacillary pulmonary tuberculosis and tuberculous meningitis. Clin Chim Acta 2024; 553:117697. [PMID: 38145644 DOI: 10.1016/j.cca.2023.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Existing diagnostic approaches for paucibacillary tuberculosis (TB) are limited by the low sensitivity of testing methods and difficulty in obtaining suitable samples. METHODS An ultrasensitive TB diagnostic strategy was established, integrating efficient and specific TB targeted next-generation sequencing and machine learning models, and validated in clinical cohorts to test plasma cfDNA, cerebrospinal fluid (CSF) DNA collected from tuberculous meningitis (TBM) and pediatric pulmonary TB (PPTB) patients. RESULTS In the detection of 227 samples, application of the specific thresholds of CSF DNA (AUC = 0.974) and plasma cfDNA (AUC = 0.908) yielded sensitivity of 97.01 % and the specificity of 95.65 % in CSF samples and sensitivity of 82.61 % and specificity of 86.36 % in plasma samples, respectively. In the analysis of 44 paired samples from TBM patients, our strategy had a high concordance of 90.91 % (40/44) in plasma cfDNA and CSF DNA with both sensitivity of 95.45 % (42/44). In the PPTB patient, the sensitivity of the TB diagnostic strategy yielded higher sensitivity on plasma specimen than Xpert assay on gastric lavage (28.57 % VS. 15.38 %). CONCLUSIONS Our TB diagnostic strategy provides greater detection sensitivity for paucibacillary TB, while plasma cfDNA as an easily collected specimen, could be an appropriate sample type for PTB and TBM diagnosis.
Collapse
Affiliation(s)
- Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Congli Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijun Zou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojing Zong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563001, China
| | - Yi Xue
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Junnan Jia
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Liping Zhao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lu Chen
- Beijing Macroµ-test Bio-Tech Co., Ltd., Beijing 101300, China
| | - Licheng Liu
- Beijing Macroµ-test Bio-Tech Co., Ltd., Beijing 101300, China
| | - Weijun Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
18
|
Agonafir M, Belay G, Maningi NE, Feleke A, Reta MA, Olifant SL, Hassen MS, Girma T, Fourie PB. Genetic diversity of Mycobacterium tuberculosis isolates from the central, eastern and southeastern Ethiopia. Heliyon 2023; 9:e22898. [PMID: 38125463 PMCID: PMC10731068 DOI: 10.1016/j.heliyon.2023.e22898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The population structure of Mycobacterium tuberculosis complex (MTBC) in Ethiopia is diverse but dominated by Euro-American (Lineage 4) and East-African-Indian (Lineage 3) lineages. The objective of this study was to describe the genetic diversity of MTBC isolates in Central, Eastern and Southeastern Ethiopia. Methods A total of 223 MTBC culture isolates obtained from patients referred to Adama and Harar TB reference laboratories were spoligotyped. Demographic and clinical characteristics were collected. Results Six major lineages: Euro-American (Lineage 4), East-African-Indian (Lineage 3), East Asian (Lineage 2), Indo-Oceanic (Lineage 1), Mycobacterium africanum (Lineage 5 and Lineage 6) and Ethiopian (Lineage 7) were identified. The majority (94.6 %) of the isolates were Euro-American and East-African-Indian, with proportions of 75.3 % and 19.3 %, respectively. Overall, 77 different spoligotype patterns were identified of which 42 were registered in the SITVIT2 database. Of these, 27 spoligotypes were unique, while 15 were clustered with 2-49 isolates. SIT149/T3_ETH (n = 49), SIT53/T1 (n = 33), SIT21/CAS1_Kili (n = 24) and SIT41/Turkey (n = 11) were the dominant spoligotypes. A rare Beijing spoligotype pattern, SIT541, has also been identified in Eastern Ethiopia. The overall clustering rate of sub-lineages with known SIT was 71.3 %. Age group (25-34) was significantly associated with clustering. Conclusion We found a heterogeneous population structure of MTBC dominated by T and CAS families, and the Euro-American lineage. The identification of the Beijing strain, particularly the rare SIT541 spoligotype in Eastern Ethiopia, warrants a heightened surveillance plan, as little is known about this genotype. A large-scale investigation utilizing a tool with superior discriminatory power, such as whole genome sequencing, is necessary to gain a thorough understanding of the genetic diversity of MTBC in the nation, which would help direct the overall control efforts.
Collapse
Affiliation(s)
- Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Nontuthuko E. Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adey Feleke
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Sharon L. Olifant
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Tewodros Girma
- Harar Health Research and Regional Laboratory, Harar, Ethiopia
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Ge H, Liang X, Lu Q, He A, Zhong P, Liu J, Yu Y, Song H. Case report: Intraabdominal infection of Mycobacterium syngnathidarum in an immunocompetent patient confirmed by whole-genome sequencing. Front Med (Lausanne) 2023; 10:1265594. [PMID: 37869158 PMCID: PMC10588666 DOI: 10.3389/fmed.2023.1265594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Background The taxonomic group of non-tuberculous mycobacteria (NTM) encompasses more than 190 species and subspecies, some of which can cause pulmonary and extrapulmonary diseases across various age groups in humans. However, different subspecies exhibit differential drug sensitivities, and traditional detection techniques struggle to accurately classify NTM. Therefore, clinicians need more effective detection methods to identify NTM subtypes, thus providing personalized medication for patients. Case presentation We present the case of a 47-year-old female patient diagnosed with an intraabdominal infection caused by Mycobacterium syngnathidarum. Despite computed tomography of the chest suggesting potential tuberculosis, tuberculosis infection was ruled out due to negative TB-DNA results for ascites fluid and sputum and limited improvement of lung lesions after treatment. Additionally, acid-fast staining and Lowenstein-Jensen culture results revealed the presence of mycobacterium in ascites fluid. Subsequent whole-genome sequencing (WGS) confirmed the DNA sequences of Mycobacterium syngnathidarum in colonies isolated from the ascites fluid, which was further corroborated by polymerase chain reaction and Sanger sequencing. Ultimately, the patient achieved a complete recovery following the treatment regimen targeting Mycobacterium syngnathidarum, which involved clarithromycin, ethambutol hydrochloride, pyrazinamide, rifampicin, and isoniazid. Conclusion This is the first reported case of Mycobacterium syngnathidarum infection in humans. Mycobacterium syngnathidarum was detected by WGS in this case, suggesting that WGS may serve as a high-resolution assay for the diagnosis of different subtypes of mycobacterium infection.
Collapse
Affiliation(s)
- Hu Ge
- Changsha KingMed Center for Clinical Laboratory, Changsha, Hunan, China
| | - Xiongwei Liang
- Changsha KingMed Center for Clinical Laboratory, Changsha, Hunan, China
| | - Qiuran Lu
- Changsha KingMed Center for Clinical Laboratory, Changsha, Hunan, China
| | - Aixiang He
- Rucheng County People's Hospital, Rucheng, Hunan, China
| | - Peiwen Zhong
- Guangzhou KingCreate Biotechnology Company Limited, Guangzhou, Guangdong, China
| | - Jun Liu
- Guangzhou KingCreate Biotechnology Company Limited, Guangzhou, Guangdong, China
| | - Yan Yu
- Changsha KingMed Center for Clinical Laboratory, Changsha, Hunan, China
| | - Honglian Song
- Rucheng County People's Hospital, Rucheng, Hunan, China
| |
Collapse
|
20
|
Ottewill C, Dolan L, Bailén EL, Roycroft E, Fitzgibbon M, Donohue EO, McLaughlin AM, McGrath G, Keane J. Immunosuppressed Pets as a Conduit for Zoonotic Tuberculosis. Am J Respir Crit Care Med 2023; 208:732-733. [PMID: 37490607 DOI: 10.1164/rccm.202304-0734le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Ciara Ottewill
- Department of Respiratory Medicine, National Tuberculosis Centre, and
| | - Lorraine Dolan
- Department of Respiratory Medicine, National Tuberculosis Centre, and
| | - Esther López Bailén
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Langford Vets, Small Animal Referral Hospital, University of Bristol, Langford, United Kingdom; and
| | - Emma Roycroft
- Irish Mycobacteria Reference Laboratory, St. James Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Margaret Fitzgibbon
- Irish Mycobacteria Reference Laboratory, St. James Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Emer O Donohue
- Department of Public Health, Health Service Executive, Limerick, Ireland
| | | | - Guy McGrath
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Joseph Keane
- Department of Respiratory Medicine, National Tuberculosis Centre, and
- Department of Medicine and
| |
Collapse
|
21
|
He CJ, Wan JL, Luo SF, Guo RJ, Paerhati P, Cheng X, Duan CH, Xu AM. Comparative Study on Tuberculosis Drug Resistance and Molecular Detection Methods Among Different Mycobacterium Tuberculosis Lineages. Infect Drug Resist 2023; 16:5941-5951. [PMID: 37700800 PMCID: PMC10494918 DOI: 10.2147/idr.s423390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose This study aims to compare drug resistance and detection efficacy across different Mycobacterium tuberculosis lineages, offering insights for precise treatment and molecular diagnosis. Methods 161 strains of Mycobacterium tuberculosis (M.tb) were tested for drug resistance using Phenotypic Drug Susceptibility Testing (pDST), High-Resolution Melting analysis (HRM), and Whole Genome Sequencing (WGS) methods. The main focus was on evaluating the accuracy of different methods for detecting resistance to rifampicin (RIF), isoniazid (INH), and streptomycin (SM). Results Among the 161 strains of M.tb, 83.85% (135/161) were fully sensitive to RIF, INH, and SM according to pDST, and the rate of multidrug resistance was 4.35% (7/161). The drug resistance rates of lineage 2 M.tb to the three drugs (26/219, 11.87%) were significantly higher than those of non-lineage 2 M.tb (12/264, 4.45%) (P<0.05). Compared with pDST, WGS had a sensitivity of 100%, 94.12%, and 92.31% and a specificity of 100%, 99.31%, and 98.65% for RIF, INH, and SM, respectively, with no significant difference. The sensitivity of HRM for RIF, INH, and SM was 87.50%, 52.94%, and 76.92%, respectively, while the specificity was 96.08%, 99.31%, and 99.32%, respectively. The sensitivity of HRM for detecting INH resistance was significantly lower than that of pDST (P=0.039). Compared with HRM, WGS increased the sensitivity of RIF, INH, and SM by 12.50%, 41.18%, and 15.38%, respectively. Conclusion There are significant differences in drug resistance rates among different lineages of M.tb, with lineage 2 having higher rates of RIF, INH, and SM resistance than lineages 3 and 4. The sensitivity of HRM is far lower than that of pDST, and currently, the accuracy of HRM is not sufficient to replace pDST. WGS has no significant difference in detecting drug resistance compared with pDST but can identify new anti-tuberculosis drug-resistant mutations, providing effective guidance for clinical decision-making.
Collapse
Affiliation(s)
- Chuan-Jiang He
- Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Laboratory Medicine, The First People’s Hospital of Kashgar, Kashgar, 844000, People’s Republic of China
| | - Jiang-Li Wan
- Department of Laboratory Medicine, The First People’s Hospital of Kashgar, Kashgar, 844000, People’s Republic of China
| | - Sheng-Fang Luo
- Department of Laboratory Medicine, The First People’s Hospital of Kashgar, Kashgar, 844000, People’s Republic of China
| | - Rui-Jie Guo
- Department of Laboratory Medicine, The First People’s Hospital of Kashgar, Kashgar, 844000, People’s Republic of China
| | - Pawuziye Paerhati
- Department of Laboratory Medicine, The First People’s Hospital of Kashgar, Kashgar, 844000, People’s Republic of China
| | - Xiang Cheng
- Department of Laboratory Medicine, The First People’s Hospital of Kashgar, Kashgar, 844000, People’s Republic of China
| | - Chao-Hui Duan
- Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Ai-Min Xu
- Department of Laboratory Medicine, The First People’s Hospital of Kashgar, Kashgar, 844000, People’s Republic of China
| |
Collapse
|
22
|
Shea J, Halse TA, Modestil H, Kearns C, Fowler RC, Da Costa-Carter CA, Siemetzki-Kapoor U, Leisner M, Lapierre P, Kohlerschmidt D, Rowlinson MC, Escuyer V, Musser KA. Mycobacterium tuberculosis complex whole-genome sequencing in New York State: Implementation of a reduced phenotypic drug susceptibility testing algorithm. Tuberculosis (Edinb) 2023; 142:102380. [PMID: 37543009 DOI: 10.1016/j.tube.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Whole-genome sequencing (WGS) can predict drug resistance and antimicrobial susceptibility in Mycobacterium tuberculosis complex (MTBC) and has shown promise in partially replacing culture-based phenotypic drug susceptibility testing (pDST). We performed a two-year side by side study comparing the prediction of drug resistance and antimicrobial susceptibility by WGS molecular DST (mDST) to pDST to determine resistance at the critical concentration by Mycobacterial Growth Indicator Tube (MGIT) and agar proportion testing. Negative predictive values of WGS results were consistently high for the first-line drugs: rifampin (99.9%), isoniazid (99.0%), pyrazinamide (98.5%), and ethambutol (99.8%); the rates of resistance to these drugs, among strains in our population, are 2.9%, 10.4%, 46.3%, and 2.3%, respectively. WGS results were available an average 8 days earlier than first-line MGIT pDST. Based on these findings, we implemented a new testing algorithm with an updated WGS workflow in which strains predicted pan-susceptible were no longer tested by pDST. This algorithm was applied to 1177 isolates between October 2018 and September 2020, eliminating pDST for 66.6% of samples and reducing pDST for an additional 22.0%. This algorithm change resulted in faster turnaround times and decreased cost while maintaining comprehensive antimicrobial susceptibility profiles of all culture-positive MTBC cases in New York.
Collapse
Affiliation(s)
- Joseph Shea
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - Tanya A Halse
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - Herns Modestil
- New York City Bureau of Tuberculosis Control, New York City, NY, USA.
| | - Cheryl Kearns
- New York State Department of Health, Albany, NY, USA.
| | - Randal C Fowler
- Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York City, NY, USA.
| | - Cherry-Ann Da Costa-Carter
- Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York City, NY, USA.
| | - Ulrike Siemetzki-Kapoor
- Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York City, NY, USA.
| | - Melissa Leisner
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | | | | | - Vincent Escuyer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | | |
Collapse
|
23
|
Winkler KR, Mizrahi V, Warner DF, De Wet TJ. High-throughput functional genomics: A (myco)bacterial perspective. Mol Microbiol 2023; 120:141-158. [PMID: 37278255 PMCID: PMC10953053 DOI: 10.1111/mmi.15103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Advances in sequencing technologies have enabled unprecedented insights into bacterial genome composition and dynamics. However, the disconnect between the rapid acquisition of genomic data and the (much slower) confirmation of inferred genetic function threatens to widen unless techniques for fast, high-throughput functional validation can be applied at scale. This applies equally to Mycobacterium tuberculosis, the leading infectious cause of death globally and a pathogen whose genome, despite being among the first to be sequenced two decades ago, still contains many genes of unknown function. Here, we summarize the evolution of bacterial high-throughput functional genomics, focusing primarily on transposon (Tn)-based mutagenesis and the construction of arrayed mutant libraries in diverse bacterial systems. We also consider the contributions of CRISPR interference as a transformative technique for probing bacterial gene function at scale. Throughout, we situate our analysis within the context of functional genomics of mycobacteria, focusing specifically on the potential to yield insights into M. tuberculosis pathogenicity and vulnerabilities for new drug and regimen development. Finally, we offer suggestions for future approaches that might be usefully applied in elucidating the complex cellular biology of this major human pathogen.
Collapse
Affiliation(s)
- Kristy R. Winkler
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
| | - Timothy J. De Wet
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
- Department of Integrative Biomedical SciencesUniversity of Cape TownRondeboschSouth Africa
| |
Collapse
|
24
|
Cao B, Mijiti X, Deng LL, Wang Q, Yu JJ, Anwaierjiang A, Qian C, Li M, Fang DA, Jiang Y, Zhao LL, Zhao X, Wan K, Liu H, Li G, Yuan X. Genetic Characterization Conferred Co-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Isolates from Southern Xinjiang, China. Infect Drug Resist 2023; 16:3117-3135. [PMID: 37228658 PMCID: PMC10204763 DOI: 10.2147/idr.s407525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Background Ethionamide (ETH), a structural analogue of isoniazid (INH), is used for treating multidrug-resistant tuberculosis (MDR-TB). Due to the common target InhA, INH and ETH showed cross-resistance in M. tuberculosis. This study aimed to explore the INH and ETH resistant profiles and genetic mutations conferring independent INH- or ETH-resistance and INH-ETH cross-resistance in M. tuberculosis circulating in south of Xinjiang, China. Methods From Sep 2017 to Dec 2018, 312 isolates were included using drug susceptibility testing (DST), spoligotyping, and whole genome sequencing (WGS) to analyze the resistance characteristics for INH and/or ETH. Results Among the 312 isolates, 185 (58.3%) and 127 (40.7%) belonged to the Beijing family and non-Beijing family, respectively; 90 (28.9%) were INH-resistant (INHR) with mutation rates of 74.4% in katG, 13.3% in inhA and its promoter, 11.1% in ahpC and its upstream region, 2.2% in ndh, 0.0% in mshA, whilst 34 (10.9%) were ETH-resistant (ETHR) with mutation rates of 38.2% in ethA, 26.2% in inhA and its promoter, and 5.9% in ndh, 0.0% in ethR or mshA; and 25 (8.0%) were INH-ETH co-resistant (INHRETHR) with mutation rates of 40.0% in inhA and its promoter, and 8% in ndh. katG mutants tended to display high-level resistant to INH; and more inhA and its promoter mutants showed low-level of INH and ETH resistance. The optimal gene combinations by WGS for the prediction of INHR, ETHR, and INHRETHR were, respectively, katG+inhA and its promoter (sensitivity: 81.11%, specificity: 90.54%), ethA+inhA and its promoter+ndh (sensitivity: 61.76%, specificity: 76.62%), and inhA and its promoter+ndh (sensitivity: 48.00%, specificity: 97.65%). Conclusion This study revealed the high diversity of genetic mutations conferring INH and/or ETH resistance among M. tuberculosis isolates, which would facilitate the study on INHR and/or ETHR mechanisms and provide clues for choosing ETH for MDR treatment and molecular DST methods in south of Xinjiang, China.
Collapse
Affiliation(s)
- Bin Cao
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, People’s Republic of China
| | - Le-Le Deng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, People’s Republic of China
| | - Jin-Jie Yu
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | | | - Chengyu Qian
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Dan-Ang Fang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Li-Li Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiuqin Yuan
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
| |
Collapse
|
25
|
Laamarti M, El Fathi Lalaoui Y, Elfermi R, Daoud R, El Allali A. Afro-TB dataset as a large scale genomic data of Mycobacterium tuberuclosis in Africa. Sci Data 2023; 10:212. [PMID: 37059737 PMCID: PMC10102689 DOI: 10.1038/s41597-023-02112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is a pathogenic bacterium accountable for 10.6 million new infections with tuberculosis (TB) in 2021. The fact that the genetic sequences of M. tuberculosis vary widely provides a basis for understanding how this bacterium causes disease, how the immune system responds to it, how it has evolved over time, and how it is distributed geographically. However, despite extensive research efforts, the evolution and transmission of MTB in Africa remain poorly understood. In this study, we used 17,641 strains from 26 countries to create the first curated African Mycobacterium tuberculosis (MTB) classification and resistance dataset, containing 13,753 strains. We identified 157 mutations in 12 genes associated with resistance and additional new mutations potentially associated with resistance. The resistance profile was used to classify strains. We also performed a phylogenetic classification of each isolate and prepared the data in a format that can be used for phylogenetic and comparative analysis of tuberculosis worldwide. These genomic data will extend current information for comparative genomic studies to understand the mechanisms and evolution of MTB drug resistance.
Collapse
Affiliation(s)
- Meriem Laamarti
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| | | | - Rachid Elfermi
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| |
Collapse
|
26
|
Liu Z, Yang Y, Wang Q, Wang L, Nie W, Chu N. Diagnostic value of a nanopore sequencing assay of bronchoalveolar lavage fluid in pulmonary tuberculosis. BMC Pulm Med 2023; 23:77. [PMID: 36890507 PMCID: PMC9996878 DOI: 10.1186/s12890-023-02337-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND To determine the diagnostic accuracy of a nanopore sequencing assay of PCR products from a M. tuberculosis complex-specific region for testing of bronchoalveolar lavage fluid (BALF) samples or sputum samples from suspected pulmonary tuberculosis (PTB) patients and compare the results to results obtained for MGIT and Xpert assays. METHODS Cases with suspected PTB (n = 55) were diagnosed from January 2019 to December 2021 based on results of nanopore sequencing, MGIT culture, and Xpert MTB/RIF testing of BALF and sputum samples collected during hospitalization. Diagnostic accuracies of assays were compared. RESULTS Ultimately, data from 29 PTB patients and 26 non-PTB cases were analyzed. PTB diagnostic sensitivities of MGIT, Xpert MTB/RIF, and nanopore sequencing assays were 48.28%, 41.38%, and 75.86%, respectively, thus demonstrating that nanopore sequencing provided greater sensitivity than was provided by MGIT culture and Xpert assays (P < 0.05). PTB diagnostic specificities of the respective assays were 65.38%, 100%, and 80.77%, which corresponded with kappa coefficient (κ) values of 0.14, 0.40, and 0.56, respectively. These results indicate that nanopore sequencing provided superior overall performance as compared to Xpert and MGIT culture assays and provided significantly greater PTB diagnostic accuracy than Xpert and sensitivity comparable to that of the MGIT culture assay. CONCLUSION Our findings suggest that improved detection of PTB in suspected cases was achieved using nanopore sequencing-based testing of BALF or sputum samples than was achieved using Xpert and MGIT culture-based assays, and nanopore sequencing results alone cannot be used to rule out PTB.
Collapse
Affiliation(s)
- Zhifeng Liu
- Beijing Emercency Mecial Center, Beijing, 100031, People's Republic of China
| | - Yang Yang
- Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Qingfeng Wang
- Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Lei Wang
- Tuberculosis Department, Dezhou Second People's Hospital, Textile Street, Canal Economic Development Zone, Dezhou, 253007, People's Republic of China
| | - Wenjuan Nie
- Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| | - Naihui Chu
- Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|
27
|
He YG, Huang YH, Yi XL, Qian KL, Wang Y, Cheng H, Hu J, Liu Y. Soft tissue tuberculosis detected by next-generation sequencing: A case report and review of literature. World J Clin Cases 2023; 11:709-718. [PMID: 36793633 PMCID: PMC9923867 DOI: 10.12998/wjcc.v11.i3.709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Soft tissue tuberculosis is rare and insidious, with most patients presenting with a localized enlarged mass or swelling, which may be factors associated with delayed diagnosis and treatment. In recent years, next-generation sequencing has rapidly evolved and has been successfully applied to numerous areas of basic and clinical research. A literature search revealed that the use of next-generation sequencing in the diagnosis of soft tissue tuberculosis has been rarely reported.
CASE SUMMARY A 44-year-old man presented with recurrent swelling and ulcers on the left thigh. Magnetic resonance imaging suggested a soft tissue abscess. The lesion was surgically removed and tissue biopsy and culture were performed; however, no organism growth was detected. Finally, Mycobacterium tuberculosis was confirmed as the pathogen responsible for infection through next-generation sequencing analysis of the surgical specimen. The patient received a standardized anti-tuberculosis treatment and showed clinical improvement. We also performed a literature review on soft tissue tuberculosis using studies published in the past 10 years.
CONCLUSION This case highlights the importance of next-generation sequencing for the early diagnosis of soft tissue tuberculosis, which can provide guidance for clinical treatment and improve prognosis.
Collapse
Affiliation(s)
- Yan-Gai He
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ya-Hui Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Lan Yi
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Kao-Liang Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ying Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hui Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yuan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
28
|
Drug Resistance of Mycobacterium tuberculosis Based on Whole-Genome Sequencing in the Yi Ethnic Group, Sichuan Province, China. J Immunol Res 2023; 2023:4431209. [PMID: 36726492 PMCID: PMC9886460 DOI: 10.1155/2023/4431209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 01/25/2023] Open
Abstract
This study investigated drug-resistant tuberculosis (DR-TB) in the Yi ethnic group. The study was designed to identify risk factors for DR-TB and its relationship with HIV/AIDS. To establish the resistance to antituberculosis drugs, whole-genome sequencing (WGS) was performed using culture-positive Mycobacterium tuberculosis samples collected from people of the Yi ethnic group from March 2019 to March 2021. Baseline characteristics were obtained from China's tuberculosis surveillance system. A total of 116 M. tuberculosis strains were included in the final analysis. Lineage 2.2 (75.86%) was the dominant sublineage, followed by lineage 4.5 (18.97%) and lineage 4.4 (5.17%). The rates of rifampicin-resistant (RR-TB), multidrug-resistant (MDR-TB), and preextensively drug-resistant TB (pre-XDR-TB) were 18.97%, 10.34%, and 6.03%, respectively. Drug-resistant strains were not found in the elderly (age ≥ 65 years). The proportions of RR/MDR-TB and pre-XDR-TB cases among re-treatment patients were higher than those among new patients (χ 2 = 12.155, P = 0.003; χ 2 = 22.495, P = 0.001, respectively). The pre-XDR-TB case proportions were higher among female patients than among males and higher among referred patients (χ 2 = 5.456, P = 0.032; χ 2 = 15.134, P = 0.002, respectively). The rates of RR/MDR-TB and pre-XDR-TB did not differ appreciably among groups with different HIV infection statuses nor lineage populations. DR-TB poses a serious challenge to the Yi ethnic group. Re-treatment patients, women, and referred patients were at high risk of MDR/RR-TB or pre-XDR-TB while HIV and lineage 2 had negligible association with drug resistance. Whole-genome sequencing should be used to guide the design of treatment regimens and to tailor public interventions.
Collapse
|
29
|
Dookie N, Ngema SL, Perumal R, Naicker N, Padayatchi N, Naidoo K. The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clin Microbiol Rev 2022; 35:e0018019. [PMID: 36200885 PMCID: PMC9769521 DOI: 10.1128/cmr.00180-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing incidence of drug-resistant forms of the disease, gaps in detection and prevention, models of care, and limited treatment options. The DR-TB treatment landscape has evolved over the last 10 years. Recent developments include the remarkable activity demonstrated by the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free regimens and the approval of the 6-month short regimens for rifampin-resistant TB and MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill burden and shorten the DR-TB treatment duration. While there have been apparent successes in the field, some challenges remain. These include the ongoing inclusion of high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the inclusion of ethambutol and pyrazinamide in the standard short regimen despite known high levels of background resistance to both drugs. Furthermore, antimicrobial heteroresistance, extensive cavitary disease and intracavitary gradients, the emergence of bedaquiline resistance, and the lack of biomarkers to monitor DR-TB treatment response remain serious challenges to the sustained successes. In this review, we outline the impact of the new drugs and regimens on patient treatment outcomes, explore evidence underpinning current practices on regimen selection and duration, reflect on the disappointments and pitfalls in the field, and highlight key areas that require continued efforts toward improving treatment approaches and rapid biomarkers for monitoring treatment response.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile L. Ngema
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
30
|
Solanki P, Lipman M, McHugh TD, Satta G. Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria. Front Microbiol 2022; 13:1044515. [PMID: 36523832 PMCID: PMC9745125 DOI: 10.3389/fmicb.2022.1044515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
Collapse
Affiliation(s)
- Priya Solanki
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Marc Lipman
- UCL-TB and UCL Respiratory, University College London, London, United Kingdom
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Timothy D. McHugh
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Giovanni Satta
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
31
|
Ntoumi F, Petersen E, Mwaba P, Aklillu E, Mfinanga S, Yeboah-Manu D, Maeurer M, Zumla A. Blue Skies research is essential for ending the Tuberculosis pandemic and advancing a personalized medicine approach for holistic management of Respiratory Tract infections. Int J Infect Dis 2022; 124 Suppl 1:S69-S74. [PMID: 35301102 PMCID: PMC8920086 DOI: 10.1016/j.ijid.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Investments into 'Blue Skies' fundamental TB research in low- and middle-income countries (LMICs) have not been forthcoming. We highlight why blue skies research will be essential for achieving global TB control and eradicating TB. METHODS We review the historical background to early TB discovery research and give examples of where investments into basic science and fundamental 'blue skies research' are delivering novel data and approaches to advance diagnosis, management and holistic care for patients with active and latent TB infection. FINDINGS The COVID-19 pandemic has shown that making available adequate funding for priority investments into 'Blue skies research' to delineate scientific understanding of a new infectious diseases threat to global health security can lead to rapid development and rollout of new diagnostic platforms, treatments, and vaccines. Several advances in new TB diagnostics, new treatments and vaccine development are underpinned by basic science research. CONCLUSIONS Blue Skies research is required to pave the way for a personalized medicine approach for management of TB and other Respiratory Tract Infections and preventing long-term functional disability. Transfer of skills and resources by wealthier nations is required to empower researchers in LMICs countries to engage in and lead Blue Skies research.
Collapse
Affiliation(s)
- Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo; Institute for Tropical Medicine, University of Tübingen, Germany.
| | - Eskild Petersen
- European Society for Clinical Microbiology and Infectious Diseases, Emerging Infections Task Force, ESCMID, Basel, Switzerland; Institute for Clinical Medicine, Aarhus University, Denmark; European Travel Medicine Network, Méditerranée Infection Foundation, Marseille, France.
| | - Peter Mwaba
- Lusaka Apex Medical University, Faculty of Medicine: Zambia National Public Health Institute; UNZA-UCLMS Research and Training Project, Lusaka, Zambia.
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, Stockholm, Sweden.
| | - Sayoki Mfinanga
- Muhimbili Medical Research Centre National Institute for Medical Research, Dar es Salaam, Tanzania.
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal; Medizinische Klinik, Johannes Gutenberg University Mainz, Germany.
| | - Alimuddin Zumla
- Division of Infection and Immunity, Center for Clinical Microbiology, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
32
|
Dale K, Globan M, Horan K, Sherry N, Ballard S, Tay EL, Bittmann S, Meagher N, Price DJ, Howden BP, Williamson DA, Denholm J. Whole genome sequencing for tuberculosis in Victoria, Australia: A genomic implementation study from 2017 to 2020. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 28:100556. [PMID: 36034164 PMCID: PMC9405109 DOI: 10.1016/j.lanwpc.2022.100556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background Whole genome sequencing (WGS) is increasingly used by tuberculosis (TB) programs to monitor Mycobacterium tuberculosis (Mtb) transmission. We aimed to characterise the molecular epidemiology of TB and Mtb transmission in the low-incidence setting of Victoria, Australia, and assess the utility of WGS. Methods WGS was performed on all first Mtb isolates from TB cases from 2017 to 2020. Potential clusters (≤12 single nucleotide polymorphisms [SNPs]) were investigated for epidemiological links. Transmission events in highly-related (≤5 SNPs) clusters were classified as likely or possible, based on the presence or absence of an epidemiological link, respectively. Case characteristics and transmission settings (as defined by case relationship) were summarised. Poisson regression was used to examine associations with secondary case number. Findings Of 1844 TB cases, 1276 (69.2%) had sequenced isolates, with 182 (14.2%) in 54 highly-related clusters, 2-40 cases in size. Following investigation, 140 cases (11.0% of sequenced) were classified as resulting from likely/possible local-transmission, including 82 (6.4%) for which transmission was likely. Common identified transmission settings were social/religious (26.4%), household (22.9%) and family living in different households (7.1%), but many were uncertain (41.4%). While household transmission featured in many clusters (n = 24), clusters were generally smaller (median = 3 cases) than the fewer that included transmission in social/religious settings (n = 12, median = 7.5 cases). Sputum-smear-positivity was associated with higher secondary case numbers. Interpretation WGS results suggest Mtb transmission commonly occurs outside the household in our low-incidence setting. Further work is required to optimise the use of WGS in public health management of TB. Funding The Victorian Tuberculosis Program receives block funding for activities including case management and contact tracing from the Victorian Department of Health. No specific funding for this report was received by manuscript authors or the Victorian Tuberculosis Program, and the funders had no role in the study design, data collection, data analysis, interpretation or report writing.
Collapse
Affiliation(s)
- Katie Dale
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Norelle Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ee Laine Tay
- Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Public Health Division, Department of Health, Victoria, Australia
| | - Simone Bittmann
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Niamh Meagher
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David J. Price
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Justin Denholm
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Leung KSS, Tam KKG, Ng TTL, Lao HY, Shek RCM, Ma OCK, Yu SH, Chen JX, Han Q, Siu GKH, Yam WC. Clinical utility of target amplicon sequencing test for rapid diagnosis of drug-resistant Mycobacterium tuberculosis from respiratory specimens. Front Microbiol 2022; 13:974428. [PMID: 36160212 PMCID: PMC9505518 DOI: 10.3389/fmicb.2022.974428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
An in-house-developed target amplicon sequencing by next-generation sequencing technology (TB-NGS) enables simultaneous detection of resistance-related mutations in Mycobacterium tuberculosis (MTB) against 8 anti-tuberculosis drug classes. In this multi-center study, we investigated the clinical utility of incorporating TB-NGS for rapid drug-resistant MTB detection in high endemic regions in southeast China. From January 2018 to November 2019, 4,047 respiratory specimens were available from patients suffering lower respiratory tract infections in Hong Kong and Guangzhou, among which 501 were TB-positive as detected by in-house IS6110-qPCR assay with diagnostic sensitivity and specificity of 97.9 and 99.2%, respectively. Preliminary resistance screening by GenoType MTBDRplus and MTBDRsl identified 25 drug-resistant specimens including 10 multidrug-resistant TB. TB-NGS was performed using MiSeq on all drug-resistant specimens alongside 67 pan-susceptible specimens, and demonstrated 100% concordance to phenotypic drug susceptibility test. All phenotypically resistant specimens with dominating resistance-related mutations exhibited a mutation frequency of over 60%. Three quasispecies were identified with mutation frequency of less than 35% among phenotypically susceptible specimens. They were well distinguished from phenotypically resistant cases and thus would not complicate TB-NGS results interpretations. This is the first large-scale study that explored the use of laboratory-developed NGS platforms for rapid TB diagnosis. By incorporating TB-NGS with our proposed diagnostic algorithm, the workflow would provide a user-friendly, cost-effective routine diagnostic solution for complicated TB cases with an average turnaround time of 6 working days. This is critical for timely management of drug resistant TB patients and expediting public health control on the emergence of drug-resistant TB.
Collapse
Affiliation(s)
- Kenneth Siu-Sing Leung
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kingsley King-Gee Tam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hiu-Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Raymond Chiu-Man Shek
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Shi-Hui Yu
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou, China
| | | | - Qi Han
- Guangzhou KingMed Diagnostics Group, Guangzhou, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Wing-Cheong Yam,
| |
Collapse
|
34
|
Hadifar S, Kargarpour Kamakoli M, Eybpoosh S, Nakhaeizadeh M, Kargarpour Kamakoli MA, Ebrahimifard N, Fateh A, Siadat SD, Vaziri F. The shortcut of mycobacterial interspersed repetitive unit-variable number tandem repeat typing for Mycobacterium tuberculosis differentiation. Front Microbiol 2022; 13:978355. [PMID: 36160200 PMCID: PMC9493315 DOI: 10.3389/fmicb.2022.978355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The 24-loci mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) genotyping has been used as an international standard method for Mycobacterium tuberculosis (Mtb) genotyping. However, different optimized VNTR loci sets for improving the discrimination of specific Mtb genotypes have been proposed. In this regard, we investigated the efficacy of accumulation of the percentage differences (APDs) compared with the least absolute shrinkage and selection operator (LASSO) regression strategy to identify a customized genotype-specific VNTR loci set which provides a resolution comparable to 24-loci MIRU-VNTR in divergent Mtb populations. We utilized Spoligotyping and 24-loci MIRU-VNTR typing for genotyping 306 Mtb isolates. The APD and LASSO regression approaches were used to identify a customized VNTR set in our studied isolates. Besides, the Hunter-Gaston discriminatory index (HGDI), sensitivity, and specificity of each selected loci set were calculated based on both strategies. The selected loci based on LASSO regression compared with APD-based loci showed a better discriminatory power for identifying all studied genotypes except for T genotype, which APD-based loci showed promising discriminative power. Our findings suggested the LASSO regression rather than the APD approach is more effective in the determination of possible discriminative VNTR loci set to precise discrimination of our studied Mtb population and may be beneficial to be used in finding reduced number loci sets in other Mtb genotypes or sublineages. Moreover, we proposed customized genotype-specific MIRU-VNTR loci sets based on the LASSO regression and APD approaches for precise Mtb strains identification. As the proposed VNTR sets offered a comparable discriminatory power to the standard 24 MIRU-VNTR loci set could be promising alternatives to the standard genotyping for using in resource-limited settings.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansour Kargarpour Kamakoli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehran Nakhaeizadeh
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Nasim Ebrahimifard
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
35
|
Che Y, Lin Y, Yang T, Chen T, Sang G, Chen Q, He T. Evaluation of whole-genome sequence to predict drug resistance of nine anti- tuberculosis drugs and characterize resistance genes in clinical rifampicin-resistant Mycobacterium tuberculosis isolates from Ningbo, China. Front Public Health 2022; 10:956171. [PMID: 36062095 PMCID: PMC9433565 DOI: 10.3389/fpubh.2022.956171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 01/24/2023] Open
Abstract
Setting Controlling drug-resistant tuberculosis in Ningbo, China. Objective Whole-genome sequencing (WGS) has not been employed to comprehensively study Mycobacterium tuberculosis isolates, especially rifampicin-resistant tuberculosis, in Ningbo, China. Here, we aim to characterize genes involved in drug resistance in RR-TB and create a prognostic tool for successfully predicting drug resistance in patients with TB. Design Drug resistance was predicted by WGS in a "TB-Profiler" web service after phenotypic drug susceptibility tests (DSTs) against nine anti-TB drugs among 59 clinical isolates. A comparison of consistency, sensitivity, specificity, and positive and negative predictive values between WGS and DST were carried out for each drug. Results The sensitivities and specificities for WGS were 95.92 and 90% for isoniazid (INH), 100 and 64.1% for ethambutol (EMB), 97.37 and 100% for streptomycin (SM), 75 and 100% for amikacin (AM), 80 and 96.3%for capreomycin (CAP), 100 and 97.22% for levofloxacin (LFX), 93.33 and 90.91% for prothionamide (PTO), and 70 and 97.96% for para-aminosalicylic acid (PAS). Around 53 (89.83%) and 6 (10.17%) of the isolates belonged to lineage two (East-Asian) and lineage four (Euro-American), respectively. Conclusion Whole-genome sequencing is a reliable method for predicting resistance to INH, RIF, EMB, SM, AM, CAP, LFX, PTO, and PAS with high consistency, sensitivity, and specificity. There was no transmission that occurred among the patients with RR-TB in Ningbo, China.
Collapse
Affiliation(s)
- Yang Che
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Yi Lin
- Center for Health Economics, Faculty of Humanities and Social Sciences, University of Nottingham, Ningbo, China
| | - Tianchi Yang
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Tong Chen
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Guoxin Sang
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Qin Chen
- Department of Disease Prevention and Health Promotion, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China,*Correspondence: Qin Chen
| | - Tianfeng He
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China,Tianfeng He
| |
Collapse
|
36
|
Posada-Reyes AB, Balderas-Martínez YI, Ávila-Ríos S, Vinuesa P, Fonseca-Coronado S. An Epistatic Network Describes oppA and glgB as Relevant Genes for Mycobacterium tuberculosis. Front Mol Biosci 2022; 9:856212. [PMID: 35712352 PMCID: PMC9194097 DOI: 10.3389/fmolb.2022.856212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis is an acid-fast bacterium that causes tuberculosis worldwide. The role of epistatic interactions among different loci of the M. tuberculosis genome under selective pressure may be crucial for understanding the disease and the molecular basis of antibiotic resistance acquisition. Here, we analyzed polymorphic loci interactions by applying a model-free method for epistasis detection, SpydrPick, on a pan–genome-wide alignment created from a set of 254 complete reference genomes. By means of the analysis of an epistatic network created with the detected epistatic interactions, we found that glgB (α-1,4-glucan branching enzyme) and oppA (oligopeptide-binding protein) are putative targets of co-selection in M. tuberculosis as they were associated in the network with M. tuberculosis genes related to virulence, pathogenesis, transport system modulators of the immune response, and antibiotic resistance. In addition, our work unveiled potential pharmacological applications for genotypic antibiotic resistance inherent to the mutations of glgB and oppA as they epistatically interact with fprA and embC, two genes recently included as antibiotic-resistant genes in the catalog of the World Health Organization. Our findings showed that this approach allows the identification of relevant epistatic interactions that may lead to a better understanding of M. tuberculosis by deciphering the complex interactions of molecules involved in its metabolism, virulence, and pathogenesis and that may be applied to different bacterial populations.
Collapse
Affiliation(s)
- Ali-Berenice Posada-Reyes
- Posgrado en Ciencias Biológicas, UNAM, Mexico, Mexico
- Facultad de Estudios Superiores Cuautitlán, UNAM, Estado de Mexico, Mexico
- *Correspondence: Ali-Berenice Posada-Reyes, ; Salvador Fonseca-Coronado,
| | | | - Santiago Ávila-Ríos
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Ciudad de Mexico, Mexico
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, UNAM, Cuernavaca, Mexico
| | - Salvador Fonseca-Coronado
- Facultad de Estudios Superiores Cuautitlán, UNAM, Estado de Mexico, Mexico
- *Correspondence: Ali-Berenice Posada-Reyes, ; Salvador Fonseca-Coronado,
| |
Collapse
|
37
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
38
|
Evaluating the clinical impact of routine whole genome sequencing in tuberculosis treatment decisions and the issue of isoniazid mono-resistance. BMC Infect Dis 2022; 22:349. [PMID: 35392842 PMCID: PMC8991524 DOI: 10.1186/s12879-022-07329-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background The UK has implemented routine use of whole genome sequencing (WGS) in TB diagnostics. The WHO recommends addition of a fluoroquinolone for isoniazid mono-resistance, so early detection may be of use. The aim of this study was to describe the clinical utility and impact of WGS on treatment decisions for TB in a low incidence high resource clinical setting. The clinical turnaround time (TAT) for WGS was analysed in comparison to TB PCR using Xpert MTB/RIF (Cepheid, Sunnyvale, CA) results where available and subsequent phenotypic drug susceptibility testing (DST) when required. Methods This was a retrospective analysis of TB cases from January 2018 to March 2019 in London. Susceptibility and TAT by WGS, phenotypic DST, TB PCR using Xpert MTB/RIF were correlated to drug changes in order to describe the utility of WGS on treatment decisions on isoniazid mono-resistance in a low incidence high resource setting. Results 189 TB cases were identified; median age 44 years (IQR 28–60), m:f ratio 112:77, 7 with HIV and 6 with previous TB. 80/189 cases had a positive culture and WGS result. 50/80 were fully sensitive to 1st line treatment on WGS, and the rest required additional DST. 20/80 cases required drug changes; 12 were defined by WGS: 8 cases had isoniazid mono-resistance, 2 had MDR-TB, 1 had isoniazid and pyrazinamide resistance and 1 had ethambutol resistance. The median TAT for positive culture was 16 days (IQR 12.5–20.5); for WGS was 35 days (IQR 29.5–38.75) and for subsequent DST was 86 days (IQR 69.5–96.75), resulting in non-WHO regimens for a median of 50.5 days (IQR 28.0–65.0). 9/12 has TB PCRs (Xpert MTB/RIF), with a median TAT of 1 day. Conclusion WGS clearly has a substantial role in our routine UK clinical settings with faster turnaround times in comparison to phenotypic DST. However, the majority of treatment changes defined by WGS were related to isoniazid resistance and given the 1 month TAT for WGS, it would be preferable to identify isoniazid resistance more quickly. Therefore if resources allow, diagnostic pathways should be optimised by parallel use of WGS and new molecular tests to rapidly identify isoniazid resistance in addition to rifampicin resistance and to minimise delays in starting WHO isoniazid resistance treatment.
Collapse
|
39
|
Dookie N, Khan A, Padayatchi N, Naidoo K. Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Front Microbiol 2022; 13:775030. [PMID: 35401475 PMCID: PMC8988194 DOI: 10.3389/fmicb.2022.775030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
The World Health Organization’s End TB Strategy prioritizes universal access to an early diagnosis and comprehensive drug susceptibility testing (DST) for all individuals with tuberculosis (TB) as a key component of integrated, patient-centered TB care. Next generation whole genome sequencing (WGS) and its associated technology has demonstrated exceptional potential for reliable and comprehensive resistance prediction for Mycobacterium tuberculosis isolates, allowing for accurate clinical decisions. This review presents a descriptive analysis of research describing the potential of WGS to accelerate delivery of individualized care, recent advances in sputum-based WGS technology and the role of targeted sequencing for resistance detection. We provide an update on recent research describing the mechanisms of resistance to new and repurposed drugs and the dynamics of mixed infections and its potential implication on TB diagnosis and treatment. Whilst the studies reviewed here have greatly improved our understanding of recent advances in this arena, it highlights significant challenges that remain. The wide-spread introduction of new drugs in the absence of standardized DST has led to rapid emergence of drug resistance. This review highlights apparent gaps in our knowledge of the mechanisms contributing to resistance for these new drugs and challenges that limit the clinical utility of next generation sequencing techniques. It is recommended that a combination of genotypic and phenotypic techniques is warranted to monitor treatment response, curb emerging resistance and further dissemination of drug resistance.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Navisha Dookie,
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
40
|
Wang S, Zhao C, Yin Y, Chen F, Chen H, Wang H. A Practical Approach for Predicting Antimicrobial Phenotype Resistance in Staphylococcus aureus Through Machine Learning Analysis of Genome Data. Front Microbiol 2022; 13:841289. [PMID: 35308374 PMCID: PMC8924536 DOI: 10.3389/fmicb.2022.841289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 11/28/2022] Open
Abstract
With the reduction in sequencing price and acceleration of sequencing speed, it is particularly important to directly link the genotype and phenotype of bacteria. Here, we firstly predicted the minimum inhibitory concentrations of ten antimicrobial agents for Staphylococcus aureus using 466 isolates by directly extracting k-mer from whole genome sequencing data combined with three machine learning algorithms: random forest, support vector machine, and XGBoost. Considering one two-fold dilution, the essential agreement and the category agreement could reach >85% and >90% for most antimicrobial agents. For clindamycin, cefoxitin and trimethoprim-sulfamethoxazole, the essential agreement and the category agreement could reach >91% and >93%, providing important information for clinical treatment. The successful prediction of cefoxitin resistance showed that the model could identify methicillin-resistant S. aureus. The results suggest that small datasets available in large hospitals could bypass the existing basic research and known antimicrobial resistance genes and accurately predict the bacterial phenotype.
Collapse
Affiliation(s)
- Shuyi Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Fengning Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
41
|
Drug-Resistant Characteristics, Genetic Diversity, and Transmission Dynamics of Rifampicin-Resistant Mycobacterium tuberculosis in Hunan, China, Revealed by Whole-Genome Sequencing. Microbiol Spectr 2022; 10:e0154321. [PMID: 35171016 PMCID: PMC8849054 DOI: 10.1128/spectrum.01543-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To gain a deep insight into the additional drug-resistant profiles, genetic diversity, and transmission dynamics of rifampicin-resistant tuberculosis (RR-TB) circulating in Hunan province, drug susceptibility testing and whole-genome-sequencing were performed among RR-TB strains collected from Jan. 2013 to Jun. 2018 in Hunan province. A total of 124 RR-TB strains were recovered successfully and included into the final analysis. Lineage 2.2.1 was the dominant sublineage, accounting for 72.6% (90/124), followed by lineage 4.5 (11.3%, 14/124), lineage 4.4 (8.1%, 10/124), lineage 4.2 (6.5%, 8/124) and lineage 2.2.2 (1.6%, 2/124). Overall, 83.1% (103/124) and 3.2% (4/124) of RR-TB were MDR-TB and XDR-TB, respectively. Nearly 30% of RR-TB isolates were resistant to fluoroquinolones, and 26.6% (33/124) were pre-XDR-TB. Moreover, 30.6% (38/124) of RR-TB strains were identified as phenotypically resistance to pyrazinamide. Totally, 17 clusters containing 48 (38.7%, 48/124) RR-TB strains were identified, ranging in size from 2 to 10 isolates. No significant difference was detected in clustering rate between lineage 2 and lineage 4 (χ2 = 0.027, P = 0.870). Our study revealed the complexity of RR-TB strains circulating in Hunan province with complex additional drug-resistant profile and relatively higher clustering rates. Comprehensive information based on WGS should be used to guide the design of treatment regimens and tailor public interventions. IMPORTANCE Comprehensive information such as genetic background and drug-resistant profile of MTB strains could help to tailor public interventions. However, these data are limited in Hunan province, one of the provinces with high-TB burden in China. So, this study aimed to provide us with deep insight into the molecular epidemiology of RR-TB isolates circulating in Hunan province by combining phenotypic drug susceptibility testing and whole-genome sequencing. To our knowledge, this is the first study to use whole-genome sequencing data of RR-TB strains spanning more than 5 years for molecular epidemiology analysis in Hunan province, which allows us to identify genetic background information and clustered strains more accurately. Our study revealed the complexity of RR-TB strains circulating in Hunan province with complex additional drug-resistant profile and relatively higher clustering rates. Comprehensive information based on WGS should be used to guide the design of treatment regimens and tailor public interventions.
Collapse
|
42
|
Xing F, Lo SKF, Ma Y, Ip JD, Chan WM, Zhou M, Gong M, Lau SKP, Woo PCY. Rapid Diagnosis of Mycobacterium marinum Infection by Next-Generation Sequencing: A Case Report. Front Med (Lausanne) 2022; 9:824122. [PMID: 35187006 PMCID: PMC8854760 DOI: 10.3389/fmed.2022.824122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
We present the first report of histology- and culture-proven Mycobacterium marinum infection diagnosed by next-generation sequencing (NGS). It took <2 days to make a microbiological diagnosis using the Oxford Nanopore Technologies' MinION device, compared to 20 days for the mycobacterium to be isolated from the tissue biopsy. NGS is particularly useful for culture-negative and slow-growing microorganism infections, such as mycobacterial, fungal and partially treated pyogenic bacterial infections. Due to its low equipment cost, short turn-around-time and portable size, the Oxford Nanopore Technologies' MinION device is a useful platform for NGS in routine clinical microbiology laboratories.
Collapse
Affiliation(s)
- Fanfan Xing
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Simon K. F. Lo
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yuanchao Ma
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jonathan Daniel Ip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wan-Mui Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Meixun Zhou
- Department of Pathology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Miaozi Gong
- Department of Pathology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Susanna K. P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Patrick C. Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Patrick C. Y. Woo
| |
Collapse
|
43
|
Chen H, Zhang Y, Zheng J, Shi L, He Y, Niu Y, Lei J, Zhao Y, Xia H, Chen T. Application of mNGS in the Etiological Diagnosis of Thoracic and Abdominal Infection in Patients With End-Stage Liver Disease. Front Cell Infect Microbiol 2022; 11:741220. [PMID: 35071029 PMCID: PMC8766839 DOI: 10.3389/fcimb.2021.741220] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Despite the obvious advantages of metagenomic next-generation sequencing (mNGS) in etiological diagnosis of various infectious diseases, there are few reports on etiological diagnosis of suspected thoracic and abdominal infections in patients with end-stage liver disease (ESLD). Methods Seventy-three ESLD patients were enrolled from January 2019 to May 2021 due to suspected complicated thoracic and abdominal infections with poor response to empirical anti-infective treatment. Pleural effusion and ascites samples of these patients were collected for mNGS detection and conventional pathogen culture. The application value of mNGS in etiological diagnosis of thoracic and abdominal infections in ESLD patients was finally evaluated. Results A total of 96 pathogens were detected using mNGS method, including 47 bacteria, 32 viruses, 14 fungi, 2 Mycobacterium tuberculosis, and 1 parasite. The positive rate of mNGS reached 42.5%, which was significantly higher than that of conventional culture method (21.9%) (p = 0.008). Considering neutrophil counts, the overall positive rate of bacteria detection of both methods in Polymorphonuclear Neutrophils (PMN) ≥250/mm3 group was 64.3% and in PMN <250/mm3 group was 23.7%. Compared with the final clinical diagnosis, the agreement rate of mNGS in patients with positive bacteria detection and with suspected positive bacteria detection was 78.6% (11/14) and 44.4% (8/18), respectively. In addition, the agreement rate of mNGS was 66.7% (4/6, respectively) in patients with positive and suspected fungal detection. Interestingly, of the 11 patients with fungal detection, 5 had alcoholic liver disease, accounting for 45.5% of all patients with alcoholic liver disease. We also detected 32 strains of viruses using mNGS, mainly cytomegalovirus (62.5%). Conclusions The mNGS method is a useful supplement to conventional culture methods, which performs a higher positive rate, higher sensitivity, and broader pathogen spectrum, especially for rare pathogens and those difficult to culture. For ESLD patients, mNGS has great prospects in early etiological diagnosis of thoracic and abdominal infections. In addition, the cutoff values for the diagnosis of bacterial infection (PMN ≥250/mm3) in the thoracic and abdominal cavities may need to be redefined.
Collapse
Affiliation(s)
- Hongmei Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Zhang
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Jie Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinghua Niu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jine Lei
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingren Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Tianyan Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Lorente-Leal V, Farrell D, Romero B, Álvarez J, de Juan L, Gordon SV. Performance and Agreement Between WGS Variant Calling Pipelines Used for Bovine Tuberculosis Control: Toward International Standardization. Front Vet Sci 2022; 8:780018. [PMID: 34970617 PMCID: PMC8712436 DOI: 10.3389/fvets.2021.780018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Whole genome sequencing (WGS) and allied variant calling pipelines are a valuable tool for the control and eradication of infectious diseases, since they allow the assessment of the genetic relatedness of strains of animal pathogens. In the context of the control of tuberculosis (TB) in livestock, mainly caused by Mycobacterium bovis, these tools offer a high-resolution alternative to traditional molecular methods in the study of herd breakdown events. However, despite the increased use and efforts in the standardization of WGS methods in human tuberculosis around the world, the application of these WGS-enabled approaches to control TB in livestock is still in early development. Our study pursued an initial evaluation of the performance and agreement of four publicly available pipelines for the analysis of M. bovis WGS data (vSNP, SNiPgenie, BovTB, and MTBseq) on a set of simulated Illumina reads generated from a real-world setting with high TB prevalence in cattle and wildlife in the Republic of Ireland. The overall performance of the evaluated pipelines was high, with recall and precision rates above 99% once repeat-rich and problematic regions were removed from the analyses. In addition, when the same filters were applied, distances between inferred phylogenetic trees were similar and pairwise comparison revealed that most of the differences were due to the positioning of polytomies. Hence, under the studied conditions, all pipelines offer similar performance for variant calling to underpin real-world studies of M. bovis transmission dynamics.
Collapse
Affiliation(s)
- Víctor Lorente-Leal
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Beatriz Romero
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
45
|
Lund AJ, Wade KJ, Nikolakis ZL, Ivey KN, Perry BW, Pike HNC, Paull SH, Liu Y, Castoe TA, Pollock DD, Carlton EJ. Integrating genomic and epidemiologic data to accelerate progress toward schistosomiasis elimination. eLife 2022; 11:79320. [PMID: 36040013 PMCID: PMC9427098 DOI: 10.7554/elife.79320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.
Collapse
Affiliation(s)
- Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Zachary L Nikolakis
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Kathleen N Ivey
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Blair W Perry
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Hamish NC Pike
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Yang Liu
- Sichuan Centers for Disease Control and PreventionChengduChina
| | - Todd A Castoe
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| |
Collapse
|
46
|
Maladan Y, Krismawati H, Wahyuni T, Tanjung R, Awaludin K, Audah KA, Parikesit AA. The whole-genome sequencing in predicting Mycobacterium tuberculosis drug susceptibility and resistance in Papua, Indonesia. BMC Genomics 2021; 22:844. [PMID: 34802420 PMCID: PMC8607662 DOI: 10.1186/s12864-021-08139-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tuberculosis is one of the deadliest disease caused by Mycobacterium tuberculosis. Its treatment still becomes a burden for many countries including Indonesia. Drug resistance is one of the problems in TB treatment. However, a development in the molecular field through Whole-genome sequencing (WGS) can be used as a solution in detecting mutations associated with TB- drugs. This investigation intended to implement this data for supporting the scientific community in deeply understanding any TB epidemiology and evolution in Papua along with detecting any mutations in genes associated with TB-Drugs. RESULT A whole-genome sequencing was performed on the random samples from TB Referral Laboratory in Papua utilizing MiSeq 600 cycle Reagent Kit (V3). Furthermore, TBProfiler was used for genome analysis, RAST Server was employed for annotation, while Gview server was applied for BLAST genome mapping and a Microscope server was implemented for Regions of Genomic Plasticity (RGP). The largest genome of M. tuberculosis obtained was at the size of 4,396,040 bp with subsystems number at 309 and the number of coding sequences at 4326. One sample (TB751) contained one RGP. The drug resistance analysis revealed that several mutations associated with TB-drug resistance existed. In details, mutations of rpoB gene which were identified as S450L, D435Y, H445Y, L430P, and Q432K had caused the reduced effectiveness of rifampicin; while the mutases in katG (S315T), kasA (312S), inhA (I21V), and Rv1482c-fabG1 (C-15 T) genes had contributed to the resistance in isoniazid. In streptomycin, the resistance was triggered by the mutations in rpsL (K43R) and rrs (A514C, A514T) genes, and, in Amikacin, its resistance was led by mutations in rrs (A514C) gene. Additionally, in Ethambutol and Pyrazinamide, their reduced effectiveness was provoked by embB gene mutases (M306L, M306V, D1024N) and pncA (W119R). CONCLUSIONS The results from whole-genome sequencing of TB clinical sample in Papua, Indonesia could contribute to the surveillance of TB-drug resistance. In the drug resistance profile, there were 15 Multi Drugs Resistance (MDR) samples. However, Extensively Drug-resistant (XDR) samples have not been found, but samples were resistant to only Amikacin, a second-line drug.
Collapse
Affiliation(s)
- Yustinus Maladan
- Center for Papua Health Research and Development, Papua, Indonesia.
| | - Hana Krismawati
- Center for Papua Health Research and Development, Papua, Indonesia
| | - Tri Wahyuni
- Center for Papua Health Research and Development, Papua, Indonesia
| | - Ratna Tanjung
- Center for Papua Health Research and Development, Papua, Indonesia
| | | | | | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, International Institute for Life Sciences (I3L), Jakarta, Indonesia.
| |
Collapse
|
47
|
Peker N, Schuele L, Kok N, Terrazos M, Neuenschwander SM, de Beer J, Akkerman O, Peter S, Ramette A, Merker M, Niemann S, Couto N, Sinha B, Rossen JWA. Evaluation of whole-genome sequence data analysis approaches for short- and long-read sequencing of Mycobacterium tuberculosis. Microb Genom 2021; 7:000695. [PMID: 34825880 PMCID: PMC8743536 DOI: 10.1099/mgen.0.000695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Whole-genome sequencing (WGS) of Mycobacterium tuberculosis (MTB) isolates can be used to get an accurate diagnosis, to guide clinical decision making, to control tuberculosis (TB) and for outbreak investigations. We evaluated the performance of long-read (LR) and/or short-read (SR) sequencing for anti-TB drug-resistance prediction using the TBProfiler and Mykrobe tools, the fraction of genome recovery, assembly accuracies and the robustness of two typing approaches based on core-genome SNP (cgSNP) typing and core-genome multi-locus sequence typing (cgMLST). Most of the discrepancies between phenotypic drug-susceptibility testing (DST) and drug-resistance prediction were observed for the first-line drugs rifampicin, isoniazid, pyrazinamide and ethambutol, mainly with LR sequence data. Resistance prediction to second-line drugs made by both TBProfiler and Mykrobe tools with SR- and LR-sequence data were in complete agreement with phenotypic DST except for one isolate. The SR assemblies were more accurate than the LR assemblies, having significantly (P <0.05) fewer indels and mismatches per 100 kbp. However, the hybrid and LR assemblies had slightly higher genome fractions. For LR assemblies, Canu followed by Racon, and Medaka polishing was the most accurate approach. The cgSNP approach, based on either reads or assemblies, was more robust than the cgMLST approach, especially for LR sequence data. In conclusion, anti-TB drug-resistance prediction, particularly with only LR sequence data, remains challenging, especially for first-line drugs. In addition, SR assemblies appear more accurate than LR ones, and reproducible phylogeny can be achieved using cgSNP approaches.
Collapse
Affiliation(s)
- Nilay Peker
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Leonard Schuele
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Nienke Kok
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Miguel Terrazos
- University of Bern, Institute for Infectious Diseases, Bern, Switzerland
| | | | - Jessica de Beer
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Onno Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary diseases and Tuberculosis, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, TB Center Beatrixoord, Haren, The Netherlands
| | - Silke Peter
- University of Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | - Alban Ramette
- University of Bern, Institute for Infectious Diseases, Bern, Switzerland
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Bhanu Sinha
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - John WA Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
- IDbyDNA Inc., San Carlos, CA, USA
| |
Collapse
|
48
|
Lo CKL, Chen L, Varma S, Wood GCA, Grant J, Wilson EW. Management of Mycobacterium tuberculosis Prosthetic Joint Infection: 2 Cases and Literature Review. Open Forum Infect Dis 2021; 8:ofab451. [PMID: 34631919 PMCID: PMC8496762 DOI: 10.1093/ofid/ofab451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Prosthetic joint infection caused by Mycobacterium tuberculosis (TBPJI) is uncommon but can be encountered in immunocompromised patients or those from tuberculosis-endemic regions. A lack of clinical suspicion and experience with TBPJI often leads to a delay in diagnosis. We report 2 cases of TBPJI in a Hungarian-Canadian and Iranian-Canadian immigrant, respectively. Both were treated with concurrent surgical and medical therapy. We also performed a literature review on TBPJI case reports, outlining their diagnosis and management.
Collapse
Affiliation(s)
- Carson K L Lo
- Division of Infectious Diseases, McMaster University, Hamilton, Ontario, Canada
| | - Lina Chen
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sonal Varma
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Gavin C A Wood
- Department of Surgery (Orthopedics), Queen’s University, Kingston, Ontario, Canada
| | - Jennifer Grant
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Infectious Diseases, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Evan W Wilson
- Division of Infectious Diseases, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
49
|
Anwaierjiang A, Wang Q, Liu H, Yin C, Xu M, Li M, Liu M, Liu Y, Zhao X, Liu J, Li G, Mijiti X, Wan K. Prevalence and Molecular Characteristics Based on Whole Genome Sequencing of Mycobacterium tuberculosis Resistant to Four Anti-Tuberculosis Drugs from Southern Xinjiang, China. Infect Drug Resist 2021; 14:3379-3391. [PMID: 34466004 PMCID: PMC8402983 DOI: 10.2147/idr.s320024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Drug-resistant tuberculosis is a major public health problem, especially in the southern region of Xinjiang, China; however, there is little information regarding drug resistance profiles and mechanism of Mycobacterium tuberculosis in this area. The aim of this study was to determine the prevalence and molecular characteristics of M. tuberculosis resistant to four anti-tuberculosis drugs from this area. Methods Three hundred and forty-six isolates from the southern region of Xinjiang, China were included and used to perform phenotypic drug susceptibility testing and whole genome sequencing (WGS). Mutations in seven loci associated with drug resistance, including rpoB for rifampicin (RMP), katG, inhA promoter and oxyR-ahpC for isoniazid (INH), rrs 530 and 912 loops and rpsL for streptomycin (STR), and embB for ethambutol (EMB), were characterized. Results Among 346 isolates, 106, 60, 70 and 29 were resistant to INH, RMP, STR and EMB, respectively; 132 were resistant to at least one of the four anti-tuberculosis drugs and 51 were multi-drug resistant (MDR). Beijing genotype and retreated patients showed a significantly increased risk for developing MDR tuberculosis. Compared with the phenotypic data, the sensitivity and specificity for WGS to predict resistance were 96.7% and 98.6% for RMP, 75.5% and 97.1% for INH, 68.6% and 99.6% for STR, 93.1% and 93.7% for EMB, respectively. The most common mutations conferring RMP, INH, STR and EMB resistance were Ser450Leu (51.7%) in rpoB, Ser315Thr (44.3%) in katG, Lys43Arg (35.7%) in rpsL and Met306Val (24.1%) in embB. Conclusion This study provides the first information on the prevalence and molecular characters of drug resistant M. tuberculosis in the southern region of Xinjiang, China, which will be helpful for choosing early detection methods for drug resistance (ig, molecular methods) and subsequently initiation of proper therapy of tuberculosis in this area.
Collapse
Affiliation(s)
- Aiketaguli Anwaierjiang
- College of Public Health, Xinjiang Medical University, Wulumuqi, 830011, People's Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Wulumuqi, 830001, People's Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Chunjie Yin
- College of Public Health, Xinjiang Medical University, Wulumuqi, 830011, People's Republic of China
| | - Miao Xu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Wulumuqi, 830001, People's Republic of China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Mengwen Liu
- College of Public Health, Xinjiang Medical University, Wulumuqi, 830011, People's Republic of China
| | - Yan Liu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Wulumuqi, 830001, People's Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Jinbao Liu
- College of Public Health, Xinjiang Medical University, Wulumuqi, 830011, People's Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Wulumuqi, 830001, People's Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| |
Collapse
|
50
|
Abstract
Heteroresistance is defined as the coexistence of both susceptible and resistant bacteria in a bacterial population. Previously published data show that it may occur in 9 to 57% of Mycobacterium tuberculosis isolates for various drugs. Pyrazinamide (PZA) is an important first-line drug used for treatment of both drug-susceptible and PZA-susceptible multidrug-resistant TB. Clinical PZA resistance is defined as a proportion of resistant bacteria in the isolate exceeding 10%, when the drug is no longer considered clinically effective. The ability of traditional drug susceptibility testing techniques to detect PZA heteroresistance has not yet been evaluated. The aim of this study was to compare the capacity of Bactec MGIT 960, Wayne's test, and whole-genome sequencing (WGS) to detect PZA-resistant subpopulations in bacterial suspensions prepared with different proportions of mutant strains. Both Bactec MGIT 960 and WGS were able to detect the critical level of 10% PZA heteroresistance, whereas Wayne's test failed to do so, with the latter falsely reporting highly resistant samples as PZA susceptible. Failure to detect drug-resistant subpopulations may lead to inadvertently weak treatment regimens if ineffective drugs are included, with the risk of treatment failure with the selective growth of resistant subpopulations. We need clinical awareness of heteroresistance as well as evaluation of new diagnostic tools for their capacity to detect heteroresistance in TB.
Collapse
|