1
|
Zavaglio F, Cassanti I, Gregorini M, Grignano MA, Rampino T, Lilleri D, Baldanti F. Pre-transplant IE1-specific T-cell response and CD8 + T-cell count as predictive markers of treated HCMV reactivation in kidney transplant recipients. Front Immunol 2025; 16:1538795. [PMID: 40308605 PMCID: PMC12040814 DOI: 10.3389/fimmu.2025.1538795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Background Human cytomegalovirus (HCMV) infection represents a significant complication for kidney transplant recipients (KTRs). The goal of this study was to evaluate potential immunological markers at pre-transplant in HCMV-seropositive KTRs for predicting HCMV severe reactivation (e.g treated HCMV reactivation) during the first year after transplant. Methods Before transplant, lymphocyte count was measured in whole blood and HCMV-specific T-cell response was determined using ELISpot assay after stimulation with pp65, IE-1 and IE-2 peptides pool. HCMV DNA was monitored during the first year after transplant. Among the 65 KTRs enrolled, 44 (68%) patients had HCMV self-resolving reactivation (Controllers) while 21 (32%) required antiviral treatment for HCMV reactivation (Non-Controllers). Results No significant difference in CD4 T-cell count was observed, but Controllers had higher CD8+ T-cell counts compared to Non-Controllers. Based on ROC analysis, a CD8+ T-cell count ≥215 cells/μl was associated with a lower incidence of HCMV reactivation after transplant. Additionally, a higher IE-1-specific T-cell response was observed in Controllers and patients with IE1-specific T-cell response ≥60 spots showed a reduced incidence of HCMV reactivation and lower DNAemia peak. Discussion Lymphocyte counts and HCMV-specific T-cell response can be measured at pre-transplant in KTRs in order to efficiently predict the risk of treated HCMV reactivation during the first year after transplant. Potential cut-off and diagnostics algorithm should be better investigated in a large patients setting.
Collapse
Affiliation(s)
- Federica Zavaglio
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Cassanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marilena Gregorini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Unit of Nephrology and Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Antonietta Grignano
- Unit of Nephrology and Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology and Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Lilleri
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Mancebo FJ, Nuévalos M, Lalchandani J, Martín Galiano AJ, Fernández-Ruiz M, Aguado JM, García-Ríos E, Pérez-Romero P. Cytomegalovirus UL44 protein induces a potent T-cell immune response in mice. Antiviral Res 2024; 227:105914. [PMID: 38759930 DOI: 10.1016/j.antiviral.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Due to the severity of CMV infection in immunocompromised individuals the development of a vaccine has been declared a priority. However, despite the efforts made there is no yet a vaccine available for clinical use. We designed an approach to identify new CMV antigens able to inducing a broad immune response that could be used in future vaccine formulations. We have used serum samples from 28 kidney transplant recipients, with a previously acquired CMV-specific immune response to identify viral proteins that were recognized by the antibodies present in the patient serum samples by Western blot. A band of approximately 45 kDa, identified as UL44, was detected by most serum samples. UL44 immunogenicity was tested in BALB/c mice that received three doses of the UL44-pcDNA DNA vaccine. UL44 elicited both, a strong antibody response and CMV-specific cellular response. Using bioinformatic analysis we demonstrated that UL44 is a highly conserved protein and contains epitopes that are able to activate CD8 lymphocytes of the most common HLA alleles in the world population. We constructed a UL44 ORF deletion mutant virus that produced no viral progeny, suggesting that UL44 is an essential viral protein. In addition, other authors have demonstrated that UL44 is one of the most abundant viral proteins after infection and have suggested an essential role of UL44 in viral replication. Altogether, our data suggests that UL44 is a potent antigen, and favored by its abundance, it may be a good candidate to include in a vaccine formulation.
Collapse
Affiliation(s)
- Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Jaanam Lalchandani
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Estéfani García-Ríos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Pilar Pérez-Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
3
|
Otto WR, Vora SB, Dulek DE. Cytomegalovirus Cell-mediated Immunity Assays in Pediatric Transplantation. J Pediatric Infect Dis Soc 2024; 13:S22-S30. [PMID: 38417088 DOI: 10.1093/jpids/piae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
Cytomegalovirus (CMV) is a significant cause of morbidity and mortality in pediatric transplantation. However, currently utilized CMV prevention paradigms have limitations, leading to research aimed at novel strategies for mitigation of CMV infection. Cell-mediated immunity (CMI) is crucial in controlling CMV infection and the use of CMV-specific CMI assays to guide prevention and treatment of CMV infection in both solid organ transplant and hematopoietic cell transplant recipients shows great promise. In this article, we review the immune response to CMV infection to highlight the rationale for CMI assays, describe available commercial assays and strategies for their use, and summarize relevant literature regarding the use of CMI assays in transplant recipients.
Collapse
Affiliation(s)
- William R Otto
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Surabhi B Vora
- Division of Infectious Diseases, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Daniel E Dulek
- Division of Pediatric Infectious Diseases, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Lee H, Kang H, Yun S, Ryu JH, Bae H, Chung BH, Yang CW, Oh EJ. The influence of HLA A, B, C, DR alleles and HLA haplotypes on cytomegalovirus-specific cell mediated immunity in seropositive Korean kidney transplant candidates. HLA 2023; 102:590-598. [PMID: 37158113 DOI: 10.1111/tan.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
We evaluated the effect of specific HLA alleles and haplotypes on cytomegalovirus (CMV)-specific cell mediated immunity (CMI) in kidney transplant (KT) candidates. CMV-specific ELISPOT against pp65 and IE-1 antigens (hereafter referred to as pp65 and IE-1, respectively) was performed in 229 seropositive KT candidates. We analyzed the results related to 44 selected HLA alleles (9 HLA-A, 15 HLA-B, 9 HLA-C, and 11 HLA-DR) and 13 HLA haplotypes commonly found in study participants. The pp65 and IE-1 results in 229 seropositive candidates were 227.5 (114.5-471.5) and 41.0 (8.8-185.8) (median [interquartile range]) spots/2 × 105 PBMCs, respectively. The pp65 and IE-1 results showed significant differences between candidates with different HLA alleles (A*02 vs. A*26 [p = 0.016], A*24 vs. A*30 [p = 0.031], B*07 vs. B*46 [p = 0.005], B*54 vs. B*35 [p = 0.041], B*54 vs. B*44 [p = 0.018], B*54 vs. B*51 [p = 0.025], and C*06 vs. C*14 [p = 0.034]). HLA-A*02 and B*54 were associated with increased pp65 and IE-1 results, respectively (p = 0.005 and p < 0.001, respectively). In contrast, the HLA-A*26 and B*46 alleles were associated with a decreased pp65 response, whereas the A*30 allele was associated with a decreased IE-1 response (p < 0.05). The pp65 results correlated with the HLA-A allele frequencies (R = 0.7546, p = 0.019) and the IE-1 results correlated with the HLA-C allele frequencies of the study participants (R = 0.7882, p = 0.012). Among 13 haplotypes, HLA-A*30 ~ B*13 ~ C*06 ~ DRB1*07 showed decreased CMV-CMIs compared to the other HLA haplotypes, probably due to a combination of HLA alleles associated with lower CMV-CMIs. Our results demonstrated that CMV-specific CMIs may be influenced by the HLA allele as well as the HLA haplotype. To better predict CMV reactivation, it is important to estimate risk in the context of HLA allele and haplotype information.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Laboratory Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Hyunhye Kang
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research and Development Institute for In Vitro Diagnostic Medical Devices of Catholic University of Korea, Seoul, Republic of Korea
| | - Sojeong Yun
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Republic of Korea
| | - Ji Hyeong Ryu
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjoo Bae
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research and Development Institute for In Vitro Diagnostic Medical Devices of Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Silva Junior HT, Tokat Y, Cai J, Singh I, Sandhu A, Demuth D, Kim J. Epidemiology, management, and burden of cytomegalovirus in solid organ transplant recipients in selected countries outside of Europe and North America: A systematic review. Transpl Infect Dis 2023; 25:e14070. [PMID: 37254966 DOI: 10.1111/tid.14070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a frequent infectious complication following solid organ transplantation (SOT). Considering significant differences in healthcare systems, a systematic review was conducted to describe the epidemiology, management, and burden of CMV post-SOT in selected countries outside of Europe and North America. METHODS MEDLINE, Embase, and Cochrane databases were searched for observational studies in SOT recipients across 15 countries in the regions of Asia, Pacific, and Latin America (search period: January 1, 2011 to September 17, 2021). Outcomes included incidence of CMV infection/disease, recurrence, risk factors, CMV-related mortality, treatment patterns and guidelines, refractory and/or resistant CMV, patient-reported outcomes, and economic burden. RESULTS Of 2708 studies identified, 49 were eligible (n = 43/49; 87.8% in adults; n = 34/49, 69.4% in kidney recipients). Across studies, selection of CMV preventive strategy was based on CMV serostatus. Overall, rates of CMV infection (within 1 year) and CMV disease post-SOT were respectively, 10.3%-63.2% (9 studies) and 0%-19.0% (17 studies). Recurrence occurred in 35.4%-41.0% cases (3 studies) and up to 5.3% recipients died of CMV-associated causes (11 studies). Conventional treatments for CMV infection/disease included ganciclovir (GCV) or valganciclovir. Up to 4.4% patients were resistant to treatment (3 studies); no studies reported on refractory CMV. Treatment-related adverse events with GCV included neutropenia (2%-29%), anemia (13%-48%), leukopenia (11%-37%), and thrombocytopenia (13%-24%). Data on economic burden were scarce. CONCLUSION Outside of North America and Europe, rates of CMV infection/disease post-SOT are highly variable and CMV recurrence is frequent. CMV resistance and treatment-associated adverse events, including myelosuppression, highlight unmet needs with conventional therapy.
Collapse
Affiliation(s)
| | - Yaman Tokat
- International Liver Center & Acibadem Healthcare Hospitals, Istanbul, Turkey
| | - Jinzhen Cai
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Anudeep Sandhu
- Takeda Pharmaceuticals International AG-Singapore Branch, Singapore, Singapore
| | - Dirk Demuth
- Takeda Pharmaceuticals International AG-Singapore Branch, Singapore, Singapore
| | - Jongman Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Bhugra A, Khodare A, Agarwal R, Pamecha V, Gupta E. Role of cytomegalovirus specific cell-mediated immunity in the monitoring of cytomegalovirus infection among living donor liver transplantation adult recipients: A single-center experience. Transpl Infect Dis 2023; 25:e14011. [PMID: 36602403 DOI: 10.1111/tid.14011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is one of the most common post-transplant viral infections causing significant morbidity and occasional mortality. Limited literature on the potential role of pre-transplant CMV-specific cell-mediated immunity (CMV-CMI) is available. This study aimed to evaluate the clinical utility of pre-transplant CMV-CMI monitoring in the occurrence of post-transplant CMV infection. METHODS This was a prospective, observational study where all adult CMV seropositive patients undergoing living donor liver transplantation at a tertiary care institute were enrolled. CMV-CMI was measured using QuantiFERON-CMV (Qiagen GmbH, Hilden, Germany) and interpreted as positive if the value was ≥0.2 IU/ml, 1-2 days prior to the transplant. Based on pre-transplant CMV-CMI, cases were classified into Group 1 (n = 13, 43.3%) (positive) and Group 2 (n = 17, 56.7%) (negative). CMV infection was defined as the detection of CMV-DNA > 2.7 log10 IU/ml in plasma specimens. RESULTS The mean age was 43 years with male (n = 29, 96.9%) predominance. Overall 40% of recipients developed post-transplant CMV infection, two (15.4%) in group 1 and 10 (58.8%) in group 2 (p-value = 0.016). Recipients in group 2 had 87% higher odds (odds ratio 0.13, confidence interval [CI] 95) of developing post-transplant CMV infection compared to group 1. The overall median duration of occurrence of post-transplant CMV infection was 26 days with the median viral load being 2.8 log10 IU/ml. The treatment duration was 13 days in group 1 and 28 days in group 2 (p = 0.003). Group 1 recipients showed rapid clearance of CMV-DNA within 7 days compared to group 2 in which it was 21 days (p = 0.004, CI 95). CONCLUSION Pre-transplant CMV-CMI may play a protective role against post-transplant CMV infection and can serve as an adjunct for pre-transplant risk stratification.
Collapse
Affiliation(s)
- Arjun Bhugra
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Arvind Khodare
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Reshu Agarwal
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Viniyendra Pamecha
- Department of Hepato-pancreato-biliary Surgery, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
7
|
Nuévalos M, García-Ríos E, Mancebo FJ, Martín-Martín C, Pérez-Romero P. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease. Trends Microbiol 2023; 31:480-497. [PMID: 36624009 DOI: 10.1016/j.tim.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen worldwide. Although HCMV infection is often asymptomatic in immunocompetent individuals, it can cause severe or even life-threatening symptoms in immunocompromised patients. Due to limitations of antiviral treatments, it is necessary to search for new therapeutic alternatives. Recent studies have highlighted the contribution of antibodies in protecting against HCMV disease, including neutralizing and non-neutralizing antibodies. Given the immunocompromised target population, monoclonal antibodies (mAbs) may represent an alternative to the clinical management of HCMV infection. In this context, we provide a synthesis of recent data revising the literature supporting and arguing about the role of the humoral immunity in controlling HCMV infection. Additionally, we review the state of the art in the development of therapies based on mAbs.
Collapse
Affiliation(s)
- Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; Department of Science, Universidad Internacional de Valencia-VIU, 46002 Valencia, Spain.
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Clara Martín-Martín
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
8
|
Husson J, Bork JT, Morgan D, Baddley JW. Is diagnostic stewardship possible in solid organ transplantation? Transpl Infect Dis 2022; 24:e13899. [DOI: 10.1111/tid.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jennifer Husson
- Institute of Human Virology Department of Medicine University of Maryland School of Medicine Baltimore Maryland USA
| | - Jacqueline T. Bork
- Department of Medicine University of Maryland School of Medicine and VA Maryland Healthcare System Baltimore Maryland USA
| | - Daniel Morgan
- Department of Epidemiology and Public Health VA Maryland Healthcare System University of Maryland School of Medicine Baltimore Maryland USA
| | - John W. Baddley
- Department of Medicine University of Maryland School of Medicine and VA Maryland Healthcare System Baltimore Maryland USA
| |
Collapse
|
9
|
Tepel M, Nagarajah S, Saleh Q, Thaunat O, Bakker SJL, van den Born J, Karsdal MA, Genovese F, Rasmussen DGK. Pretransplant characteristics of kidney transplant recipients that predict posttransplant outcome. Front Immunol 2022; 13:945288. [PMID: 35958571 PMCID: PMC9357871 DOI: 10.3389/fimmu.2022.945288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Better characterization of the potential kidney transplant recipient using novel biomarkers, for example, pretransplant plasma endotrophin, will lead to improved outcome after transplantation. This mini-review will focus on current knowledge about pretransplant recipients’ characteristics, biomarkers, and immunology. Clinical characteristics of recipients including age, obesity, blood pressure, comorbidities, and estimated survival scores have been introduced for prediction of recipient and allograft survival. The pretransplant immunologic risk assessment include histocompatibility leukocyte antigens (HLAs), anti-HLA donor-specific antibodies, HLA-DQ mismatch, and non-HLA antibodies. Recently, there has been the hope that pretransplant determination of markers can further improve the prediction of posttransplant complications, both short-term and long-term outcomes including rejections, allograft loss, and mortality. Higher pretransplant plasma endotrophin levels were independently associated with posttransplant acute allograft injury in three prospective European cohorts. Elevated numbers of non-synonymous single-nucleotide polymorphism mismatch have been associated with increased allograft loss in a multivariable analysis. It is concluded that there is a need for integration of clinical characteristics and novel molecular and immunological markers to improve future transplant medicine to reach better diagnostic decisions tailored to the individual patient.
Collapse
Affiliation(s)
- Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
- *Correspondence: Martin Tepel,
| | - Subagini Nagarajah
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Qais Saleh
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Olivier Thaunat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique, Lyon, France
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | | |
Collapse
|
10
|
Carvalho-Gomes Â, Cubells A, Pallarés C, Corpas-Burgos F, Berenguer M, Aguilera V, López-Labrador FX. Cytomegalovirus specific polyfunctional T-cell responses expressing CD107a predict control of CMV infection after liver transplantation. Cell Immunol 2021; 371:104455. [PMID: 34864514 DOI: 10.1016/j.cellimm.2021.104455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022]
Abstract
Cytomegalovirus (CMV) viral load after liver transplantation (LT) is controlled by cell mediated immune responses (CMI). Quantification of CMV-specific T-cells may identify patients who control CMV spontaneously and avoid expensive and potentially toxic antiviral therapies. Prospective post-LT clinical, virological and immunological monitoring was carried out up to 1-year post-LT in a cohort of adult recipients. The CMV-specific T-cell response was characterized using flow cytometry intracellular cytokine staining in 49 LT recipients-R (79.6% R+, 20.4% R-). CMV infection occurred in 24 patients (18 D+/R+ and 6 D+/R-). Only patients with undetectable polyfunctional CMV-specific CD4+ T-cells developed CMV infection. Predictive models showed that polyfunctional CMV-specific CD4+ T-cells pre-existing before LT are protective for CMV reactivation posttransplantation. Quantitation of CD4+ T-cell responses to CMV may be a useful marker for spontaneous control of viral replication to tailor antiviral prophylaxis after LT.
Collapse
Affiliation(s)
- Ângela Carvalho-Gomes
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain.
| | - Almudena Cubells
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain
| | - Carmina Pallarés
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain
| | - Francisca Corpas-Burgos
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Av. Catalunya, 21, 46020 Valencia, Spain; CIBEResp, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Berenguer
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain; Liver Transplantation and Hepatology Unit, Hospital Universitario y Politécnico La Fe, València, Spain; Department of Medicine, University of Valencia Medical School, Valencia, Spain
| | - Victoria Aguilera
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain; Liver Transplantation and Hepatology Unit, Hospital Universitario y Politécnico La Fe, València, Spain
| | - F Xavier López-Labrador
- CIBEResp, Instituto de Salud Carlos III, Madrid, Spain; Virology Laboratory, Genomics and Health Area, Centro Superior de Salud Pública, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Conselleria de Sanitat, València, Spain
| |
Collapse
|
11
|
Saeed H, Thoendel M, Razonable RR. Individualized management of cytomegalovirus in solid organ transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1964951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew Thoendel
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
12
|
Virus-specific T cells in pediatric renal transplantation. Pediatr Nephrol 2021; 36:789-796. [PMID: 32221706 PMCID: PMC7910244 DOI: 10.1007/s00467-020-04522-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
After pediatric kidney transplantation, immunosuppressive therapy causes an increased risk of severe viral complications, especially from cytomegalovirus (CMV), BK polyomavirus (BKPyV) or Epstein-Barr virus (EBV), and less frequent from adenovirus (ADV). However, suitable predictive markers for the individual outcome of viral infections are missing and the therapeutic management remains a challenge to the success of pediatric kidney transplantation. Virus-specific T cells are known for controlling viral replication and there is growing evidence that virus-specific T cells may serve as a prognostic marker to identify patients at risk for viral complications. This review provides an overview of the usability of virus-specific T cells for improving diagnostic and therapeutic management of viral infections with reference to the necessity of antiviral prophylaxis, timing of pre-emptive therapy, and dosing of immunosuppressive medication after pediatric kidney transplantation. Several studies demonstrated that high levels of virus-specific T cells are associated with decrease of virus load and favorable outcome, whereas lack of virus-specific T cells coincided with virus-induced complications. Accordingly, the additional monitoring of virus-specific T cells aims to personalize the management of antiviral therapy, identify overimmunosuppression, and avoid unnecessary therapeutic interventions. Prospective randomized trials in pediatric kidney recipients comparing standard antiviral and immunosuppressive regimens with T cell-guided therapeutic interventions are needed, before monitoring of virus-specific T cells is implemented in the routine care of pediatric kidney graft recipients.
Collapse
|
13
|
Altaf M, Lineburg KE, Crooks P, Rehan S, Matthews KK, Neller MA, Ambalathingal GR, Sinha D, Grant M, Hopkins PMA, Chambers D, Khanna R, Smith C. Pretransplant Cytomegalovirus-Specific Cellular Immunity and Risk of Viral Reactivation Following Lung Transplantation: A Prospective Cohort Study. J Infect Dis 2020; 224:312-317. [DOI: 10.1093/infdis/jiaa750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
Cytomegalovirus (CMV) remains a significant burden in lung transplant recipients. Deficiencies in T-cell immunity posttransplant increase the risk of CMV-associated complications. However, it is not clear if underlying poor pretransplant immunity increases risk. To assess this, we recruited 39 prospective lung transplant patients and performed QuantiFERON-CMV on their peripheral blood. More than a third of prospective CMV-seropositive transplant recipients were CMV non-immune reactive (CMV-NIR) pretransplant. CMV-NIR status was associated with a significantly higher incidence of CMV reactivation posttransplant, demonstrating that dysfunctional CMV immunity in prospective lung transplant recipients is associated with an increased risk of viral reactivation posttransplant.
Collapse
Affiliation(s)
- Mohammed Altaf
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Katie E Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sweera Rehan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katherine K Matthews
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle A Neller
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - George R Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Debottam Sinha
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle Grant
- Queensland Lung Transplant Service, Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Peter M A Hopkins
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
- Queensland Lung Transplant Service, Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Daniel Chambers
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
- Queensland Lung Transplant Service, Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Sandonís V, García-Ríos E, McConnell MJ, Pérez-Romero P. Role of Neutralizing Antibodies in CMV Infection: Implications for New Therapeutic Approaches. Trends Microbiol 2020; 28:900-912. [PMID: 32448762 DOI: 10.1016/j.tim.2020.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) infection elicits a potent immune response that includes the stimulation of antibodies with neutralizing activity. Recent studies have focused on elucidating the role of neutralizing antibodies in protecting against CMV infection and disease and characterizing viral antigens against which neutralizing antibodies are directed. Here, we provide a synthesis of recent data regarding the role of neutralizing antibodies in protection against CMV infection/disease. We consider the role of humoral immunity in the context of the global CMV-specific immune response, and the implications that recent findings have for vaccine and antibody-based therapy design.
Collapse
Affiliation(s)
- Virginia Sandonís
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael J McConnell
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
15
|
Abstract
Abstract
Peripheral blood lymphocytes (PBL) are able to synthesize various cytokines that play key roles in the immune response and intercellular signaling. Since alterations in cytokine production and/or activity occur in many pathological processes, the study of cytokine synthetic capacity of PBL is a valuable tool for assessing the immune profile. In this paper, we aimed to investigate the variability of interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ) synthetic capacity of CD4+/CD8+ T-cells stimulated ex-vivo in healthy subjects, by means of a commercial intracellular cytokine staining (ICS) protocol. Peripheral blood mononuclear cells were isolated from 16 healthy subjects by Ficoll gradient centrifugation and activated ex-vivo with PMA/Ionomycin/Brefeldin-A for 4 hours. Activated PBL were surface-stained for CD3/CD4/CD8, fixed and permeabilized. ICS was performed using anti-human IL-2/TNF-α/IFN-γ and samples were analyzed on a BD-FACSAria-III flow cytometer. We recorded high post-isolation and post-activation mean viabilities: 82.1% and 82.4% respectively, p=0.84. Both CD4+/CD8+ subpopulations were found to partially produce each of the three cytokines, but in different proportions. On average, a significantly greater percentage of CD4+ cells was shown to produce IL-2 and TNF-α, compared with CD8+ cells (61.5%+/-5.8 vs. 25%+/-5.6 and 26.9%+/-11 vs. 7.5%+/-3.3 respectively, p---lt---0.0001 for both). Contrarily, IFN-γ was produced by a higher proportion of CD8+ cells (8.4%+/-3.9 vs. 6.8%+/-3.2, p=0.01). These results show that the employed ICS protocol elicits a satisfactory and consistent cytokine response from PBL of healthy subjects. The collected data may be used to outline a preliminary reference range for future studies on both healthy/pathological subjects.
Collapse
|