1
|
López-Camacho E, Aguilera-Alonso D, Buenestado-Serrano S, Marín M, Molero-Salinas A, López Fresneña N, Cercenado E, Vicente T, Herrera L, Slocker-Barrio M, Muñoz P, Saavedra Lozano J, Navarro Gómez ML, García de Viedma D, Pérez-Lago L. Genomically-supported Redefinition of an Outbreak in a Pediatric Unit Caused by blaVIM -harboring Klebsiella michiganensis. Pediatr Infect Dis J 2025; 44:166-173. [PMID: 39348498 DOI: 10.1097/inf.0000000000004571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
BACKGROUND Klebsiella michiganensis , a member of the Klebsiella oxytoca complex, is an emerging nosocomial pathogen known to frequently carry plasmids with antibiotic-resistance genes, including carbapenemases. Using genomics, this study redefined an outbreak alert of K. michiganensis carrying a blaVIM carbapenemase in a pediatric ward in a Spanish hospital. METHODS A total of 31 isolates of Verona integron-encoded metallo-β-lactamase (VIM)-carbapenemase K. oxytoca from suspected outbreak cases and unrelated controls from 2015 to 2022 were analyzed. Whole-genome sequencing (both short and long reads) was applied to determine phylogenetic relationships based on single-nucleotide polymorphisms (SNPs) and identify plasmids and antimicrobial resistance genes. RESULTS The sequences from 12 isolates identified in 2021 showed pairwise SNP distances ranging from 0 to 16 SNPs, confirming the outbreak. Examination of isolates before and after the study period revealed 7 additional cases, 2 in 2020 and 5 in 2022. The outbreak comprised 18 isolates from 17 patients in 3 different pediatric wards, together with 1 environmental sample. In all outbreak isolates, the blaVIM-1 gene was located within a gene cassette carried by a class 1 integron on an IncFIB(pQil) plasmid. A genomic network based on SNPs revealed 5 unsampled intermediate nodes, suggesting additional subclones that may have involved healthcare staff, patient relatives or environmental reservoirs. Blood and rectal isolates obtained from the same patient were positioned on separate branches of the network, making a direct evolutionary pathway between them unlikely. CONCLUSIONS Our study redefined the full extent of this K. michiganensis -VIM outbreak and highlights the critical importance of genomic analysis in accurately understanding outbreaks in healthcare settings.
Collapse
Affiliation(s)
- Elena López-Camacho
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - David Aguilera-Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- Servicio de Pediatría, Sección de Enfermedades Infecciosas Pediátricas, Hospital General Universitario Gregorio Marañón
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III
| | - Sergio Buenestado-Serrano
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- Escuela de Doctorado, Universidad de Alcalá, Plaza de San Diego, Alcalá de Henares
| | - Mercedes Marín
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Andrea Molero-Salinas
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Nieves López Fresneña
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- Servicio de Medicina Preventiva y Gestión de Calidad, Gregorio Marañón General University Hospital
| | - Emilia Cercenado
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III
| | - Teresa Vicente
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Laura Herrera
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- Pediatric Intensive Care Department, Gregorio Marañón University Hospital
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0011
| | - María Slocker-Barrio
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- Pediatric Intensive Care Department, Gregorio Marañón University Hospital
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0011
| | - Patricia Muñoz
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III
- Departamento de Medicina, Universidad Complutense
| | - Jesús Saavedra Lozano
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- Servicio de Pediatría, Sección de Enfermedades Infecciosas Pediátricas, Hospital General Universitario Gregorio Marañón
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III
- Department of Public Health and Maternal and Child Health, Complutense University, Madrid, Spain
| | - María Luisa Navarro Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- Servicio de Pediatría, Sección de Enfermedades Infecciosas Pediátricas, Hospital General Universitario Gregorio Marañón
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III
- Department of Public Health and Maternal and Child Health, Complutense University, Madrid, Spain
| | - Darío García de Viedma
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III
| | - Laura Pérez-Lago
- From the Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| |
Collapse
|
2
|
Slater D, Hutt Vater K, Sridhar S, Hwang W, Bielawski D, Turbett SE, LaRocque RC, Harris JB. Multiplexed real-time PCR for the detection and differentiation of Klebsiella pneumoniae O-antigen serotypes. Microbiol Spectr 2024; 12:e0037524. [PMID: 39115309 PMCID: PMC11371267 DOI: 10.1128/spectrum.00375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/12/2024] [Indexed: 09/01/2024] Open
Abstract
Klebsiella pneumoniae has emerged as a global health threat due to its role in the spread of antimicrobial resistance and because it is a frequent cause of hospital-acquired infections and neonatal sepsis. Capsular and lipopolysaccharide (LPS) O-antigen polysaccharide surface antigens are major immunogens that are useful for strain classification and are candidates for vaccine development. We have developed real-time PCR reagents for molecular serotyping, subtyping, and quantitation of the most prevalent LPS O-antigen types (i.e., O1, O2, O3, and O5) of Klebsiella pneumoniae. We describe two applications for this O-typing assay: for screening culture isolates and for direct typing of Klebsiella pneumoniae present in stool samples. We find 100% concordance between the results of the O-typing assay and whole-genome sequencing of 81 culture isolates, and >90% agreement in O-typing performed directly on specimens of human stool, with disagreement arising primarily from a lack of sensitivity of the culture-based comparator method. Additionally, we find evidence for mixed O-type populations at varying levels of abundance in direct tests of stool from a hospitalized patient population. Taken together, these results demonstrate that this novel O-typing assay can be a useful tool for K. pneumoniae epidemiologic and vaccine studies.IMPORTANCEKlebsiella pneumoniae is an important opportunistic pathogen. The gastrointestinal (GI) tract is the primary reservoir of K. pneumoniae in humans, and GI carriage is believed to be a prerequisite for invasive infection. Knowledge about the dynamics and duration of GI carriage has been hampered by the lack of tools suitable for detection and strain discrimination. Real-time PCR is particularly suited to the higher-throughput workflows used in population-based studies, which are needed to improve our understanding of carriage dynamics and the factors influencing K. pneumoniae colonization.
Collapse
Affiliation(s)
- Damien Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kian Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sushmita Sridhar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wontae Hwang
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Derek Bielawski
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Chua JY, Lim ZQ, Loy SQD, Koh V, Thevasagayam NM, Huan X, Linn KZ, Marimuthu K, Ng OT. Evaluation of the Xpert Carba-R assay for quantifying carbapenemase-producing bacterial load in stool samples. PLoS One 2024; 19:e0309089. [PMID: 39196974 PMCID: PMC11356397 DOI: 10.1371/journal.pone.0309089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/06/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND The spread of Carbapenemase-producing Organisms (CPO) remains a major threat globally. Within clinical settings, the existing method of determining gene load involves traditional culture to determine bacterial load and polymerase-chain-reaction-based Xpert Carba-R Assay to determine carbapenemase gene type. However, there is a need for a fast and accurate method of quantifying CPO colonisation to study the risk of persistent CPO carriage. OBJECTIVE This study evaluated the accuracy of Xpert Carba-R Ct value in estimating carbapenamase producing bacterial loads in stool samples. METHODS Stool samples were obtained from an ongoing study investigating the household transmission of CPO in Singapore. Stool samples lacking carbapenemase producing organisms were spiked with organism carrying a single carbapenemase gene (blaKPC, blaNDM, blaVIM, blaOXA-48(-like) or blaIMP-1) and serially diluted before being subjected to Xpert Carba-R assay and traditional culture. Standard curves with regression lines showing correlation between Ct values and plate counts were generated. The standard curves were validated with stool samples collected from patients. RESULTS The limit of detection of blaNDM, blaKPC, and blaOXA-48 was approximately 103 cfu/mL, while that of blaIMP-1 and blaVIM was approximately 104 cfu/mL. Validation of the blaNDM and blaOXA-48 curves revealed average delta values of 0.56 log(cfu/mL) (95% CI 0.24-0.88) and 0.80 log(cfu/mL) (95% CI 0.53-1.07), respectively. CONCLUSIONS Our validation data for stool positive for blaNDM and blaOXA-48-type suggests that bacterial loads can be estimated within a reasonable range of error.
Collapse
Affiliation(s)
- Jie Yin Chua
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Ze Qin Lim
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Song Qi Dennis Loy
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Vanessa Koh
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Natascha May Thevasagayam
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Xiaowei Huan
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Kyaw Zaw Linn
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oon Tek Ng
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Ruiz-Santana S, Dearriba-Reyes J, Saavedra P, Iglesias-Llorente L, Alonso-Acero L, Hernández-Socorro CR, Sánchez-Ramírez C. Prediction of Concomitant Nosocomial Infection in Patients Previously Colonized Colorectally by Multidrug-Resistant Bacteria in an SDD Setting. Antibiotics (Basel) 2024; 13:717. [PMID: 39200017 PMCID: PMC11350885 DOI: 10.3390/antibiotics13080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Antibiotic resistance is a worldwide concern. This study retrospectively analyzed patients admitted to the ICU of a tertiary hospital over a period of 7 months who were rectally colonized by multidrug-resistant microorganisms. The incidence of concomitant nosocomial infections was estimated, thus providing the risk of a colonizing microorganism producing a nosocomial infection. METHODS Infections with the same microorganism (concomitant) or different microorganisms (non-concomitant) were analyzed in order to adjust the empirical antibiotic treatment. Patients with rectal colonization by at least one multidrug-resistant bacterium (MDRB) on admission or after ICU admission were included. All patients had complete selective digestive decontamination (SDD) prophylaxis. For univariate analysis, categorical variables are expressed as frequencies and percentages and continuous variables as means and standard deviations, or as medians and interquartile ranges. For multivariate analysis, the model is summarized with p-values and hazard ratios with 95% confidence intervals. Survival analysis was conducted using the Kaplan-Meier method, which was performed to evaluate the time elapsed from colonization to infection by the same bacteria. Statistical significance was considered at p < 0.05. RESULTS Of the 130 patients with MDRB bacterial colonization analyzed, 98 remained free of infection, while 22 developed non-concomitant infections and 10 had infections concomitant to rectal colonizing bacteria. OXA-48-producing bacteria and MDR-Pseudomonas spp. incidences were 18.9% (95% CI: 7.96-35.2) and 44.4% (CI: 13.7-78.8), respectively. CONCLUSIONS OXA-48-producing bacteria and MDR-Pseudomonas spp. were the only bacteria associated with the development of infections concomitant to rectal colonization in an SDD setting. The incidence of MDRB infections was low.
Collapse
Affiliation(s)
- Sergio Ruiz-Santana
- Intensive Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| | - José Dearriba-Reyes
- Department of Medical and Surgical Sciences, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| | - Pedro Saavedra
- Department of Mathematics, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| | - Laura Iglesias-Llorente
- Department of Microbiology, Hospital Universitario de Gran Canaria Dr. Negrín, E-35010 Las Palmas de Gran Canaria, Spain; (L.I.-L.); (L.A.-A.)
| | - Laura Alonso-Acero
- Department of Microbiology, Hospital Universitario de Gran Canaria Dr. Negrín, E-35010 Las Palmas de Gran Canaria, Spain; (L.I.-L.); (L.A.-A.)
| | - Carmen-Rosa Hernández-Socorro
- Department of Radiology, Hospital Universitario de Gran Canaria Dr. Negrín, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| | - Catalina Sánchez-Ramírez
- Intensive Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
5
|
Dahdouh E, Cendejas-Bueno E, Ruiz-Carrascoso G, Schüffelmann C, Lázaro-Perona F, Castro-Martínez M, Moreno-Ramos F, Escosa-García L, Alguacil-Guillén M, Mingorance J. Intestinal loads of extended-spectrum beta-lactamase and Carbapenemase genes in critically ill pediatric patients. Front Cell Infect Microbiol 2023; 13:1180714. [PMID: 37201116 PMCID: PMC10188119 DOI: 10.3389/fcimb.2023.1180714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Intestinal colonization by Multi-Drug Resistant Organisms (MDROs) can pose a threat on the health of critically ill patients. The extent of colonization by these organisms is related to previous antibiotic treatments and their ability to cause infections among adult patients. The aim of this study is to determine the relationship between the intestinal Relative Loads (RLs) of selected antibiotic resistance genes, antibiotic consumption and extra-intestinal spread among critically ill pediatric patients. Methods RLs of bla CTX-M-1-Family, bla OXA-1, bla OXA-48 and bla VIM were determined in 382 rectal swabs obtained from 90 pediatric critically ill patients using qPCRs. The RLs were compared to the patients' demographics, antibiotic consumption, and detection of MDROs from extra-intestinal sites. 16SrDNA metagenomic sequencing was performed for 40 samples and clonality analyses were done for representative isolates. Results and discussion 76 (74.45%) patients from which 340 (89.01%) rectal swabs were collected had at least one swab that was positive for one of the tested genes. Routine cultures did not identify carbapenemases in 32 (45.1%) and 78 (58.2%) swabs that were positive by PCR for bla OXA-48 and blaVIM, respectively. RLs of above 6.5% were associated with extra-intestinal spread of blaOXA-48-harboring MDROs. Consumption of carbapenems, non-carbapenem β-lactams, and glycopeptides were statistically associated with testing negative for bla CTX-M-1-Family and bla OXA-1 while the consumption of trimethoprim/sulfamethoxazole and aminoglycosides was associated with testing negative for blaOXA-48 (P<0.05). In conclusion, targeted qPCRs can be used to determine the extent of intestinal dominance by antibiotic resistant opportunistic pathogens and their potential to cause extra-intestinal infections among a critically ill pediatric population.
Collapse
Affiliation(s)
- Elias Dahdouh
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- *Correspondence: Elias Dahdouh,
| | - Emilio Cendejas-Bueno
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Ruiz-Carrascoso
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Fernando Lázaro-Perona
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | | | | | - Luis Escosa-García
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Tropical and Infectious Diseases Department, Hospital Universitario La Paz, Madrid, Spain
| | - Marina Alguacil-Guillén
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Jesús Mingorance
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Yuan W, Xu J, Guo L, Chen Y, Gu J, Zhang H, Yang C, Yang Q, Deng S, Zhang L, Deng Q, Wang Z, Ling B, Deng D. Clinical Risk Factors and Microbiological and Intestinal Characteristics of Carbapenemase-Producing Enterobacteriaceae Colonization and Subsequent Infection. Microbiol Spectr 2022; 10:e0190621. [PMID: 36445086 PMCID: PMC9769896 DOI: 10.1128/spectrum.01906-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
Gastrointestinal colonization with carbapenem-resistant Enterobacteriaceae (CRE) is always a prerequisite for the development of translocated infections. Here, we sought to screen for fecal carriage of CRE and identify the risk factors for CRE colonization as well as subsequent translocated pneumonia in critically ill patients admitted to the intensive care unit (ICU) of a university hospital in China. We further focused on the intestinal flora composition and fecal metabolic profiles in CRE rectal colonization and translocated infection patients. Animal models of gastrointestinal colonization with a carbapenemase-producing Klebsiella pneumoniae (carbapenem-resistant K. pneumoniae [CRKP]) clinical isolate expressing green fluorescent protein (GFP) were established, and systemic infection was subsequently traced using an in vivo imaging system (IVIS). The intestinal barrier, inflammatory factors, and infiltrating immune cells were further investigated. In this study, we screened 54 patients hospitalized in the ICU with CRE rectal colonization, and 50% of the colonized patients developed CRE-associated pneumonia, in line with the significantly high mortality rate. Upon multivariate analysis, risk factors associated with subsequent pneumonia caused by CRE in patients with fecal colonization included enteral feeding and carbapenem exposure. Furthermore, CRKP colonization and translocated infection influenced the diversity and community composition of the intestinal microbiome. Downregulated propionate and butyrate probably play important and multiangle roles in regulating immune cell infiltration, inflammatory factor expression, and mucus and intestinal epithelial barrier integrity. Although the risk factors and intestinal biomarkers for subsequent infections among CRE-colonized patients were explored, further work is needed to elucidate the complicated mechanisms. IMPORTANCE Carbapenem-resistant Enterobacteriaceae have emerged as a major threat to modern medicine, and the spread of carbapenem-resistant Enterobacteriaceae is a clinical and public health problem. Gastrointestinal colonization by potential pathogens is always a prerequisite for the development of translocated infections, and there is a growing need to assess clinical risk factors and microbiological and intestinal characteristics to prevent the development of clinical infection by carbapenem-resistant Enterobacteriaceae.
Collapse
Affiliation(s)
- Wenli Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Jiali Xu
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| | - Lin Guo
- Intensive Care Union, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Yonghong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Jinyi Gu
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Huan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Chenghang Yang
- Intensive Care Union, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Qiuping Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Shuwen Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Longlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Qiongfang Deng
- Intensive Care Union, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Zi Wang
- Department of Clinical Pharmacy, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Bin Ling
- Intensive Care Union, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| | - Deyao Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second Hospital of Yunnan Province), Kunming, Yunnan Province, China
| |
Collapse
|
7
|
Intestinal Dominance by Multidrug-Resistant Bacteria in Pediatric Liver Transplant Patients. Microbiol Spectr 2022; 10:e0284222. [PMID: 36346231 PMCID: PMC9769714 DOI: 10.1128/spectrum.02842-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pediatric liver transplantation (PLTx) is commonly associated with extensive antibiotic treatments that can produce gut microbiome alterations and open the way to dominance by multidrug-resistant organisms (MDROs). In this study, the relationship between intestinal Relative Loads (RLs) of β-lactamase genes, antibiotic consumption, microbiome disruption, and the extraintestinal dissemination of MDROs among PLTx patients is investigated. 28 PLTx patients were included, from whom 169 rectal swabs were collected. Total DNA was extracted and blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were quantified via quantitative polymerase chain reaction (qPCR) and normalized to the total bacterial load (16SrRNA) through LogΔΔCt to determine the RLs. 16SrRNA sequencing was performed for 18 samples, and metagenomic sequencing was performed for 2. Patients' clinical data were retrieved from the hospital's database. At least one of the genes tested were detected in all of the patients. The RLs for blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were higher than 1% of the total bacterial population in 67 (80.73%), 56 (78.87%), 57 (77.03%) and 39 (61.9%) samples, respectively. High RLs for blaCTX-M-1-Family, blaOXA-1, and/or blaOXA-48, were positively associated with the consumption of carbapenems with trimethoprim-sulfamethoxazole and coincided with low diversity in the gut microbiome. Low RLs were associated with the consumption of noncarbapenem β-lactams with aminoglycosides (P < 0.05). Extraintestinal isolates harboring the same gene(s) as those detected intraintestinally were found in 18 samples, and the RLs of the respective swabs were high. We demonstrated a relationship between the consumption of carbapenems with trimethoprim-sulfamethoxazole, intestinal dominance by MDROs and extraintestinal spread of these organisms among PLTx patients. IMPORTANCE In this study, we track the relative intestinal loads of antibiotic resistance genes among pediatric liver transplant patients and determine the relationship between this load, antibiotic consumption, and infections caused by antibiotic-resistant organisms. We demonstrate that the consumption of broad spectrum antibiotics increase this load and decrease the gut microbial diversity among these patients. Moreover, the high loads of resistance genes were related to the extraintestinal spread of multidrug-resistant organisms. Together, our data show that the tracking of the relative intestinal loads of antibiotic resistance genes can be used as a biomarker that has the potential to stop the extraintestinal spread of antibiotic-resistant bacteria via the measurement of the intestinal dominance of these organisms, thereby allowing for the application of preventive measures.
Collapse
|
8
|
Migliorini LB, Leaden L, de Sales RO, Correa NP, Marins MM, Koga PCM, Toniolo ADR, de Menezes FG, Martino MDV, Mingorance J, Severino P. The Gastrointestinal Load of Carbapenem-Resistant Enterobacteriacea Is Associated With the Transition From Colonization to Infection by Klebsiella pneumoniae Isolates Harboring the blaKPC Gene. Front Cell Infect Microbiol 2022; 12:928578. [PMID: 35865821 PMCID: PMC9294314 DOI: 10.3389/fcimb.2022.928578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 01/15/2023] Open
Abstract
Background Healthcare-associated infections by carbapenem-resistant Klebsiella pneumoniae are difficult to control. Virulence and antibiotic resistance genes contribute to infection, but the mechanisms associated with the transition from colonization to infection remain unclear. Objective We investigated the transition from carriage to infection by K. pneumoniae isolates carrying the K. pneumoniae carbapenemase–encoding gene blaKPC (KpKPC). Methods KpKPC isolates detected within a 10-year period in a single tertiary-care hospital were characterized by pulsed-field gel electrophoresis (PFGE), multilocus sequencing typing, capsular lipopolysaccharide and polysaccharide typing, antimicrobial susceptibility profiles, and the presence of virulence genes. The gastrointestinal load of carbapenem-resistant Enterobacteriaceae and of blaKPC-carrying bacteria was estimated by relative quantification in rectal swabs. Results were evaluated as contributors to the progression from carriage to infection. Results No PGFE type; ST-, K-, or O-serotypes; antimicrobial susceptibility profiles; or the presence of virulence markers, such yersiniabactin and colibactin, were associated with carriage or infection, with ST437 and ST11 being the most prevalent clones. Admission to intensive and semi-intensive care units was a risk factor for the development of infections (OR 2.79, 95% CI 1.375 to 5.687, P=0.005), but higher intestinal loads of carbapenem-resistant Enterobacteriaceae or of blaKPC-carrying bacteria were the only factors associated with the transition from colonization to infection in this cohort (OR 8.601, 95% CI 2.44 to 30.352, P<0.001). Conclusion The presence of resistance and virulence mechanisms were not associated with progression from colonization to infection, while intestinal colonization by carbapenem-resistant Enterobacteriacea and, more specifically, the load of gastrointestinal carriage emerged as an important determinant of infection.
Collapse
Affiliation(s)
- Letícia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Laura Leaden
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Romário Oliveira de Sales
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Maryana Mara Marins
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | | | | | | | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- *Correspondence: Patricia Severino,
| |
Collapse
|
9
|
Lázaro-Perona F, Dahdouh E, Sotillo A, Pérez-Blanco V, Villa J, Viedma E, Ruiz-Carrascoso G, Mingorance J. Dissemination of a single ST11 clone of OXA-48-producing Klebsiella pneumoniae within a large polyclonal hospital outbreak determined by genomic sequencing. Microb Genom 2022; 8. [PMID: 35394416 PMCID: PMC9453077 DOI: 10.1099/mgen.0.000808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The population structure of a set of OXA-48-producing Klebsiella pneumoniae isolates belonging to sequence type 11 (ST11 Kp-OXA) and obtained from two hospitals in Madrid in the period from 2012 to 2015 was studied by genome sequencing. Overall, 97 ST11 Kp-OXA isolates were sequenced and their population structure and demography were studied by Bayesian phylodynamic analysis using core-genome SNVs. In total, 92 isolates were from Hospital La Paz, 57 of them from two selected units. The remaining five isolates were from different units of Hospital Doce de Octubre. Altogether, 96 out of the 97 ST11 Kp-OXA isolates could be ascribed to a single lineage that evolved into three sublineages. Demographic inference showed an expansion of the ST11 Kp-OXA in the first half of 2013 in agreement with the registered incidences. Dated phylogeny showed transmission clusters within hospital wards, between wards and between hospitals. The ST11 Kp-OXA outbreak in Hospital La Paz was largely due to the expansion of a single clone that was transmitted between different units and to Hospital Doce de Octubre. This clone diverged into three sub-lineages and spread out following a mixed mode of neutral core-genome evolution with some features of antibiotic selection, frequent large deletions and plasmid loss and gain events.
Collapse
Affiliation(s)
- Fernando Lázaro-Perona
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Elias Dahdouh
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Alma Sotillo
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Verónica Pérez-Blanco
- Servicio de Medicina Preventiva, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jennifer Villa
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Imas12, Avenida de Córdoba sn, Madrid 28041, Spain
| | - Esther Viedma
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Imas12, Avenida de Córdoba sn, Madrid 28041, Spain
| | - Guillermo Ruiz-Carrascoso
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
10
|
Rivera-Izquierdo M, Láinez-Ramos-Bossini AJ, Rivera-Izquierdo C, López-Gómez J, Fernández-Martínez NF, Redruello-Guerrero P, Martín-delosReyes LM, Martínez-Ruiz V, Moreno-Roldán E, Jiménez-Mejías E. OXA-48 Carbapenemase-Producing Enterobacterales in Spanish Hospitals: An Updated Comprehensive Review on a Rising Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:89. [PMID: 33477731 PMCID: PMC7832331 DOI: 10.3390/antibiotics10010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) are significant contributors to the global public health threat of antimicrobial resistance. OXA-48-like enzymes and their variants are unique carbapenemases with low or null hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. CPEs have been classified by the WHO as high-priority pathogens given their association with morbidity and mortality and the scarce number of effective antibiotic treatments. In Spain, the frequency of OXA-48 CPE outbreaks is higher than in other European countries, representing the major resistance mechanism of CPEs. Horizontal transfer of plasmids and poor effective antibiotic treatment are additional threats to the correct prevention and control of these hospital outbreaks. One of the most important risk factors is antibiotic pressure, specifically carbapenem overuse. We explored the use of these antibiotics in Spain and analyzed the frequency, characteristics and prevention of CPE outbreaks. Future antibiotic stewardship programs along with specific preventive measures in hospitalized patients must be reinforced and updated in Spain.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Service of Preventive Medicine and Public Health, Hospital Clínico San Cecilio, 18016 Granada, Spain
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
| | | | - Carlos Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Service of Ginecology and Obstetrics, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Jairo López-Gómez
- Service of Internal Medicine, San Cecilio University Hospital, 18016 Granada, Spain;
| | - Nicolás Francisco Fernández-Martínez
- Department of Preventive Medicine and Public Health, Reina Sofía University Hospital, 14004 Córdoba, Spain;
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), 14001 Córdoba, Spain
| | | | - Luis Miguel Martín-delosReyes
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
| | - Virginia Martínez-Ruiz
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health of Spain (CIBERESP), 28029 Madrid, Spain
| | - Elena Moreno-Roldán
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Eladio Jiménez-Mejías
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health of Spain (CIBERESP), 28029 Madrid, Spain
- Teaching and Research in Family Medicine SEMERGEN-UGR, University of Granada, 18016 Granada, Spain
| |
Collapse
|