1
|
Sherry NL, Lee JYH, Giulieri SG, Connor CH, Horan K, Lacey JA, Lane CR, Carter GP, Seemann T, Egli A, Stinear TP, Howden BP. Genomics for antimicrobial resistance-progress and future directions. Antimicrob Agents Chemother 2025; 69:e0108224. [PMID: 40227048 PMCID: PMC12057382 DOI: 10.1128/aac.01082-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Antimicrobial resistance (AMR) is a critical global public health threat, with bacterial pathogens of primary concern. Pathogen genomics has revolutionized the study of bacterial pathogens and provided deep insights into the mechanisms and dissemination of AMR, with the precision of whole-genome sequencing informing better control strategies. However, generating actionable data from genomic surveillance and diagnostic efforts requires integration at the public health and clinical interface that goes beyond academic efforts to identify resistance mechanisms, undertake post hoc analyses of outbreaks, and share data after research publications. In addition to timely genomics data, consideration also needs to be given to epidemiological sampling frames, analysis, and reporting mechanisms that meet International Organization for Standardization (ISO) standards and generation of reports that are interpretable and actionable for public health and clinical "end-users." Importantly, ensuring all countries have equitable access to data and technology is critical, through timely data sharing following the FAIR principles (findable, accessible, interoperable, and re-usable). In this review, we describe (i) advances in genomic approaches for AMR research and surveillance to understand emergence, evolution, and transmission of AMR and the key requirements to enable this work and (ii) discuss emerging and future applications of genomics at the clinical and public health interface, including barriers to implementation. Harnessing advances in genomics-enhanced AMR research and embedding robust and reproducible workflows within clinical and public health practice promises to maximize the impact of pathogen genomics for AMR globally in the coming decade.
Collapse
Affiliation(s)
- Norelle L. Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
| | - Jean Y. H. Lee
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Stefano G. Giulieri
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital, , Melbourne, Victoria, Australia
| | - Christopher H. Connor
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jake A. Lacey
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Courtney R. Lane
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Glen P. Carter
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Timothy P. Stinear
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Hetland MAK, Winkler MA, Kaspersen HP, Håkonsholm F, Bakksjø RJ, Bernhoff E, Delgado-Blas JF, Brisse S, Correia A, Fostervold A, Lam MMC, Lunestad BT, Marathe NP, Raffelsberger N, Samuelsen Ø, Sunde M, Sundsfjord A, Urdahl AM, Wick RR, Löhr IH, Holt KE. A genome-wide One Health study of Klebsiella pneumoniae in Norway reveals overlapping populations but few recent transmission events across reservoirs. Genome Med 2025; 17:42. [PMID: 40296028 PMCID: PMC12039103 DOI: 10.1186/s13073-025-01466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Members of the Klebsiella pneumoniae species complex (KpSC) are opportunistic pathogens that cause severe and difficult-to-treat infections. KpSC are common in non-human niches, but the clinical relevance of these populations is disputed. METHODS In this study, we analysed 3255 whole-genome sequenced isolates from human, animal and marine sources collected in Norway between 2001 and 2020. We used population genomics in a One Health context to assess the diversity of strains, genes and other clinically relevant genetic features within and between sources. We further explored niche-enriched traits using genome-wide association studies and investigated evidence of spillover and connectivity across the KpSC populations from the three niches. RESULTS We found that the KpSC populations in different niches were distinct but overlapping. Overall, there was high genetic diversity both between and within sources, with nearly half (49%) of the genes in the accessory genome overlapping the ecological niches. Further, several sublineages (SLs) including SL17, SL35, SL37, SL45, SL107 and SL3010 were common across sources. There were few niche-enriched traits, except for aerobactin-encoding plasmids and the bacteriocin colicin a, which were associated with KpSC from animal sources. Human infection isolates showed the greatest connectivity with each other, followed by isolates from human carriage, pigs, and bivalves. Nearly 5% of human infection isolates had close relatives (≤22 substitutions) amongst animal and marine isolates, despite temporally and geographically distant sampling of these sources. There were limited but notable recent spillover events, including the movement of plasmids encoding the virulence locus iuc3 between pigs and humans. CONCLUSIONS Our large One Health genomic study highlights that human-to-human transmission of KpSC is more common than transmission between ecological niches. Still, spillover of clinically relevant strains and genetic features between human and non-human sources does occur and should not be overlooked. Infection prevention measures are essential to limit transmission within human clinical settings and reduce infections. However, preventing transmission that leads to colonisation, e.g. from direct contact with animals or via the food chain, could also play an important role in reducing the KpSC disease burden.
Collapse
Affiliation(s)
- Marit A K Hetland
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway.
- Department of Biological Sciences, Faculty of Science and Technology, University of Bergen, Bergen, Norway.
| | - Mia A Winkler
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Håkon P Kaspersen
- Research Section Food Safety and Animal Health, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Fredrik Håkonsholm
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Institute of Marine Research, Bergen, Norway
| | - Ragna-Johanne Bakksjø
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Eva Bernhoff
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Jose F Delgado-Blas
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Annapaula Correia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, School of Hygiene & Tropical Medicine, London, UK
| | - Aasmund Fostervold
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Margaret M C Lam
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Bjørn-Tore Lunestad
- Department of Biological Sciences, Faculty of Science and Technology, University of Bergen, Bergen, Norway
- Institute of Marine Research, Bergen, Norway
| | | | - Niclas Raffelsberger
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Marianne Sunde
- Section for Bacteriology, Department for Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Arnfinn Sundsfjord
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne Margrete Urdahl
- Research Section Food Safety and Animal Health, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Ryan R Wick
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Iren H Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Martínez-Álvarez S, Höfle U, Châtre P, Alonso CA, Asencio-Egea MÁ, François P, Cardona-Cabrera T, Zarazaga M, Madec JY, Haenni M, Torres C. One Health bottom-up analysis of the dissemination pathways concerning critical priority carbapenemase- and ESBL-producing Enterobacterales from storks and beyond. J Antimicrob Chemother 2025; 80:68-78. [PMID: 39526970 DOI: 10.1093/jac/dkae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND 'One Health' initiatives to tackle the rising risk of antimicrobial resistance (AMR) have flourished due to increasing detection of Enterobacterales producing extended-spectrum beta-lactamases (ESBLs) and carbapenemases (CPs). OBJECTIVES This study aimed to conduct an in-depth holistic analysis of Escherichia coli (Ec) and Klebsiella pneumoniae (Kp) isolates recovered from landfill-foraging white stork faecal samples and clinical isolates from a nearby hospital. METHODS Faecal samples (n = 211) were collected from storks foraging at two landfills in Spain. Ec/Kp stork isolates were recovered on selective media and whole-genome sequencing (WGS), together with isolates obtained from the nearby hospital. These genomic data were compared with public genomes from different contexts (clinical, environmental, or animal hubs) to understand global transmission dynamics. RESULTS A wide range of blaESBL/blapAmpC (blaCTX-M/blaSHV-12/blaDHA) were detected in 71 stork samples (33.6%), while blaCP (blaKPC/blaNDM/blaOXA-48/blaVIM) were identified in 28 (13.3%) samples. Clonal and plasmid transmissions were evidenced inside and between both landfills. Mapping against 10 624 public Ec/Kp genomes and from those of nearby hospital revealed that identical strains (<10 allelic differences with Ec-ST38/ST131 and Kp-ST512 lineages) and epidemic plasmids (full identity/coverage with IncN/blaKPC-2, IncF/blaKPC-3, IncX3/blaNDM-7, IncL/blaOXA-48) were found from clinical isolates in countries located along the storks' migration routes. CONCLUSIONS Storks may be contaminated by bacterial isolates from a likely human origin and become non-human reservoirs of critical genes, which can be dispersed over long distances. Identifying strains/plasmids along the stork's routes that are identical or closely related to those described here opens new perspectives for large-scale research to understand the AMR transmission dynamics.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Pierre Châtre
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Carla Andrea Alonso
- Department of Biomedical Diagnostics, Microbiology Laboratory, Hospital San Pedro, Logroño, Spain
| | | | - Pauline François
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Teresa Cardona-Cabrera
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| |
Collapse
|
4
|
de Macedo GHRV, da Silva Castro J, de Jesus WB, Costa ALP, do Carmo Silva Ribeiro R, de Jesus Roland Pires S, de Cássia Mendonça Miranda R, da Cunha Araújo Firmo W, da Silva LCN, Costa Filho RND, Carvalho Neta RNF, Pinheiro Sousa DBP. Histological biomarkers and microbiological parameters of an estuarine fish from the Brazilian Amazon coast as potential indicators of risk to human health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:626. [PMID: 38884864 DOI: 10.1007/s10661-024-12751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to isolate and identify pathogenic bacteria in the intestinal tract, skin, and muscles of Sciades herzbergii; detect histopathological changes in the gill and liver; and use these biomarkers for the assessment of potential risks to human health. Fish were sampled during the rainy and dry seasons at two points in São Marcos Bay, Maranhão, Brazil: Ilha dos Caranguejos (IC) and Porto Grande (PG). Isolation and quantification were carried out using COLItest®. Colonies were subjected to identification and phenotypic investigation of antimicrobial resistance using Vitek®. Gill and liver samples were subjected to routine histological examination. The results indicated the presence of Klebsiella pneumoniae and Escherichia coli, the latter of which showed phenotypic resistance to norfloxacin and gentamicin. Fish caught at PG exhibited more extensive gill and liver damage than fish caught at IC. The findings suggest that histological changes in target organs of S. herzbergii may be influenced by infection with pathogenic bacteria.
Collapse
Affiliation(s)
| | - Jonatas da Silva Castro
- Coordination of Environmental Engineering, Federal University of Maranhão, Balsas, Maranhão, 65800-000, Brazil
| | - Wanda Batista de Jesus
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon (REDE BIONORTE), Federal University of Maranhão, São Luís, Maranhão, 65085-580, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chen X, Ju ZJ, Li C, Wang Q, Yang X, Huang ZR, Lei CW, Wang HN. Epidemiological characteristics of human- and chicken-derived CTX-M-type extended-spectrum β-lactamase-producing Escherichia coli from China. Vet Microbiol 2024; 293:110072. [PMID: 38640638 DOI: 10.1016/j.vetmic.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/21/2024]
Abstract
Bacterial resistance to β-lactams is mainly attributed to CTX-M-type extended-spectrum β-lactamases (ESBLs). However, the predominant sequence type (ST) of blaCTX-M-carrying Escherichia coli (blaCTX-M-Ec) in chickens, an important food animal, in China and its contribution to human β-lactam resistance are not investigated. In this study, approximately 1808 chicken-derived strains collected from 10 provinces from 2012 to 2020 were screened for blaCTX-M-Ec, and 222 blaCTX-M-Ec were identified. Antimicrobial susceptibility tests, whole genome sequencing and conjugation experiment were performed. All quality-controlled 136 chicken-derived blaCTX-M-Ec and 1193 human-derived blaCTX-M-Ec genomes were downloaded from NCBI and EnteroBase to comprehensively analyze the prevalence of blaCTX-M-Ec in China. blaCTX-M-55 (153/358, 42.7% in chicken isolates; 312/1193, 26.2% in human isolates) and blaCTX-M-14 (92/358, 25.7% in chicken isolates; 450/1193, 37.7% in human isolates) were dominant in blaCTX-M-Ec. The STs of blaCTX-M-Ec were diverse and scattered, with ST155 (n = 21) and ST152 (n = 120) being the most abundant in chicken- and human-derived isolates, respectively. Few examples indicated that chicken- and human-derived blaCTX-M-Ec have 10 or less core genome single nucleotide polymorphisms (cgSNPs). Genetic environment analysis indicated that ISEcp1, IS26 and IS903B were closely associated with blaCTX-M transfer. The almost identical pc61-55 and pM-64-1161 indicated the possibility of plasmid-mediated transmission of blaCTX-M between humans and chickens. Although the genomes of most blaCTX-M-Ec isolated from chickens and humans were quite different, the prevalence and genetic environment of blaCTX-M variants in both hosts were convergent. CTX-M-mediated resistance is more likely to spread through horizontal gene transmission than bacterial clones.
Collapse
Affiliation(s)
- Xuan Chen
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Zi-Jing Ju
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Chao Li
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Qin Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xue Yang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhe-Ren Huang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Chang-Wei Lei
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.
| | - Hong-Ning Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
6
|
Martak D, Henriot CP, Hocquet D. Environment, animals, and food as reservoirs of antibiotic-resistant bacteria for humans: One health or more? Infect Dis Now 2024; 54:104895. [PMID: 38548016 DOI: 10.1016/j.idnow.2024.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Antimicrobial resistance (AMR) is a major public health challenge. For several years, AMR has been addressed through a One Health approach that links human health, animal health, and environmental quality. In this review, we discuss AMR in different reservoirs with a focus on the environment. Anthropogenic activities produce effluents (sewage, manure, and industrial wastes) that contaminate soils and aquatic environments with antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), and selective agents such as antibiotics, biocides, and heavy metals. Livestock treated with antibiotics can also contaminate food with ARB. In high-income countries (HICs), effective sanitation infrastructure and limited pharmaceutical industries result in more controlled discharges associated with human activities. Hence, studies using genome-based typing methods have revealed that, although rare inter-reservoir transmission events have been reported, human acquisition in HICs occurs primarily through person-to-person transmission. The situation is different in low- and middle-income countries (LMICs) where high population density, poorer sanitation and animal farming practices are more conducive to inter-reservoir transmissions. In addition, environmental bacteria can be a source of ARGs that, when transferred to pathogenic species under antibiotic selection pressure in environmental hotspots, produce new antibiotic-resistant strains that can potentially spread in the human community through human-to-human transmission. The keys to reducing AMR in the environment are (i) better treatment of human waste by improving wastewater treatment plants (WWTPs) in HICs and improving sanitation infrastructure in LMICs, (ii) reducing the use of antibiotics by humans and animals, (iii) prioritizing the use of less environmentally harmful antibiotics, and (iv) better control of pharmaceutical industry waste.
Collapse
Affiliation(s)
- Daniel Martak
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France.
| | - Charles P Henriot
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France
| | - Didier Hocquet
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France; CHU de Besançon, Hygiène Hospitalière, F-25000 Besançon, France
| |
Collapse
|
7
|
Eliette AS, Elodie B, Arnaud M, Tiffany R, Aymé S, Pascal P. Idiosyncratic invasion trajectories of human bacterial pathogens facing temperature disturbances in soil microbial communities. Sci Rep 2024; 14:12375. [PMID: 38811807 PMCID: PMC11137084 DOI: 10.1038/s41598-024-63284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Current knowledge about effects of disturbance on the fate of invaders in complex microbial ecosystems is still in its infancy. In order to investigate this issue, we compared the fate of Klebsiella pneumoniae (Kp) and Listeria monocytogenes (Lm) in soil microcosms. We then used environmental disturbances (freeze-thaw or heat cycles) to compare the fate of both invaders and manipulate soil microbial diversity. Population dynamics of the two pathogens was assessed over 50 days of invasion while microbial diversity was measured at times 0, 20 and 40 days. The outcome of invasion was strain-dependent and the response of the two invaders to disturbance differed. Resistance to Kp invasion was higher under the conditions where resident microbial diversity was the highest while a significant drop of diversity was linked to a higher persistence. In contrast, Lm faced stronger resistance to invasion in heat-treated microcosms where diversity was the lowest. Our results show that diversity is not a universal proxy of resistance to microbial invasion, indicating the need to properly assess other intrinsic properties of the invader, such as its metabolic repertoire, or the array of interactions between the invader and resident communities.
Collapse
Affiliation(s)
- Ascensio-Schultz Eliette
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Barbier Elodie
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Mounier Arnaud
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Raynaud Tiffany
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Spor Aymé
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | | |
Collapse
|
8
|
Martischang R, Seth-Smith H, Verschuuren TD, Héquet D, Gaïa N, François P, Fluit AC, Kluytmans JAJW, Seiffert SN, Tacconelli E, Cherkaoui A, Harbarth S, Egli A, Kohler P. Regional spread of an atypical ESBL-producing Escherichia coli ST131H89 clone among different human and environmental reservoirs in Western Switzerland. Antimicrob Agents Chemother 2024; 68:e0092523. [PMID: 38169291 PMCID: PMC10848748 DOI: 10.1128/aac.00925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
We describe the inter-regional spread of a novel ESBL-producing Escherichia coli subclone (ST131H89) in long-term care facility residents, general population, and environmental water sources in Western Switzerland between 2017 and 2020. The study highlights the importance of molecular surveillance for tracking emerging antibiotic-resistant pathogens in healthcare and community settings.
Collapse
Affiliation(s)
- Romain Martischang
- Infection Control Programme and WHO Collaborating Centre, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Helena Seth-Smith
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Applied Microbiology Research, Basel University, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Tess D. Verschuuren
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Delphine Héquet
- Unité Cantonale Hygiène, Prévention et Contrôle de l’infection, Canton de Vaud, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Ad C. Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan A. J. W. Kluytmans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Salome N. Seiffert
- Division of Human Microbiology, Centre for Laboratory Medicine, St. Gallen, Switzerland
| | - Evelina Tacconelli
- Department of Diagnostics and Public Health, Infectious Diseases, Verona University, Verona, Italy
- Department of Internal Medicine Infectious Diseases, Tübingen University, Tübingen, Germany
| | | | - Stephan Harbarth
- Infection Control Programme and WHO Collaborating Centre, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Adrian Egli
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Applied Microbiology Research, Basel University, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| |
Collapse
|
9
|
Nadimpalli ML, Stegger M, Viau R, Yith V, de Lauzanne A, Sem N, Borand L, Huynh BT, Brisse S, Passet V, Overballe-Petersen S, Aziz M, Gouali M, Jacobs J, Phe T, Hungate BA, Leshyk VO, Pickering AJ, Gravey F, Liu CM, Johnson TJ, Hello SL, Price LB. Plugging the leaks: antibiotic resistance at human-animal interfaces in low-resource settings. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2023; 21:428-434. [PMID: 38464945 PMCID: PMC10923528 DOI: 10.1002/fee.2639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Antibiotic resistance is one of the greatest public health challenges of our time. International efforts to curb resistance have largely focused on drug development and limiting unnecessary antibiotic use. However, in areas where water, sanitation, and hygiene infrastructure is lacking, we propose that bacterial flow between humans and animals can exacerbate the emergence and spread of resistant pathogens. Here, we describe the consequences of poor environmental controls by comparing mobile resistance elements among Escherichia coli recovered from humans and meat in Cambodia, a middle-income country with substantial human-animal connectivity and unregulated antibiotic use. We identified identical mobile resistance elements and a conserved transposon region that were widely dispersed in both humans and animals, a phenomenon rarely observed in high-income settings. Our findings indicate that plugging leaks at human-animal interfaces should be a critical part of addressing antibiotic resistance in low- and especially middle-income countries.
Collapse
Affiliation(s)
- Maya L Nadimpalli
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA
- Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Roberto Viau
- Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
- Department of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA
| | - Vuthy Yith
- Laboratory of Environment and Food Safety, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Agathe de Lauzanne
- Epidemiology and Public Health Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Nita Sem
- Laboratory of Environment and Food Safety, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Laurence Borand
- Epidemiology and Public Health Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Bich-tram Huynh
- Université Paris-Saclay, UVSQ, Inserm, Anti-Infective Evasion and Pharmacoepidemiology Team, CESP, Montigny le Bretonneux, France
- UMR 1181, Inserm, University of Versailles Saint-Quentin-en-Yvelines, Saint-Quentin-en-Yvelines, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Virginie Passet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | | | - Maliha Aziz
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Malika Gouali
- Laboratory of Environment and Food Safety, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
- Enteric Bacterial Pathogens Unit, Institut Pasteur, Paris, France
| | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Thong Phe
- Sihanouk Hospital Center for Hope, Phnom Penh, Cambodia
| | - Bruce A Hungate
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ
| | - Victor O Leshyk
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ
| | - Amy J Pickering
- Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
- Department of Civil and Environmental Engineering, University of California–Berkeley, Berkeley, CA
| | - François Gravey
- Université de Caen Normandie, Université de Rouen Normandie, Inserm, DYNAMICURE UMR 1311, CHU Caen, Caen, France
- Department of Bacteriology, CHU Caen, Caen, France
| | - Cindy M Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN
| | - Simon Le Hello
- Enteric Bacterial Pathogens Unit, Institut Pasteur, Paris, France
- Université de Caen Normandie, Université de Rouen Normandie, Inserm, DYNAMICURE UMR 1311, CHU Caen, Caen, France
- Department of Bacteriology, CHU Caen, Caen, France
| | - Lance B Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
| |
Collapse
|
10
|
Vilaró A, Novell E, Enrique-Tarancon V, Baliellas J, Migura-García L, Fraile L. The Susceptibility Trends of Respiratory and Enteric Porcine Pathogens to Last-Resource Antimicrobials. Antibiotics (Basel) 2023; 12:1575. [PMID: 37998776 PMCID: PMC10668718 DOI: 10.3390/antibiotics12111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Monitoring the antimicrobial susceptibility of last-resource antimicrobials for veterinary pathogens is urgently needed from a one-health perspective. The objective of this study was to analyze the antimicrobial susceptibility trends of Spanish porcine bacteria to quinolones, cephalosporins, and polymyxins. Isolates of Actinobacillus pleuropneumoniae, Pasteurella multocida, and Escherichia coli were isolated from sick pigs from 2019 to 2022. An antimicrobial susceptibility test was determined based on the minimal inhibitory concentration (MIC) following an internationally accepted methodology. The MIC categorization was based on distributing the range of MIC values in four categories, with category one being the most susceptible (lowest MIC value) and category four the least susceptible (highest MIC value). Moreover, clinical susceptibility (susceptible/non-susceptible) was also determined according to the CLSI and EUCAST clinical breakpoints. A logistic and multinomial logistic regression model was used to analyze the susceptibility data for dichotomized and categorized MIC data, respectively, for any pair of antimicrobial/microorganism. In general terms, the antimicrobial susceptibility of pig bacteria to these antimicrobials remained stable or increased in the last four years in Spain. In the case of A. pleuropneumoniae and quinolones, a significant temporal trend was observed where isolates from 2020 had significantly increased odds of being more susceptible than isolates from 2019. In the case of E. coli and polymyxins, a significant temporal trend was observed where isolates from 2020 and 2021 had significantly increased odds of being more susceptible than isolates from 2019 and 2020, respectively. Finally, significant odds of being less susceptible were only observed for cephalosporins and E. coli for 2020 versus 2019, stagnating for the rest of study period. These results provide sound data on critically important antimicrobials in swine medicine.
Collapse
Affiliation(s)
- Anna Vilaró
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | - Elena Novell
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | | | - Jordi Baliellas
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | - Lourdes Migura-García
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain;
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Lorenzo Fraile
- Departament de Ciència Animal, ETSEA, University of Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
11
|
Sauget M, Atchon AK, Valot B, Garch FE, de Jong A, Moyaert H, Hocquet D. Genome analysis of third-generation cephalosporin-resistant Escherichia coli and Salmonella species recovered from healthy and diseased food-producing animals in Europe. PLoS One 2023; 18:e0289829. [PMID: 37883425 PMCID: PMC10602299 DOI: 10.1371/journal.pone.0289829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/26/2023] [Indexed: 10/28/2023] Open
Abstract
The animal reservoir of Enterobacterales producing Extended-Spectrum-β-Lactamases (ESBL) and plasmid-borne cephalosporinases (pAmpC) is a global concern. Using genome data, we analyzed a population of Escherichia coli and Salmonella species resistant to third-generation cephalosporins (3GC-R) recovered from healthy food animals (HA) and diseased food animals (DA) across Europe. Among the isolates collected from HA (n = 4,498) and DA (n = 833) in up to twelve European countries, 62 (1.4%) and 45 (5.4%) were 3GC-R, respectively. The genomes of these 3GC-R 107 isolates were sequenced to identify blaESBL and blaAmpC, sequence types (STs), virulence-associated genes, and Salmonella serovars. We also assessed their population structure using core genome multilocus sequence typing. The 78 3GC-R Escherichia coli originated from poultry (n = 27), swine (n = 26), and cattle (n = 25). Almost all (n = 77; 98.7%) harbored at least one blaESBL or blaAmpC, with blaCTX-M-1 predominating. We identified 51 STs, with ST10 and ST101 being the most frequent. The population of 3GC-R E. coli was polyclonal. The 29 3GC-R Salmonella spp. were mostly retrieved from healthy broiler (96.5%). blaCMY-2 dominated in this population. We found two clusters of CMY-2-producing Salmonella spp. in Germany: one with 15 isolates of S. Heidelberg isolates and another with six S. Minnesota, all of them with blaCMY-2. Our results confirm the low prevalence of 3GC-R E. coli and Salmonella spp. in HA and DA. blaCTX-M-1 was dominating in a highly diverse population of E. coli. 3GC-R E.coli isolated from HA and DA were genetically unrelated, with high clonal diversity suggesting multiple origins of contamination. This contrasted with the clonal population of 3GC-R Salmonella spp. in which blaCMY-2 dominated through two dominant serovars in this collection.
Collapse
Affiliation(s)
- Marlène Sauget
- Service D’hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France
| | - Alban K. Atchon
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
- UMR 6249 CNRS Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Benoît Valot
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
- UMR 6249 CNRS Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Farid El Garch
- Vétoquinol SA, Global Drug Development Center, Lure, France
- EASSA and VetPath Study Group, CEESA, Brussels, Belgium
| | - Anno de Jong
- EASSA and VetPath Study Group, CEESA, Brussels, Belgium
| | - Hilde Moyaert
- EASSA and VetPath Study Group, CEESA, Brussels, Belgium
- Zoetis Belgium SA, Veterinary Medicine Research and Development, Zaventem, Belgium
| | - Didier Hocquet
- Service D’hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
- UMR 6249 CNRS Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | | |
Collapse
|
12
|
Vilaró A, Novell E, Enrique-Tarancon V, Baliellas J, Fraile L. Susceptibility trends of swine respiratory pathogens from 2019 to 2022 to antimicrobials commonly used in Spain. Porcine Health Manag 2023; 9:47. [PMID: 37858281 PMCID: PMC10588200 DOI: 10.1186/s40813-023-00341-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Antimicrobial resistance is one of the most important health challenges in humans and animals. Antibiotic susceptibility determination is used to select the most suitable drug to treat animals according to its success probability following the European legislation in force for these drugs. We have studied the antibiotic susceptibility pattern (ASP) of Actinobacillus pleuropneumoniae (APP) and Pasteurella multocida (PM) isolates, collected during the period 2019-2022 in Spain. ASP was measured by determining minimum inhibitory concentration using standardized laboratory methods and its temporal trend was determined by logistic regression analysis of non-susceptible/susceptible isolates using clinical breakpoints. RESULTS It was not observed any significant temporal trends for susceptibility of Actinobacillus pleuropneumoniae to ceftiofur, florfenicol, sulfamethoxazole/trimethoprim, tulathromycin and tildipirosin during the study period (p > 0.05). Contrarily, a significant temporal trend (p < 0.05) was observed for quinolones (enrofloxacin and marbofloxacin), tetracyclines (doxycycline and oxyteracycline), amoxicillin, tiamulin and tilmicosin. On the other hand, it was not observed any significant temporal trends for susceptibility of Pasteurella multocida to quinolones (enrofloxacin and marbofloxacin), amoxicillin, ceftiofur, florfenicol and macrolides (tildipirosin, tulathromycin and tilmicosin) during the study period (p > 0.05). Contrarily, a significant temporal trend (p < 0.05) was observed for tetracyclines (oxyteracycline), tiamulin and sulfamethoxazole/trimethoprim. CONCLUSIONS In general terms, pig pathogens (APP and PM) involved in respiratory diseases analysed herein appeared to remain susceptible or tended to increase susceptibility to antimicrobials over the study period (2019-2022), but our data clearly showed a different pattern in the evolution of antimicrobial susceptibility for each combination of drug and microorganism. Our results highlight that the evolution of antimicrobial susceptibility must be studied in a case-by-case situation where generalization for drug families and bacteria is not possible even for bacteria located in the same ecological niche.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Fraile
- Department of Animal Science, University of Lleida - Agrotecnio Center, Lleida, Spain.
| |
Collapse
|
13
|
Mourão J, Ribeiro-Almeida M, Novais C, Magalhães M, Rebelo A, Ribeiro S, Peixe L, Novais Â, Antunes P. From Farm to Fork: Persistence of Clinically Relevant Multidrug-Resistant and Copper-Tolerant Klebsiella pneumoniae Long after Colistin Withdrawal in Poultry Production. Microbiol Spectr 2023; 11:e0138623. [PMID: 37428073 PMCID: PMC10434174 DOI: 10.1128/spectrum.01386-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.
Collapse
Affiliation(s)
- Joana Mourão
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Marisa Ribeiro-Almeida
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mafalda Magalhães
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- ESS, Polytechnic of Porto, Porto, Portugal
| | - Sofia Ribeiro
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ângela Novais
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Pearce R, Conrady B, Guardabassi L. Prevalence and Types of Extended-Spectrum β-Lactamase-Producing Bacteria in Retail Seafood. Foods 2023; 12:3033. [PMID: 37628032 PMCID: PMC10453871 DOI: 10.3390/foods12163033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Objectives: To assess prevalence and types of extended-spectrum β-lactamase (ESBL)-producing bacteria in retail seafood. Methods: A literature review was completed according to international guidelines for systematic reviews, except for being performed by a single reviewer. Kruskal-Wallis and Dunn tests were used to determine statistical differences between continents or seafood types. Results: Among 12,277 hits, 42 publications from 2011 to 2023 were deemed relevant to the review's objectives. The median prevalence of ESBL-contaminated products was 19.4%. A significantly lower prevalence was observed in Europe (p = 0.006) and Africa (p = 0.004) compared to Asia. Amongst the 2053 isolates analyzed in the selected studies, 44.8% were ESBL-positive. The predominant type was CTX-M (93.6%), followed by TEM (6.7%) and SHV (5.0%). Only 32.6% and 18.5% of the CTX-M-positive isolates were typed to group and gene level, respectively. While group 1 (60.2%) was prevalent over group 9 (39.8%) among Enterobacterales, the opposite trend was observed in Vibrio spp. (60.0% vs. 40.0%). Information at gene level was limited to Enterobacterales, where CTX-M-15 was the most prevalent (79.2%). Conclusions: On average, one in five seafood products sold at retail globally is contaminated with ESBL-producing Enterobacterales of clinical relevance. Our findings highlight a potential risk for consumers of raw seafood, especially in Asia.
Collapse
Affiliation(s)
- Ryan Pearce
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Beate Conrady
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Luca Guardabassi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| |
Collapse
|
15
|
de Jong A, Morrissey I, Rose M, Temmerman R, Klein U, Simjee S, El Garch F. Antimicrobial susceptibility among respiratory tract pathogens isolated from diseased cattle and pigs from different parts of Europe. J Appl Microbiol 2023; 134:lxad132. [PMID: 37391360 DOI: 10.1093/jambio/lxad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
AIMS To survey antibiotic susceptibility of bacteria causing cattle and pig respiratory infections in 10 European countries. METHODS AND RESULTS Non-replicate nasopharyngeal/nasal or lung swabs were collected from animals with acute respiratory signs during 2015-2016. Pasteurella multocida, Mannheimia haemolytica, Histophilus somni from cattle (n = 281), and P. multocida, Actinobacillus pleuropneumoniae, Glaesserella parasuis, Bordetella bronchiseptica, and Streptococcus suis from pigs (n = 593) were isolated. MICs were assessed following CLSI standards and interpreted using veterinary breakpoints where available. Histophilus somni isolates were fully antibiotic susceptible. Bovine P. multocida and M. haemolytica were susceptible to all antibiotics, except tetracycline (11.6%-17.6% resistance). Low macrolide and spectinomycin resistance was observed for P. multocida and M. haemolytica (1.3%-8.8%). Similar susceptibility was observed in pigs, where breakpoints are available. Resistance in P. multocida, A. pleuropneumoniae, and S. suis to ceftiofur, enrofloxacin, and florfenicol was absent or <5%. Tetracycline resistance varied from 10.6% to 21.3%, but was 82.4% in S. suis. Overall multidrug-resistance was low. Antibiotic resistance in 2015-2016 remained similar as in 2009-2012. CONCLUSIONS Low antibiotic resistance was observed among respiratory tract pathogens, except for tetracycline.
Collapse
Affiliation(s)
- Anno de Jong
- VetPath Study Group, CEESA, B-1150 Brussels, Belgium
| | | | - Markus Rose
- VetPath Study Group, CEESA, B-1150 Brussels, Belgium
| | | | - Ulrich Klein
- VetPath Study Group, CEESA, B-1150 Brussels, Belgium
| | | | | |
Collapse
|
16
|
Jo D, Kim H, Lee Y, Kim J, Ryu S. Characterization and genomic study of EJP2, a novel jumbo phage targeting antimicrobial resistant Escherichia coli. Front Microbiol 2023; 14:1194435. [PMID: 37250060 PMCID: PMC10213699 DOI: 10.3389/fmicb.2023.1194435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) Escherichia coli has noticeably increased in recent years worldwide and causes serious public health concerns. As alternatives to antibiotics, bacteriophages are regarded as promising antimicrobial agents. In this study, we isolated and characterized a novel jumbo phage EJP2 that specifically targets AMR E. coli strains. EJP2 belonged to the Myoviridae family with an icosahedral head (120.9 ± 2.9 nm) and a non-contractile tail (111.1 ± 0.6 nm), and contained 349,185 bp double-stranded DNA genome with 540 putative ORFs, suggesting that EJP2 could be classified as jumbo phage. The functions of genes identified in EJP2 genome were mainly related to nucleotide metabolism, DNA replication, and recombination. Comparative genomic analysis revealed that EJP2 was categorized in the group of Rak2-related virus and presented low sequence similarity at the nucleotide and amino acid level compared to other E. coli jumbo phages. EJP2 had a broad host spectrum against AMR E. coli as well as pathogenic E. coli and recognized LPS as a receptor for infection. Moreover, EJP2 treatment could remove over 80% of AMR E. coli biofilms on 96-well polystyrene, and exhibit synergistic antimicrobial activity with cefotaxime against AMR E. coli. These results suggest that jumbo phage EJP2 could be used as a potential biocontrol agent to combat the AMR issue in food processing and clinical environments.
Collapse
|
17
|
Li C, Chen X, Ju Z, Li C, Xu Y, Ding J, Wang Y, Ma P, Gu K, Lei C, Tang Y, Wang H. Comparative Analysis of Phylogenetic Relationships and Virulence Factor Characteristics between Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Derived from Clinical Sites and Chicken Farms. Microbiol Spectr 2022; 10:e0255722. [PMID: 36374015 PMCID: PMC9769871 DOI: 10.1128/spectrum.02557-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance in bacteria is the most urgent global threat to public health, with extended-spectrum β-lactamase-producing Escherichia coli (ESBL-E. coli) being one of the most documented examples. Nonetheless, the ESBL-E. coli transmission relationship among clinical sites and chicken farms remains unclear. Here, 408 ESBL-E. coli strains were isolated from hospitals and chicken farms in Sichuan Province and Yunnan Province in 2021. We detected blaCTX-M genes in 337 (82.62%) ESBL-E. coli strains. Although the isolation rate, prevalent sequence type (ST) subtypes, and blaCTX-M gene subtypes of ESBL-E. coli varied based on regions and sources, a few strains of CTX-ESBL-E. coli derived from clinical sites and chicken farms in Sichuan Province displayed high genetic similarity. This indicates a risk of ESBL-E. coli transmission from chickens to humans. Moreover, we found that the high-risk clonal strains ST131 and ST1193 primarily carried blaCTX-M-27. This indicates that drug-resistant E. coli from animal and human sources should be monitored. As well, the overuse of β-lactam antibiotics should be avoided in poultry farms to ensure public health and build an effective regulatory mechanism of "farm to fork" under a One Health perspective. IMPORTANCE Bacterial drug resistance has become one of the most significant threats to human health worldwide, especially for extended-spectrum β-lactamase-producing E. coli (ESBL-E. coli). Timely and accurate epidemiological surveys can provide scientific guidance for the adoption of treatments in different regions and also reduce the formation of drug-resistant bacteria. Our study showed that the subtypes of ESBL-E. coli strains prevalent in different provinces are somewhat different, so it is necessary to individualize treatment regimens in different regions, and it is especially important to limit and reduce antibiotic use in poultry farming since chicken-derived ESBL-E. coli serves as an important reservoir of drug resistance genes and has the potential to spread to humans, thus posing a threat to human health. The use of antibiotics in poultry farming should be particularly limited and reduced.
Collapse
Affiliation(s)
- Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zijing Ju
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ying Xu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jiawei Ding
- Clinical Laboratory Department, Yan’an Hospital Affiliated with Kunming Medical University, Kunming, Yunnan, China
| | - Yuting Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
De Jong A, El Garch F, Hocquet D, Prenger-Berninghoff E, Dewulf J, Migura-Garcia L, Perrin-Guyomard A, Veldman KT, Janosi S, Skarzynska M, Simjee S, Moyaert H, Rose M. European-wide antimicrobial resistance monitoring in commensal Escherichia coli isolated from healthy food animals between 2004 and 2018. J Antimicrob Chemother 2022; 77:3301-3311. [PMID: 36203261 DOI: 10.1093/jac/dkac318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To describe the susceptibility of Escherichia coli to medically important antibiotics, collected over four periods (2004-2006, 2008-2009, 2013-2014, 2017-2018), from food-producing animals at slaughter. METHODS Intestinal contents from cattle, pigs and broilers were randomly sampled (5-6 countries/host; ≥4 abattoirs/country; one sample/animal/farm) for isolation of Escherichia coli; antimicrobial susceptibilities were centrally determined by CLSI agar dilution. Clinical breakpoints (CLSI) and epidemiological cut-off values (EUCAST) were applied for data interpretation. RESULTS In total, 10 613 E. coli strains were recovered. In broilers, resistance percentages were the lowest (P ≤ 0.01) in the latest time period. A significant decrease in MDR over time was also observed for broilers and a tendency for a decrease for pigs. Resistance to meropenem and tigecycline was absent, and resistance to azithromycin was 0.2%-2.0%. Also, low resistance to third-generation cephalosporins (1.1%-7.4%) was detected in broilers. Resistance to colistin varied between 0.1%-4.8%. E. coli from broilers showed high resistance to ciprofloxacin (7.3%-23.3%), whereas for cattle and pigs this was 0.2%-2.5%. Low/moderate resistance to chloramphenicol (9.3%-21.3%) and gentamicin (0.9%-7.0%) was observed in pigs and broilers. The highest resistance was noted for ampicillin (32.7%-65.3%), tetracycline (41.3%-67.5%), trimethoprim (32.0%-35.7%) and trimethoprim/sulfamethoxazole (27.5%-49.7%) from pigs and broilers, with marked country differences. MDR peaked in pigs and broilers with 24 and 26 phenotypes, with 21.9%-26.2% and 18.7%-34.1% resistance, respectively. CONCLUSIONS In this pan-EU survey antibiotic susceptibility of commensal E. coli varied largely between antibiotics, animal species and countries. Resistance to critically important antibiotics for human medicine was absent or low, except for ciprofloxacin in broilers and ampicillin in pigs and broilers.
Collapse
Affiliation(s)
- Anno De Jong
- EASSA Study Group, c/o CEESA, 168, Av. de Tervueren, Brussels, Belgium
| | - Farid El Garch
- EASSA Study Group, c/o CEESA, 168, Av. de Tervueren, Brussels, Belgium.,Vetoquinol S.A., Lure, France
| | - Didier Hocquet
- Infection Control Unit, University Hospital of Besançon, CHU Besançon, France.,UMR 6249, Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Department of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Lourdes Migura-Garcia
- IRTA-UAB Mixed Research Unit in Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain.,IRTA, Animal Health Programme, CReSA, OIE Collaborating Centre, Campus de la Universitat Autònoma de Barcelona, Spain
| | | | - Kees T Veldman
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Szilard Janosi
- Laboratory of Bacteriology, National Food Chain Safety Office, Budapest, Hungary
| | - Magdalena Skarzynska
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
| | - Shabbir Simjee
- EASSA Study Group, c/o CEESA, 168, Av. de Tervueren, Brussels, Belgium.,Elanco Animal health, Basingstoke, UK
| | - Hilde Moyaert
- EASSA Study Group, c/o CEESA, 168, Av. de Tervueren, Brussels, Belgium.,Zoetis, Zaventem, Belgium
| | - Markus Rose
- EASSA Study Group, c/o CEESA, 168, Av. de Tervueren, Brussels, Belgium.,MSD Animal Health Innovation GmbH, Schwabenheim, Germany
| | | |
Collapse
|
19
|
Haenni M, Boulouis HJ, Lagrée AC, Drapeau A, Va F, Billet M, Châtre P, Madec JY. Enterobacterales high-risk clones and plasmids spreading blaESBL/AmpC and blaOXA-48 genes within and between hospitalized dogs and their environment. J Antimicrob Chemother 2022; 77:2754-2762. [PMID: 35983589 DOI: 10.1093/jac/dkac268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Compared with healthcare settings, the role of veterinary hospitals in the spread of extended-spectrum cephalosporin- and carbapenem-resistant (ESC-R/CP-R) bacteria has been overlooked. OBJECTIVES To investigate using genome-based approaches the dynamics of ESC-R and CP-R Enterobacterales among 125 dogs admitted to the same veterinary hospital over a 4 month period. METHODS Dogs (n = 125) were sampled within 48 h of admission and at discharge. ESC-R/CP-R were phenotypically characterized and whole-genome sequenced using short- and long-read technologies. Phylogenetic analyses were performed using appropriate pipelines. RESULTS ESC-R/CP-R prevalence in dogs was 4.8% (6/125) upon admission and reached 24.8% (31/125) at discharge, reflecting multiple acquisitions of ESBL/AmpC and OXA-48-positive Enterobacterales during hospitalization. Indistinguishable or closely related isolates were found within dogs, shared between dogs, and shared between dogs and their environment, suggesting numerous clonal and plasmid spreads. Even though carbapenems are not licensed for use in companion animals, a wide distribution of the blaOXA-48/IncL plasmid was evidenced across different bacterial species and dogs. CONCLUSIONS This study highlights nosocomial acquisitions of ESBL/AmpC and carbapenemase-producing Enterobacterales by companion animals and the risk of further transmission within the community in a One Health perspective. Reinforced infection prevention and control measures and screening procedures are urgently needed in small animal veterinary settings where advanced therapeutics and intensive care is provided.
Collapse
Affiliation(s)
- Marisa Haenni
- Université de Lyon-ANSES laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, 69007 Lyon, France
| | - Henri Jean Boulouis
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
| | - Anne Claire Lagrée
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
| | - Antoine Drapeau
- Université de Lyon-ANSES laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, 69007 Lyon, France
| | - Florence Va
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
| | - Mégane Billet
- Université de Lyon-ANSES laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, 69007 Lyon, France
| | - Pierre Châtre
- Université de Lyon-ANSES laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, 69007 Lyon, France
| | - Jean Yves Madec
- Université de Lyon-ANSES laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, 69007 Lyon, France
| |
Collapse
|
20
|
Sealey JE, Hammond A, Mounsey O, Gould VC, Reyher KK, Avison MB. Molecular ecology and risk factors for third-generation cephalosporin-resistant Escherichia coli carriage by dogs living in urban and nearby rural settings. J Antimicrob Chemother 2022; 77:2399-2405. [PMID: 35858661 PMCID: PMC9410662 DOI: 10.1093/jac/dkac208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives To compare faecal third-generation cephalosporin-resistant (3GC-R) Escherichia coli isolates from dogs living in a city and in a rural area ∼30 km away; to compare isolates from dogs, cattle and humans in these regions; and to determine risk factors associated with 3GC-R E. coli carriage in these two cohorts of dogs. Methods Six hundred dogs were included, with faecal samples processed to recover 3GC-R E. coli using 2 mg/L cefotaxime. WGS was by Illumina and risk factor analyses were by multivariable linear regression using the results of an owner-completed survey. Results 3GC-R E. coli were excreted by 20/303 rural and 31/297 urban dogs. The dominant canine 3GC-R ST was ST963 (blaCMY-2), which also accounted for 25% of CMY-2-producing E. coli in humans. Phylogenetic overlap between cattle and rural dog CTX-M-14-producing E. coli ST117 was observed as well as acquisition of pMOO-32-positive E. coli ST10 by a rural dog, a plasmid common on cattle farms in the area. Feeding raw meat was associated with carrying 3GC-R E. coli in rural dogs, but not in urban dogs, where swimming in rivers was a weak risk factor. Conclusions Given clear zoonotic potential for resistant canine E. coli, our work suggests interventions that may reduce this threat. In rural dogs, carriage of 3GC-R E. coli, particularly CTX-M producers, was phylogenetically associated with interaction with local cattle and epidemiologically associated with feeding raw meat. In urban dogs, sources of 3GC-R E. coli appear to be more varied and include environments such as rivers.
Collapse
Affiliation(s)
- Jordan E Sealey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Ashley Hammond
- University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK
| | - Oliver Mounsey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Virginia C Gould
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,University of Bristol Veterinary School, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Kristen K Reyher
- University of Bristol Veterinary School, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Matthew B Avison
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
21
|
High Genetic Diversity and Antimicrobial Resistance in Escherichia coli Highlight Arapaima gigas (Pisces: Arapaimidae) as a Reservoir of Quinolone-Resistant Strains in Brazilian Amazon Rivers. Microorganisms 2022; 10:microorganisms10040808. [PMID: 35456858 PMCID: PMC9030826 DOI: 10.3390/microorganisms10040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing prevalence of multi-drug resistant (MDR) Escherichia coli in distinct ecological niches, comprising water sources and food-producing animals, such as fish species, has been widely reported. In the present study, quinolone-resistant E. coli isolates from Arapirama gigas, a major fish species in the Brazilian Amazon rivers and fish farms, were characterized regarding their antimicrobial susceptibility, virulence, and genetic diversity. A total of forty (40) specimens of A. gigas, including 20 farmed and 20 wild fish, were included. Thirty-four quinolone-resistant E. coli isolates were phenotypically tested by broth microdilution, while resistance and virulence genes were detected by PCR. Molecular epidemiology and genetic relatedness were analyzed by MLST and PFGE typing. The majority of isolates were classified as MDR and detected harboring blaCTX-M, qnrA and qnrB genes. Enterotoxigenic E. coli pathotype (ETEC) isolates were presented in low prevalence among farmed animals. MLST and PFGE genotyping revealed a wide genetic background, including the detection of internationally spread clones. The obtained data point out A. gigas as a reservoir in Brazilian Amazon aquatic ecosystems and warns of the interference of AMR strains in wildlife and environmental matrices.
Collapse
|