1
|
Güler O. A Dirichlet Distribution-Based Complex Ensemble Approach for Breast Cancer Classification from Ultrasound Images with Transfer Learning and Multiphase Spaced Repetition Method. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01515-5. [PMID: 40301291 DOI: 10.1007/s10278-025-01515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
Breast ultrasound is a useful and rapid diagnostic tool for the early detection of breast cancer. Artificial intelligence-supported computer-aided decision systems, which assist expert radiologists and clinicians, provide reliable and rapid results. Deep learning methods and techniques are widely used in the field of health for early diagnosis, abnormality detection, and disease diagnosis. Therefore, in this study, a deep ensemble learning model based on Dirichlet distribution using pre-trained transfer learning models for breast cancer classification from ultrasound images is proposed. In the study, experiments were conducted using the Breast Ultrasound Images Dataset (BUSI). The dataset, which had an imbalanced class structure, was balanced using data augmentation techniques. DenseNet201, InceptionV3, VGG16, and ResNet152 models were used for transfer learning with fivefold cross-validation. Statistical analyses, including the ANOVA test and Tukey HSD test, were applied to evaluate the model's performance and ensure the reliability of the results. Additionally, Grad-CAM (Gradient-weighted Class Activation Mapping) was used for explainable AI (XAI), providing visual explanations of the deep learning model's decision-making process. The spaced repetition method, commonly used to improve the success of learners in educational sciences, was adapted to artificial intelligence in this study. The results of training with transfer learning models were used as input for further training, and spaced repetition was applied using previously learned information. The use of the spaced repetition method led to increased model success and reduced learning times. The weights obtained from the trained models were input into an ensemble learning system based on Dirichlet distribution with different variations. The proposed model achieved 99.60% validation accuracy on the dataset, demonstrating its effectiveness in breast cancer classification.
Collapse
Affiliation(s)
- Osman Güler
- Department of Computer Engineering, Çankırı Karatekin University, Çankırı, Turkey.
| |
Collapse
|
2
|
Saini M, Hassanzadeh S, Musa B, Fatemi M, Alizad A. Variational mode directed deep learning framework for breast lesion classification using ultrasound imaging. Sci Rep 2025; 15:14300. [PMID: 40274985 PMCID: PMC12022294 DOI: 10.1038/s41598-025-99009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Breast cancer is the most prevalent cancer and the second cause of cancer related death among women in the United States. Accurate and early detection of breast cancer can reduce the number of mortalities. Recent works explore deep learning techniques with ultrasound for detecting malignant breast lesions. However, the lack of explanatory features, need for segmentation, and high computational complexity limit their applicability in this detection. Therefore, we propose a novel ultrasound-based breast lesion classification framework that utilizes two-dimensional variational mode decomposition (2D-VMD) which provides self-explanatory features for guiding a convolutional neural network (CNN) with mixed pooling and attention mechanisms. The visual inspection of these features demonstrates their explainability in terms of discriminative lesion-specific boundary and texture in the decomposed modes of benign and malignant images, which further guide the deep learning network for enhanced classification. The proposed framework can classify the lesions with accuracies of 98% and 93% in two public breast ultrasound datasets and 89% in an in-house dataset without having to segment the lesions unlike existing techniques, along with an optimal trade-off between the sensitivity and specificity. 2D-VMD improves the areas under the receiver operating characteristics and precision-recall curves by 5% and 10% respectively. The proposed method achieves relative improvement of 14.47%(8.42%) (mean (SD)) in accuracy over state-of-the-art methods for one public dataset, and 5.75%(4.52%) for another public dataset with comparable performance to two existing methods. Further, it is computationally efficient with a reduction of [Formula: see text] in floating point operations as compared to existing methods.
Collapse
Affiliation(s)
- Manali Saini
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Sara Hassanzadeh
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Bushira Musa
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Chelloug SA, Ba Mahel AS, Alnashwan R, Rafiq A, Ali Muthanna MS, Aziz A. Enhanced breast cancer diagnosis using modified InceptionNet-V3: a deep learning approach for ultrasound image classification. Front Physiol 2025; 16:1558001. [PMID: 40330252 PMCID: PMC12052540 DOI: 10.3389/fphys.2025.1558001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Breast cancer (BC) is a malignant neoplasm that originates in the mammary gland's cellular structures and remains one of the most prevalent cancers among women, ranking second in cancer-related mortality after lung cancer. Early and accurate diagnosis is crucial due to the heterogeneous nature of breast cancer and its rapid progression. However, manual detection and classification are often time-consuming and prone to errors, necessitating the development of automated and reliable diagnostic approaches. Methods Recent advancements in deep learning have significantly improved medical image analysis, demonstrating superior predictive performance in breast cancer detection using ultrasound images. Despite these advancements, training deep learning models from scratch can be computationally expensive and data-intensive. Transfer learning, leveraging pre-trained models on large-scale datasets, offers an effective solution to mitigate these challenges. In this study, we investigate and compare multiple deep-learning models for breast cancer classification using transfer learning. The evaluated architectures include modified InceptionV3, GoogLeNet, ShuffleNet, AlexNet, VGG-16, and SqueezeNet. Additionally, we propose a deep neural network model that integrates features from modified InceptionV3 to further enhance classification performance. Results The experimental results demonstrate that the modified InceptionV3 model achieves the highest classification accuracy of 99.10%, with a recall of 98.90%, precision of 99.00%, and an F1-score of 98.80%, outperforming all other evaluated models on the given datasets. Discussion The achieved findings underscore the potential of the proposed approach in enhancing diagnostic precision and confirm the superiority of the modified InceptionV3 model in breast cancer classification tasks.
Collapse
Affiliation(s)
- Samia Allaoua Chelloug
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abduljabbar S. Ba Mahel
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Rana Alnashwan
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahsan Rafiq
- Institute of Information Technology and Information Security Southern Federal University, Taganrog, Russia
| | - Mohammed Saleh Ali Muthanna
- Department of International Business Management, Tashkent State University of Economics, Tashkent, Uzbekistan
| | - Ahmed Aziz
- Department of Computer Science, Faculty of Computer and Artificial Intelligence, Benha University, Benha, Egypt
- Engineering school, Central Asian University, Tashkent, Uzbekistan
| |
Collapse
|
4
|
Nanni L, Brahnam S, Ruta M, Fabris D, Boscolo Bacheto M, Milanello T. Deep Ensembling of Multiband Images for Earth Remote Sensing and Foramnifera Data. SENSORS (BASEL, SWITZERLAND) 2025; 25:2231. [PMID: 40218743 PMCID: PMC11991470 DOI: 10.3390/s25072231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
The classification of multiband images captured by advanced sensors, such as satellite-mounted imaging systems, is a critical task in remote sensing and environmental monitoring. These sensors provide high-dimensional data that encapsulate a wealth of spectral and spatial information, enabling detailed analyses of the Earth's surface features. However, the complexity of these data poses significant challenges for accurate and efficient classification. Our study describes and highlights methods for creating ensembles of neural networks for handling multiband images. Two applications are illustrated in this work: (1) satellite image classification tested on the EuroSAT and LCZ42 datasets and (2) a species-level identification of planktic foraminifera. Multichannel images are fed into an ensemble of Convolutional Neural Networks (CNNs) (ResNet50, MobileNetV2, and DenseNet201), where each network is trained using three channels obtained from the multichannel images, and two custom networks (one based on ResNet50 and the other one based on attention) where the input is a multiband image. The ensemble learning framework harnesses these variations to improve classification accuracy, surpassing other advanced methods. The proposed system, implemented in MATLAB 2024b and PyTorch 2.6, is shown to achieve higher classification accuracy than those of human experts for species-level identification of planktic foraminifera (>92% vs. 83%) and state-of-the-art performance on the tested planktic foraminifera, the EuroSAT and LCZ42 datasets.
Collapse
Affiliation(s)
- Loris Nanni
- Department of Information Engineering, University of Padova, 35139 Padova, Italy; (M.R.); (D.F.); (M.B.B.); (T.M.)
| | - Sheryl Brahnam
- Information Technology and Cybersecurity, Missouri State University, 901 S. National, Springfield, MO 65804, USA;
| | - Matteo Ruta
- Department of Information Engineering, University of Padova, 35139 Padova, Italy; (M.R.); (D.F.); (M.B.B.); (T.M.)
| | - Daniele Fabris
- Department of Information Engineering, University of Padova, 35139 Padova, Italy; (M.R.); (D.F.); (M.B.B.); (T.M.)
| | - Martina Boscolo Bacheto
- Department of Information Engineering, University of Padova, 35139 Padova, Italy; (M.R.); (D.F.); (M.B.B.); (T.M.)
| | - Tommaso Milanello
- Department of Information Engineering, University of Padova, 35139 Padova, Italy; (M.R.); (D.F.); (M.B.B.); (T.M.)
| |
Collapse
|
5
|
Yang X, Wang Y, Sui L. NMTNet: A Multi-task Deep Learning Network for Joint Segmentation and Classification of Breast Tumors. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01440-7. [PMID: 39971818 DOI: 10.1007/s10278-025-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Segmentation and classification of breast tumors are two critical tasks since they provide significant information for computer-aided breast cancer diagnosis. Combining these tasks leverages their intrinsic relevance to enhance performance, but the variability and complexity of tumor characteristics remain challenging. We propose a novel multi-task deep learning network (NMTNet) for the joint segmentation and classification of breast tumors, which is based on a convolutional neural network (CNN) and U-shaped architecture. It mainly comprises a shared encoder, a multi-scale fusion channel refinement (MFCR) module, a segmentation branch, and a classification branch. First, ResNet18 is used as the backbone network in the encoding part to enhance the feature representation capability. Then, the MFCR module is introduced to enrich the feature depth and diversity. Besides, the segmentation branch combines a lesion region enhancement (LRE) module between the encoder and decoder parts, aiming to capture more detailed texture and edge information of irregular tumors to improve segmentation accuracy. The classification branch incorporates a fine-grained classifier that reuses valuable segmentation information to discriminate between benign and malignant tumors. The proposed NMTNet is evaluated on both ultrasound and magnetic resonance imaging datasets. It achieves segmentation dice scores of 90.30% and 91.50%, and Jaccard indices of 84.70% and 88.10% for each dataset, respectively. And the classification accuracy scores are 87.50% and 99.64% for the corresponding datasets, respectively. Experimental results demonstrate the superiority of NMTNet over state-of-the-art methods on breast tumor segmentation and classification tasks.
Collapse
Affiliation(s)
- Xuelian Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuanjun Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Li Sui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
6
|
Zou W, Zhou Y, Yao J, Feng B, Xiong D, Chen C, Yan Y, Liu Y, Zhou L, Wang L, Chen L, Liang P, Xu D. Age-stratified deep learning model for thyroid tumor classification: a multicenter diagnostic study. Eur Radiol 2025:10.1007/s00330-025-11386-7. [PMID: 39903238 DOI: 10.1007/s00330-025-11386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/05/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVES Thyroid cancer, the only cancer that uses age as a specific predictor of survival, is increasing in incidence, yet it has a low mortality rate, which can lead to overdiagnosis and overtreatment. We developed an age-stratified deep learning (DL) model (hereafter, ASMCNet) for classifying thyroid nodules and aimed to investigate the effect of age stratification on the accuracy of a DL model, exploring how ASMCNet can help radiologists improve diagnostic performance and avoid unnecessary biopsies. METHODS In this retrospective study, we used ultrasound images from three hospitals, a total of 10,391 images of 5934 patients were used for training, validation, and testing. The performance of ASMCNet was compared with that of model-trained non-age-stratified radiologists with different experience levels on the test data set with the DeLong method. RESULTS The area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity of ASMCNet were 0.906, 86.1%, and 85.1%, respectively, which exceeded those of model-trained non-age-stratified (0.867, 83.2%, and 75.5%, respectively; p < 0.001) and higher than all of the radiologists (p < 0.001). Reader studies show that radiologists' performances are improved when assisted by the explaining heatmaps (p < 0.001). CONCLUSIONS Our study demonstrates that age stratification based on DL can further improve the performance of thyroid tumor classification models, which also suggests that age is an important factor in the diagnosis of thyroid tumors. The ASMCNet model shows promising clinical applicability and can assist radiologists in improving diagnostic accuracy. KEY POINTS Question Age is crucial for differentiated thyroid carcinoma (DTC) prognosis, yet its diagnostic impact lacks research. Findings Adding age stratification to DL models can further improve the accuracy of thyroid nodule diagnosis. Clinical relevance Age-stratified multimodal classification network is a reliable tool used to help radiologists diagnose thyroid nodules, and integrating it into clinical practice can improve diagnostic accuracy and reduce unnecessary biopsies or treatments.
Collapse
Affiliation(s)
- Weijie Zou
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou, China
| | - Yahan Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, China
| | - Jincao Yao
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou, China
| | - Bojian Feng
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, China
| | - Danlei Xiong
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Chen Chen
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, China
| | - Yuqi Yan
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, China
| | - Yuanzhen Liu
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, China
| | - Lingyan Zhou
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Liping Wang
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Liyu Chen
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Ping Liang
- Department of Ultrasound, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.
| | - Dong Xu
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou, China.
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, China.
| |
Collapse
|
7
|
Mei L, Lian C, Han S, Jin S, He J, Dong L, Wang H, Shen H, Lei C, Xiong B. High-Accuracy and Lightweight Image Classification Network for Optimizing Lymphoblastic Leukemia Diagnosisy. Microsc Res Tech 2025; 88:489-500. [PMID: 39429031 DOI: 10.1002/jemt.24704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Leukemia is a hematological malignancy that significantly impacts the human immune system. Early detection helps to effectively manage and treat cancer. Although deep learning techniques hold promise for early detection of blood disorders, their effectiveness is often limited by the physical constraints of available datasets and deployed devices. For this investigation, we collect an excellent-quality dataset of 17,826 morphological bone marrow cell images from 85 patients with lymphoproliferative neoplasms. We employ a progressive shrinking approach, which integrates a comprehensive pruning technique across multiple dimensions, including width, depth, resolution, and kernel size, to train our lightweight model. The proposed model achieves rapid identification of acute lymphoblastic leukemia, chronic lymphocytic leukemia, and other bone marrow cell types with an accuracy of 92.51% and a throughput of 111 slides per second, while comprising only 6.4 million parameters. This model significantly contributes to leukemia diagnosis, particularly in the rapid and accurate identification of lymphatic system diseases, and provides potential opportunities to enhance the efficiency and accuracy of medical experts in the diagnosis and treatment of lymphocytic leukemia.
Collapse
Affiliation(s)
- Liye Mei
- School of Computer Science, Hubei University of Technology, Wuhan, China
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Chentao Lian
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Suyang Han
- The Second Clinical School of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuangtong Jin
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Jing He
- The Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Dong
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongzhu Wang
- Faculty of Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | - Hui Shen
- The Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
- Suzhou Institute of Wuhan University, Suzhou, China
- Shenzhen Institute of Wuhan University, Shenzhen, China
| | - Bei Xiong
- The Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Luo L, Wang X, Lin Y, Ma X, Tan A, Chan R, Vardhanabhuti V, Chu WC, Cheng KT, Chen H. Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions. IEEE Rev Biomed Eng 2025; 18:130-151. [PMID: 38265911 DOI: 10.1109/rbme.2024.3357877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
Collapse
|
9
|
Al Mansour AGM, Alshomrani F, Alfahaid A, Almutairi ATM. MammoViT: A Custom Vision Transformer Architecture for Accurate BIRADS Classification in Mammogram Analysis. Diagnostics (Basel) 2025; 15:285. [PMID: 39941215 PMCID: PMC11817779 DOI: 10.3390/diagnostics15030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Breast cancer screening through mammography interpretation is crucial for early detection and improved patient outcomes. However, the manual classification of mammograms using the BIRADS (Breast Imaging-Reporting and Data System) remains challenging due to subtle imaging features, inter-reader variability, and increasing radiologist workload. Traditional computer-aided detection systems often struggle with complex feature extraction and contextual understanding of mammographic abnormalities. To address these limitations, this study proposes MammoViT, a novel hybrid deep learning framework that leverages both ResNet50's hierarchical feature extraction capabilities and Vision Transformer's ability to capture long-range dependencies in images. Methods: We implemented a multi-stage approach utilizing a pre-trained ResNet50 model for initial feature extraction from mammogram images. To address the significant class imbalance in our four-class BIRADS dataset, we applied SMOTE (Synthetic Minority Over-sampling Technique) to generate synthetic samples for minority classes. The extracted feature arrays were transformed into non-overlapping patches with positional encodings for Vision Transformer processing. The Vision Transformer employs multi-head self-attention mechanisms to capture both local and global relationships between image patches, with each attention head learning different aspects of spatial dependencies. The model was optimized using Keras Tuner and trained using 5-fold cross-validation with early stopping to prevent overfitting. Results: MammoViT achieved 97.4% accuracy in classifying mammogram images across different BIRADS categories. The model's effectiveness was validated through comprehensive evaluation metrics, including a classification report, confusion matrix, probability distribution, and comparison with existing studies. Conclusions: MammoViT effectively combines ResNet50 and Vision Transformer architectures while addressing the challenge of imbalanced medical imaging datasets. The high accuracy and robust performance demonstrate its potential as a reliable tool for supporting clinical decision-making in breast cancer screening.
Collapse
Affiliation(s)
- Abdullah G. M. Al Mansour
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Faisal Alshomrani
- Department of Diagnostic Radiology Technology, College of Applied Medical Science, Taibah University, Medinah 42353, Saudi Arabia
| | - Abdullah Alfahaid
- College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia
| | - Abdulaziz T. M. Almutairi
- Department of Computer, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
10
|
Xie J, Wei J, Shi H, Lin Z, Lu J, Zhang X, Wan C. A deep learning approach for early prediction of breast cancer neoadjuvant chemotherapy response on multistage bimodal ultrasound images. BMC Med Imaging 2025; 25:26. [PMID: 39849366 PMCID: PMC11758756 DOI: 10.1186/s12880-024-01543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the efficacy of NAC is essential for the clinical diagnosis and treatment of patients. In this study, a novel convolutional neural network model with bimodal layer-wise feature fusion module (BLFFM) and temporal hybrid attention module (THAM) is proposed, which uses multistage bimodal ultrasound images as input for early prediction of the efficacy of neoadjuvant chemotherapy in locally advanced breast cancer (LABC) patients. The BLFFM can effectively mine the highly complex correlation and complementary feature information between gray-scale ultrasound (GUS) and color Doppler blood flow imaging (CDFI). The THAM is able to focus on key features of lesion progression before and after one cycle of NAC. The GUS and CDFI videos of 101 patients collected from cooperative medical institutions were preprocessed to obtain 3000 sets of multistage bimodal ultrasound image combinations for experiments. The experimental results show that the proposed model is effective and outperforms the compared models. The code will be published on the https://github.com/jinzhuwei/BLTA-CNN .
Collapse
Affiliation(s)
- Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jinzhu Wei
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Huachan Shi
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Zhe Lin
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jinsong Lu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xueqing Zhang
- Department of Pathology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Caifeng Wan
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
11
|
Pérez-Núñez JR, Rodríguez C, Vásquez-Serpa LJ, Navarro C. The Challenge of Deep Learning for the Prevention and Automatic Diagnosis of Breast Cancer: A Systematic Review. Diagnostics (Basel) 2024; 14:2896. [PMID: 39767257 PMCID: PMC11675111 DOI: 10.3390/diagnostics14242896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES This review aims to evaluate several convolutional neural network (CNN) models applied to breast cancer detection, to identify and categorize CNN variants in recent studies, and to analyze their specific strengths, limitations, and challenges. METHODS Using PRISMA methodology, this review examines studies that focus on deep learning techniques, specifically CNN, for breast cancer detection. Inclusion criteria encompassed studies from the past five years, with duplicates and those unrelated to breast cancer excluded. A total of 62 articles from the IEEE, SCOPUS, and PubMed databases were analyzed, exploring CNN architectures and their applicability in detecting this pathology. RESULTS The review found that CNN models with advanced architecture and greater depth exhibit high accuracy and sensitivity in image processing and feature extraction for breast cancer detection. CNN variants that integrate transfer learning proved particularly effective, allowing the use of pre-trained models with less training data required. However, challenges include the need for large, labeled datasets and significant computational resources. CONCLUSIONS CNNs represent a promising tool in breast cancer detection, although future research should aim to create models that are more resource-efficient and maintain accuracy while reducing data requirements, thus improving clinical applicability.
Collapse
Affiliation(s)
- Jhelly-Reynaluz Pérez-Núñez
- Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru; (C.R.); (L.-J.V.-S.); (C.N.)
| | | | | | | |
Collapse
|
12
|
Guo Y, Zhou Y. Expansive Receptive Field and Local Feature Extraction Network: Advancing Multiscale Feature Fusion for Breast Fibroadenoma Segmentation in Sonography. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2810-2824. [PMID: 38822159 PMCID: PMC11612125 DOI: 10.1007/s10278-024-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 06/02/2024]
Abstract
Fibroadenoma is a common benign breast disease that affects women of all ages. Early diagnosis can greatly improve the treatment outcomes and reduce the associated pain. Computer-aided diagnosis (CAD) has great potential to improve diagnosis accuracy and efficiency. However, its application in sonography is limited. A network that utilizes expansive receptive fields and local information learning was proposed for the accurate segmentation of breast fibroadenomas in sonography. The architecture comprises the Hierarchical Attentive Fusion module, which conducts local information learning through channel-wise and pixel-wise perspectives, and the Residual Large-Kernel module, which utilizes multiscale large kernel convolution for global information learning. Additionally, multiscale feature fusion in both modules was included to enhance the stability of our network. Finally, an energy function and a data augmentation method were incorporated to fine-tune low-level features of medical images and improve data enhancement. The performance of our model is evaluated using both our local clinical dataset and a public dataset. Mean pixel accuracy (MPA) of 93.93% and 86.06% and mean intersection over union (MIOU) of 88.16% and 73.19% were achieved on the clinical and public datasets, respectively. They are significantly improved over state-of-the-art methods such as SegFormer (89.75% and 78.45% in MPA and 83.26% and 71.85% in MIOU, respectively). The proposed feature extraction strategy, combining local pixel-wise learning with an expansive receptive field for global information perception, demonstrates excellent feature learning capabilities. Due to this powerful and unique local-global feature extraction capability, our deep network achieves superior segmentation of breast fibroadenoma in sonography, which may be valuable in early diagnosis.
Collapse
Affiliation(s)
- Yongxin Guo
- Medical College Road, State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yufeng Zhou
- Medical College Road, State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Donghu New Technology Development Zone, 507 Gaoxin Ave., Wuhan, Hubei, 430075, China.
| |
Collapse
|
13
|
Liu J, Fan K, Cai X, Niranjan M. Few-shot learning for inference in medical imaging with subspace feature representations. PLoS One 2024; 19:e0309368. [PMID: 39504337 PMCID: PMC11540231 DOI: 10.1371/journal.pone.0309368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/11/2024] [Indexed: 11/08/2024] Open
Abstract
Unlike in the field of visual scene recognition, where tremendous advances have taken place due to the availability of very large datasets to train deep neural networks, inference from medical images is often hampered by the fact that only small amounts of data may be available. When working with very small dataset problems, of the order of a few hundred items of data, the power of deep learning may still be exploited by using a pre-trained model as a feature extractor and carrying out classic pattern recognition techniques in this feature space, the so-called few-shot learning problem. However, medical images are highly complex and variable, making it difficult for few-shot learning to fully capture and model these features. To address these issues, we focus on the intrinsic characteristics of the data. We find that, in regimes where the dimension of the feature space is comparable to or even larger than the number of images in the data, dimensionality reduction is a necessity and is often achieved by principal component analysis or singular value decomposition (PCA/SVD). In this paper, noting the inappropriateness of using SVD for this setting we explore two alternatives based on discriminant analysis (DA) and non-negative matrix factorization (NMF). Using 14 different datasets spanning 11 distinct disease types we demonstrate that at low dimensions, discriminant subspaces achieve significant improvements over SVD-based subspaces and the original feature space. We also show that at modest dimensions, NMF is a competitive alternative to SVD in this setting. The implementation of the proposed method is accessible via the following link.
Collapse
Affiliation(s)
- Jiahui Liu
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - Keqiang Fan
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - Xiaohao Cai
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - Mahesan Niranjan
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Wang Z, Li X, Zhang H, Duan T, Zhang C, Zhao T. Deep learning Radiomics Based on Two-Dimensional Ultrasound for Predicting the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer. ULTRASONIC IMAGING 2024; 46:357-366. [PMID: 39257175 DOI: 10.1177/01617346241276168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We investigate the predictive value of a comprehensive model based on preoperative ultrasound radiomics, deep learning, and clinical features for pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) for the breast cancer. We enrolled 155 patients with pathologically confirmed breast cancer who underwent NAC. The patients were randomly divided into the training set and the validation set in the ratio of 7:3. The deep learning and radiomics features of pre-treatment ultrasound images were extracted, and the random forest recursive elimination algorithm and the least absolute shrinkage and selection operator were used for feature screening and DL-Score and Rad-Score construction. According to multifactorial logistic regression, independent clinical predictors, DL-Score, and Rad-Score were selected to construct the comprehensive prediction model DLRC. The performance of the model was evaluated in terms of its predictive effect, and clinical practicability. Compared to the clinical, radiomics (Rad-Score), and deep learning (DL-Score) models, the DLRC accurately predicted the pCR status, with an area under the curve (AUC) of 0.937 (95%CI: 0.895-0.970) in the training set and 0.914 (95%CI: 0.838-0.973) in the validation set. Moreover, decision curve analysis confirmed that the DLRC had the highest clinical value among all models. The comprehensive model DLRC based on ultrasound radiomics, deep learning, and clinical features can effectively and accurately predict the pCR status of breast cancer after NAC, which is conducive to assisting clinical personalized diagnosis and treatment plan.
Collapse
Affiliation(s)
- Zhan Wang
- Jintan Peoples Hospital, Jiangsu, Changzhou, China
| | - Xiaoqin Li
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Jiangsu, Changzhou, China
| | - Heng Zhang
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Jiangsu, Changzhou, China
| | - Tongtong Duan
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Jiangsu, Changzhou, China
| | - Chao Zhang
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Jiangsu, Changzhou, China
| | - Tong Zhao
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Jiangsu, Changzhou, China
| |
Collapse
|
15
|
Zhang Y, Zeng B, Li J, Zheng Y, Chen X. A Multi-Task Transformer With Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis. IEEE J Biomed Health Inform 2024; 28:6840-6853. [PMID: 39226204 DOI: 10.1109/jbhi.2024.3454000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Breast cancer, as a malignant tumor disease, has maintained high incidence and mortality rates over the years. Ultrasonography is one of the primary methods for diagnosing early-stage breast cancer. However, correctly interpreting breast ultrasound images requires massive time from physicians with specialized knowledge and extensive experience. Recently, deep learning-based method have made significant advancements in breast tumor segmentation and classification due to their powerful fitting capabilities. However, most existing methods focus on performing one of these tasks separately, and often failing to effectively leverage information from specific tumor-related areas that hold considerable diagnostic value. In this study, we propose a multi-task network with local-global feature interaction and multiple tumoral region guidance for breast ultrasound-based tumor segmentation and classification. Specifically, we construct a dual-stream encoder, paralleling CNN and Transformer, to facilitate hierarchical interaction and fusion of local and global features. This architecture enables each stream to capitalize on the strengths of the other while preserving its unique characteristics. Moreover, we design a multi-tumoral region guidance module to explicitly learn long-range non-local dependencies within intra-tumoral and peri-tumoral regions from spatial domain, thus providing interpretable cues beneficial for classification. Experimental results on two breast ultrasound datasets show that our network outperforms state-of-the-art methods in tumor segmentation and classification tasks. Compared with the second-best competitive method, our network improves the diagnosis accuracy from 73.64% to 80.21% on a large external validation dataset, which demonstrates its superior generalization capability.
Collapse
|
16
|
Yi S, Chen Z. MIDC: Medical image dataset cleaning framework based on deep learning. Heliyon 2024; 10:e38910. [PMID: 39444398 PMCID: PMC11497395 DOI: 10.1016/j.heliyon.2024.e38910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Deep learning technology is widely used in the field of medical imaging. Among them, Convolutional Neural Networks (CNNs) are the most widely used, and the quality of the dataset is crucial for the training of CNN diagnostic models, as mislabeled data can easily affect the accuracy of the diagnostic models. However, due to medical specialization, it is difficult for non-professional physicians to judge mislabeled medical image data. In this paper, we proposed a new framework named medical image dataset cleaning (MIDC), whose main contribution is to improve the quality of public datasets by automatically cleaning up mislabeled data. The main innovations of MIDC are: firstly, the framework innovatively utilizes multiple public datasets of the same disease, relying on different CNNs to automatically recognize images and remove mislabeled data to complete the data cleaning process. This process does not rely on annotations from professional physicians and does not require additional datasets with more reliable labels; Secondly, a novel grading rule is designed to divide the datasets into high-accuracy datasets and low-accuracy datasets, based on which the data cleaning process can be performed; Thirdly, a novel data cleaning module based on CNN is designed to identify and clean low-accuracy datasets by using high-accuracy datasets. In the experiments, the validity of the proposed framework was verified by using four kinds of datasets diabetic retinal, viral pneumonia, breast tumor, and skin cancer, with results showing an increase in the average diagnostic accuracy from 71.18 % to 85.13 %, 82.50 %to 93.79 %, 85.59 %to 93.45 %, and 84.55 %to 94.21 %, respectively. The proposed data cleaning framework MIDC could better help physicians diagnose diseases based on the dataset with mislabeled data.
Collapse
Affiliation(s)
- Sanli Yi
- School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Computer Technology Application of Yunnan Province, Kunming, 650500, China
| | - Ziyan Chen
- School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Computer Technology Application of Yunnan Province, Kunming, 650500, China
| |
Collapse
|
17
|
Jabeen K, Khan MA, Hamza A, Albarakati HM, Alsenan S, Tariq U, Ofori I. An EfficientNet integrated ResNet deep network and explainable AI for breast lesion classification from ultrasound images. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2024. [DOI: 10.1049/cit2.12385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/07/2024] [Indexed: 01/12/2025] Open
Abstract
AbstractBreast cancer is one of the major causes of deaths in women. However, the early diagnosis is important for screening and control the mortality rate. Thus for the diagnosis of breast cancer at the early stage, a computer‐aided diagnosis system is highly required. Ultrasound is an important examination technique for breast cancer diagnosis due to its low cost. Recently, many learning‐based techniques have been introduced to classify breast cancer using breast ultrasound imaging dataset (BUSI) datasets; however, the manual handling is not an easy process and time consuming. The authors propose an EfficientNet‐integrated ResNet deep network and XAI‐based framework for accurately classifying breast cancer (malignant and benign). In the initial step, data augmentation is performed to increase the number of training samples. For this purpose, three‐pixel flip mathematical equations are introduced: horizontal, vertical, and 90°. Later, two pre‐trained deep learning models were employed, skipped some layers, and fine‐tuned. Both fine‐tuned models are later trained using a deep transfer learning process and extracted features from the deeper layer. Explainable artificial intelligence‐based analysed the performance of trained models. After that, a new feature selection technique is proposed based on the cuckoo search algorithm called cuckoo search controlled standard error mean. This technique selects the best features and fuses using a new parallel zero‐padding maximum correlated coefficient features. In the end, the selection algorithm is applied again to the fused feature vector and classified using machine learning algorithms. The experimental process of the proposed framework is conducted on a publicly available BUSI and obtained 98.4% and 98% accuracy in two different experiments. Comparing the proposed framework is also conducted with recent techniques and shows improved accuracy. In addition, the proposed framework was executed less than the original deep learning models.
Collapse
Affiliation(s)
- Kiran Jabeen
- Department of Computer Science HITEC University Taxila Rawalpindi Pakistan
| | | | - Ameer Hamza
- Department of Computer Science HITEC University Taxila Rawalpindi Pakistan
| | - Hussain Mobarak Albarakati
- Computer and Network Engineering Department College of Computing Umm Al‐Qura University Makkah Saudi Arabia
| | - Shrooq Alsenan
- Information Systems Department College of Computer and Information Sciences Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Usman Tariq
- Department of Management Information Systems College of Business Administration Prince Sattam bin Abdul Aziz University Alkharaj Saudi Arabia
| | - Isaac Ofori
- University of Mines and Technology Tarkwa Ghana
| |
Collapse
|
18
|
Nastase INA, Moldovanu S, Biswas KC, Moraru L. Role of inter- and extra-lesion tissue, transfer learning, and fine-tuning in the robust classification of breast lesions. Sci Rep 2024; 14:22754. [PMID: 39354128 PMCID: PMC11448494 DOI: 10.1038/s41598-024-74316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Accurate and unbiased classification of breast lesions is pivotal for early diagnosis and treatment, and a deep learning approach can effectively represent and utilize the digital content of images for more precise medical image analysis. Breast ultrasound imaging is useful for detecting and distinguishing benign masses from malignant masses. Based on the different ways in which benign and malignant tumors affect neighboring tissues, i.e., the pattern of growth and border irregularities, the penetration degree of the adjacent tissue, and tissue-level changes, we investigated the relationship between breast cancer imaging features and the roles of inter- and extra-lesional tissues and their impact on refining the performance of deep learning classification. The novelty of the proposed approach lies in considering the features extracted from the tissue inside the tumor (by performing an erosion operation) and from the lesion and surrounding tissue (by performing a dilation operation) for classification. This study uses these new features and three pre-trained deep neuronal networks to address the challenge of breast lesion classification in ultrasound images. To improve the classification accuracy and interpretability of the model, the proposed model leverages transfer learning to accelerate the training process. Three modern pre-trained CNN architectures (MobileNetV2, VGG16, and EfficientNetB7) are used for transfer learning and fine-tuning for optimization. There are concerns related to the neuronal networks producing erroneous outputs in the presence of noisy images, variations in input data, or adversarial attacks; thus, the proposed system uses the BUS-BRA database (two classes/benign and malignant) for training and testing and the unseen BUSI database (two classes/benign and malignant) for testing. Extensive experiments have recorded accuracy and AUC as performance parameters. The results indicate that the proposed system outperforms the existing breast cancer detection algorithms reported in the literature. AUC values of 1.00 are calculated for VGG16 and EfficientNet-B7 in the dilation cases. The proposed approach will facilitate this challenging and time-consuming classification task.
Collapse
Affiliation(s)
- Iulia-Nela Anghelache Nastase
- The Modeling & Simulation Laboratory, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania
- Emil Racovita Theoretical Highschool, 12-14, Regiment 11 Siret Street, Galati, 800332, Romania
| | - Simona Moldovanu
- The Modeling & Simulation Laboratory, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania.
- Department of Computer Science and Information Technology, Faculty of Automation, Computers, Electrical Engineering and Electronics, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania.
| | - Keka C Biswas
- Department of Biological Sciences, University of Alabama at Huntsville, Huntsville, AL, 35899, USA
| | - Luminita Moraru
- The Modeling & Simulation Laboratory, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania.
- Department of Chemistry, Physics & Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania.
- Department of Physics, School of Science and Technology, Sefako Makgatho Health Sciences University, Medunsa-0204, Pretoria, South Africa.
| |
Collapse
|
19
|
Liu Y, Yu W, Wang P, Huang Y, Li J, Li P. Deep Learning With Ultrasound Images Enhance the Diagnosis of Nonalcoholic Fatty Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00291-6. [PMID: 39179453 DOI: 10.1016/j.ultrasmedbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE This research aimed to improve diagnosis of non-alcoholic fatty liver disease (NAFLD) by deep learning with ultrasound Images and reduce the impact of the professional competence and personal bias of the diagnostician. METHOD Three convolutional neural network models were used to classify and identify the ultrasound images to obtain the best network. Then, the features in the ultrasound images were extracted and a new convolutional neural network was created based on the best network. Finally, the accuracy of several networks was compared and the best network was evaluated using AUC. RESULTS Models of VGG16, ResNet50, and Inception-v3 were individually applied to classify and identify 710 ultrasound images containing NAFLD, demonstrating accuracies of 66.2%, 58.5%, and 59.2%, respectively. To further improve the classification accuracy, two features are presented: the ultrasound echo attenuation coefficient (θ), derived from fitting brightness values within sliding region of interest (ROIs), and the ratio of Doppler effect (ROD), identified through analyzing spots exhibiting the Doppler effect. Then, a multi-input deep learning network framework based on the VGG16 model is established, where the VGG16 model processes ultrasound image, while the fully connected layers handle θ and ROD. Ultimately, these components are combined to jointly generate predictions, demonstrating robust diagnostic capabilities for moderate to severe fatty liver (AUC = 0.95). Moreover, the average accuracy is increased from 64.8% to 77.5%, attributed to the introduction of two advanced features with domain knowledge. CONCLUSION This research holds significant potential in aiding doctors for more precise and efficient diagnosis of ultrasound images related to NAFLD.
Collapse
Affiliation(s)
- Yao Liu
- Department of Ultrasound, The Second Affliated Hospital of Chongqing Medical University, Chongqing, China; Ultrasonography Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Wenrou Yu
- College of Physics, Chongqing University, Chongqing, China
| | - Peizheng Wang
- College of Physics, Chongqing University, Chongqing, China; School of Software Technology, Zhejiang University, Ningbo, China
| | - Yingzhou Huang
- College of Physics, Chongqing University, Chongqing, China
| | - Jin Li
- College of Physics, Chongqing University, Chongqing, China
| | - Pan Li
- Department of Ultrasound, The Second Affliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Ahmad J, Akram S, Jaffar A, Ali Z, Bhatti SM, Ahmad A, Rehman SU. Deep learning empowered breast cancer diagnosis: Advancements in detection and classification. PLoS One 2024; 19:e0304757. [PMID: 38990817 PMCID: PMC11239011 DOI: 10.1371/journal.pone.0304757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/18/2024] [Indexed: 07/13/2024] Open
Abstract
Recent advancements in AI, driven by big data technologies, have reshaped various industries, with a strong focus on data-driven approaches. This has resulted in remarkable progress in fields like computer vision, e-commerce, cybersecurity, and healthcare, primarily fueled by the integration of machine learning and deep learning models. Notably, the intersection of oncology and computer science has given rise to Computer-Aided Diagnosis (CAD) systems, offering vital tools to aid medical professionals in tumor detection, classification, recurrence tracking, and prognosis prediction. Breast cancer, a significant global health concern, is particularly prevalent in Asia due to diverse factors like lifestyle, genetics, environmental exposures, and healthcare accessibility. Early detection through mammography screening is critical, but the accuracy of mammograms can vary due to factors like breast composition and tumor characteristics, leading to potential misdiagnoses. To address this, an innovative CAD system leveraging deep learning and computer vision techniques was introduced. This system enhances breast cancer diagnosis by independently identifying and categorizing breast lesions, segmenting mass lesions, and classifying them based on pathology. Thorough validation using the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) demonstrated the CAD system's exceptional performance, with a 99% success rate in detecting and classifying breast masses. While the accuracy of detection is 98.5%, when segmenting breast masses into separate groups for examination, the method's performance was approximately 95.39%. Upon completing all the analysis, the system's classification phase yielded an overall accuracy of 99.16% for classification. The potential for this integrated framework to outperform current deep learning techniques is proposed, despite potential challenges related to the high number of trainable parameters. Ultimately, this recommended framework offers valuable support to researchers and physicians in breast cancer diagnosis by harnessing cutting-edge AI and image processing technologies, extending recent advances in deep learning to the medical domain.
Collapse
Affiliation(s)
- Jawad Ahmad
- Faculty of Computer Science & Information Technology, The Superior University, Lahore, Pakistan
- Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan
| | - Sheeraz Akram
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Arfan Jaffar
- Faculty of Computer Science & Information Technology, The Superior University, Lahore, Pakistan
- Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan
| | - Zulfiqar Ali
- School of Computer Science and Electronic Engineering (CSEE), University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Sohail Masood Bhatti
- Faculty of Computer Science & Information Technology, The Superior University, Lahore, Pakistan
- Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan
| | - Awais Ahmad
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shafiq Ur Rehman
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Wang J, Qiao L, Zhou S, Zhou J, Wang J, Li J, Ying S, Chang C, Shi J. Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers With Partially Annotated Ultrasound Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2509-2521. [PMID: 38373131 DOI: 10.1109/tmi.2024.3366940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Deep learning (DL) has proven highly effective for ultrasound-based computer-aided diagnosis (CAD) of breast cancers. In an automatic CAD system, lesion detection is critical for the following diagnosis. However, existing DL-based methods generally require voluminous manually-annotated region of interest (ROI) labels and class labels to train both the lesion detection and diagnosis models. In clinical practice, the ROI labels, i.e. ground truths, may not always be optimal for the classification task due to individual experience of sonologists, resulting in the issue of coarse annotation to limit the diagnosis performance of a CAD model. To address this issue, a novel Two-Stage Detection and Diagnosis Network (TSDDNet) is proposed based on weakly supervised learning to improve diagnostic accuracy of the ultrasound-based CAD for breast cancers. In particular, all the initial ROI-level labels are considered as coarse annotations before model training. In the first training stage, a candidate selection mechanism is then designed to refine manual ROIs in the fully annotated images and generate accurate pseudo-ROIs for the partially annotated images under the guidance of class labels. The training set is updated with more accurate ROI labels for the second training stage. A fusion network is developed to integrate detection network and classification network into a unified end-to-end framework as the final CAD model in the second training stage. A self-distillation strategy is designed on this model for joint optimization to further improves its diagnosis performance. The proposed TSDDNet is evaluated on three B-mode ultrasound datasets, and the experimental results indicate that it achieves the best performance on both lesion detection and diagnosis tasks, suggesting promising application potential.
Collapse
|
22
|
Xu P, Zhao J, Wan M, Song Q, Su Q, Wang D. Classification of multi-feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks. Med Phys 2024; 51:4243-4257. [PMID: 38436433 DOI: 10.1002/mp.16946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Breast tumor is a fatal threat to the health of women. Ultrasound (US) is a common and economical method for the diagnosis of breast cancer. Breast imaging reporting and data system (BI-RADS) category 4 has the highest false-positive value of about 30% among five categories. The classification task in BI-RADS category 4 is challenging and has not been fully studied. PURPOSE This work aimed to use convolutional neural networks (CNNs) for breast tumor classification using B-mode images in category 4 to overcome the dependence on operator and artifacts. Additionally, this work intends to take full advantage of morphological and textural features in breast tumor US images to improve classification accuracy. METHODS First, original US images coming directly from the hospital were cropped and resized. In 1385 B-mode US BI-RADS category 4 images, the biopsy eliminated 503 samples of benign tumor and left 882 of malignant. Then, K-means clustering algorithm and entropy of sliding windows of US images were conducted. Considering the diversity of different characteristic information of malignant and benign represented by original B-mode images, K-means clustering images and entropy images, they are fused in a three-channel form multi-feature fusion images dataset. The training, validation, and test sets are 969, 277, and 139. With transfer learning, 11 CNN models including DenseNet and ResNet were investigated. Finally, by comparing accuracy, precision, recall, F1-score, and area under curve (AUC) of the results, models which had better performance were selected. The normality of data was assessed by Shapiro-Wilk test. DeLong test and independent t-test were used to evaluate the significant difference of AUC and other values. False discovery rate was utilized to ultimately evaluate the advantages of CNN with highest evaluation metrics. In addition, the study of anti-log compression was conducted but no improvement has shown in CNNs classification results. RESULTS With multi-feature fusion images, DenseNet121 has highest accuracy of 80.22 ± 1.45% compared to other CNNs, precision of 77.97 ± 2.89% and AUC of 0.82 ± 0.01. Multi-feature fusion improved accuracy of DenseNet121 by 1.87% from classification of original B-mode images (p < 0.05). CONCLUSION The CNNs with multi-feature fusion show a good potential of reducing the false-positive rate within category 4. The work illustrated that CNNs and fusion images have the potential to reduce false-positive rate in breast tumor within US BI-RADS category 4, and make the diagnosis of category 4 breast tumors to be more accurate and precise.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhao
- The Second Hospital of Jilin University, Changchun, China
| | - Mingxi Wan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qing Song
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Su
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Diya Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Park TY, Kwon LM, Hyeon J, Cho BJ, Kim BJ. Deep Learning Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Clinical Implication-Applied Preprocessed CT Images. Curr Oncol 2024; 31:2278-2288. [PMID: 38668072 PMCID: PMC11049657 DOI: 10.3390/curroncol31040169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Accurate detection of axillary lymph node (ALN) metastases in breast cancer is crucial for clinical staging and treatment planning. This study aims to develop a deep learning model using clinical implication-applied preprocessed computed tomography (CT) images to enhance the prediction of ALN metastasis in breast cancer patients. Methods: A total of 1128 axial CT images of ALN (538 malignant and 590 benign lymph nodes) were collected from 523 breast cancer patients who underwent preoperative CT scans between January 2012 and July 2022 at Hallym University Medical Center. To develop an optimal deep learning model for distinguishing metastatic ALN from benign ALN, a CT image preprocessing protocol with clinical implications and two different cropping methods (fixed size crop [FSC] method and adjustable square crop [ASC] method) were employed. The images were analyzed using three different convolutional neural network (CNN) architectures (ResNet, DenseNet, and EfficientNet). Ensemble methods involving and combining the selection of the two best-performing CNN architectures from each cropping method were applied to generate the final result. Results: For the two different cropping methods, DenseNet consistently outperformed ResNet and EfficientNet. The area under the receiver operating characteristic curve (AUROC) for DenseNet, using the FSC and ASC methods, was 0.934 and 0.939, respectively. The ensemble model, which combines the performance of the DenseNet121 architecture for both cropping methods, delivered outstanding results with an AUROC of 0.968, an accuracy of 0.938, a sensitivity of 0.980, and a specificity of 0.903. Furthermore, distinct trends observed in gradient-weighted class activation mapping images with the two cropping methods suggest that our deep learning model not only evaluates the lymph node itself, but also distinguishes subtler changes in lymph node margin and adjacent soft tissue, which often elude human interpretation. Conclusions: This research demonstrates the promising performance of a deep learning model in accurately detecting malignant ALNs in breast cancer patients using CT images. The integration of clinical considerations into image processing and the utilization of ensemble methods further improved diagnostic precision.
Collapse
Affiliation(s)
- Tae Yong Park
- Medical Artificial Intelligence Center, Doheon Institute for Digital Innovation in Medicine, Hallym Univesity Medical Center, Anyang-si 14068, Republic of Korea;
| | - Lyo Min Kwon
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang-si 14068, Republic of Korea;
| | - Jini Hyeon
- School of Medicine, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
| | - Bum-Joo Cho
- Medical Artificial Intelligence Center, Doheon Institute for Digital Innovation in Medicine, Hallym Univesity Medical Center, Anyang-si 14068, Republic of Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang-si 14068, Republic of Korea
| | - Bum Jun Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang-si 14068, Republic of Korea
| |
Collapse
|
24
|
Gómez-Flores W, Gregorio-Calas MJ, Coelho de Albuquerque Pereira W. BUS-BRA: A breast ultrasound dataset for assessing computer-aided diagnosis systems. Med Phys 2024; 51:3110-3123. [PMID: 37937827 DOI: 10.1002/mp.16812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
PURPOSE Computer-aided diagnosis (CAD) systems on breast ultrasound (BUS) aim to increase the efficiency and effectiveness of breast screening, helping specialists to detect and classify breast lesions. CAD system development requires a set of annotated images, including lesion segmentation, biopsy results to specify benign and malignant cases, and BI-RADS categories to indicate the likelihood of malignancy. Besides, standardized partitions of training, validation, and test sets promote reproducibility and fair comparisons between different approaches. Thus, we present a publicly available BUS dataset whose novelty is the substantial increment of cases with the above-mentioned annotations and the inclusion of standardized partitions to objectively assess and compare CAD systems. ACQUISITION AND VALIDATION METHODS The BUS dataset comprises 1875 anonymized images from 1064 female patients acquired via four ultrasound scanners during systematic studies at the National Institute of Cancer (Rio de Janeiro, Brazil). The dataset includes biopsy-proven tumors divided into 722 benign and 342 malignant cases. Besides, a senior ultrasonographer performed a BI-RADS assessment in categories 2 to 5. Additionally, the ultrasonographer manually outlined the breast lesions to obtain ground truth segmentations. Furthermore, 5- and 10-fold cross-validation partitions are provided to standardize the training and test sets to evaluate and reproduce CAD systems. Finally, to validate the utility of the BUS dataset, an evaluation framework is implemented to assess the performance of deep neural networks for segmenting and classifying breast lesions. DATA FORMAT AND USAGE NOTES The BUS dataset is publicly available for academic and research purposes through an open-access repository under the name BUS-BRA: A Breast Ultrasound Dataset for Assessing CAD Systems. BUS images and reference segmentations are saved in Portable Network Graphic (PNG) format files, and the dataset information is stored in separate Comma-Separated Value (CSV) files. POTENTIAL APPLICATIONS The BUS-BRA dataset can be used to develop and assess artificial intelligence-based lesion detection and segmentation methods, and the classification of BUS images into pathological classes and BI-RADS categories. Other potential applications include developing image processing methods like despeckle filtering and contrast enhancement methods to improve image quality and feature engineering for image description.
Collapse
Affiliation(s)
- Wilfrido Gómez-Flores
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Tamaulipas, Mexico
| | | | | |
Collapse
|
25
|
Majumder S, Gautam N, Basu A, Sau A, Geem ZW, Sarkar R. MENet: A Mitscherlich function based ensemble of CNN models to classify lung cancer using CT scans. PLoS One 2024; 19:e0298527. [PMID: 38466701 PMCID: PMC10927148 DOI: 10.1371/journal.pone.0298527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide. To reduce the mortality rate, early detection and proper treatment should be ensured. Computer-aided diagnosis methods analyze different modalities of medical images to increase diagnostic precision. In this paper, we propose an ensemble model, called the Mitscherlich function-based Ensemble Network (MENet), which combines the prediction probabilities obtained from three deep learning models, namely Xception, InceptionResNetV2, and MobileNetV2, to improve the accuracy of a lung cancer prediction model. The ensemble approach is based on the Mitscherlich function, which produces a fuzzy rank to combine the outputs of the said base classifiers. The proposed method is trained and tested on the two publicly available lung cancer datasets, namely Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases (IQ-OTH/NCCD) and LIDC-IDRI, both of these are computed tomography (CT) scan datasets. The obtained results in terms of some standard metrics show that the proposed method performs better than state-of-the-art methods. The codes for the proposed work are available at https://github.com/SuryaMajumder/MENet.
Collapse
Affiliation(s)
- Surya Majumder
- Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata, India
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Nandita Gautam
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Abhishek Basu
- Department of Computer Science and Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Arup Sau
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Zong Woo Geem
- College of IT Convergence, Gachon University, Seongnam, South Korea
| | - Ram Sarkar
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
26
|
Huang Z, Yang K, Tian H, Wu H, Tang S, Cui C, Shi S, Jiang Y, Chen J, Xu J, Dong F. A validation of an entropy-based artificial intelligence for ultrasound data in breast tumors. BMC Med Inform Decis Mak 2024; 24:1. [PMID: 38166852 PMCID: PMC10759705 DOI: 10.1186/s12911-023-02404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The application of artificial intelligence (AI) in the ultrasound (US) diagnosis of breast cancer (BCa) is increasingly prevalent. However, the impact of US-probe frequencies on the diagnostic efficacy of AI models has not been clearly established. OBJECTIVES To explore the impact of using US-video of variable frequencies on the diagnostic efficacy of AI in breast US screening. METHODS This study utilized different frequency US-probes (L14: frequency range: 3.0-14.0 MHz, central frequency 9 MHz, L9: frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz and L13: frequency range: 3.6-13.5 MHz, central frequency 8 MHz, L7: frequency range: 3-7 MHz, central frequency 4.0 MHz, linear arrays) to collect breast-video and applied an entropy-based deep learning approach for evaluation. We analyzed the average two-dimensional image entropy (2-DIE) of these videos and the performance of AI models in processing videos from these different frequencies to assess how probe frequency affects AI diagnostic performance. RESULTS The study found that in testing set 1, L9 was higher than L14 in average 2-DIE; in testing set 2, L13 was higher in average 2-DIE than L7. The diagnostic efficacy of US-data, utilized in AI model analysis, varied across different frequencies (AUC: L9 > L14: 0.849 vs. 0.784; L13 > L7: 0.920 vs. 0.887). CONCLUSION This study indicate that US-data acquired using probes with varying frequencies exhibit diverse average 2-DIE values, and datasets characterized by higher average 2-DIE demonstrate enhanced diagnostic outcomes in AI-driven BCa diagnosis. Unlike other studies, our research emphasizes the importance of US-probe frequency selection on AI model diagnostic performance, rather than focusing solely on the AI algorithms themselves. These insights offer a new perspective for early BCa screening and diagnosis and are of significant for future choices of US equipment and optimization of AI algorithms.
Collapse
Affiliation(s)
- Zhibin Huang
- The Second Clinical Medical College, Jinan University, 518020, Shenzhen, China
| | - Keen Yang
- The Second Clinical Medical College, Jinan University, 518020, Shenzhen, China
| | - Hongtian Tian
- The Second Clinical Medical College, Jinan University, 518020, Shenzhen, China
| | - Huaiyu Wu
- The Second Clinical Medical College, Jinan University, 518020, Shenzhen, China
| | - Shuzhen Tang
- The Second Clinical Medical College, Jinan University, 518020, Shenzhen, China
| | - Chen Cui
- Research and development department, Illuminate, LLC, 518000, Shenzhen, Guangdong, China
| | - Siyuan Shi
- Research and development department, Illuminate, LLC, 518000, Shenzhen, Guangdong, China
| | - Yitao Jiang
- Research and development department, Illuminate, LLC, 518000, Shenzhen, Guangdong, China
| | - Jing Chen
- The Second Clinical Medical College, Jinan University, 518020, Shenzhen, China
| | - Jinfeng Xu
- The Second Clinical Medical College, Jinan University, 518020, Shenzhen, China.
- Shenzhen People's Hospital, 518020, Shenzhen, China.
| | - Fajin Dong
- The Second Clinical Medical College, Jinan University, 518020, Shenzhen, China.
- Shenzhen People's Hospital, 518020, Shenzhen, China.
| |
Collapse
|
27
|
Montaha S, Azam S, Bhuiyan MRI, Chowa SS, Mukta MSH, Jonkman M. Malignancy pattern analysis of breast ultrasound images using clinical features and a graph convolutional network. Digit Health 2024; 10:20552076241251660. [PMID: 38817843 PMCID: PMC11138200 DOI: 10.1177/20552076241251660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/12/2024] [Indexed: 06/01/2024] Open
Abstract
Objective Early diagnosis of breast cancer can lead to effective treatment, possibly increase long-term survival rates, and improve quality of life. The objective of this study is to present an automated analysis and classification system for breast cancer using clinical markers such as tumor shape, orientation, margin, and surrounding tissue. The novelty and uniqueness of the study lie in the approach of considering medical features based on the diagnosis of radiologists. Methods Using clinical markers, a graph is generated where each feature is represented by a node, and the connection between them is represented by an edge which is derived through Pearson's correlation method. A graph convolutional network (GCN) model is proposed to classify breast tumors into benign and malignant, using the graph data. Several statistical tests are performed to assess the importance of the proposed features. The performance of the proposed GCN model is improved by experimenting with different layer configurations and hyper-parameter settings. Results Results show that the proposed model has a 98.73% test accuracy. The performance of the model is compared with a graph attention network, a one-dimensional convolutional neural network, and five transfer learning models, ten machine learning models, and three ensemble learning models. The performance of the model was further assessed with three supplementary breast cancer ultrasound image datasets, where the accuracies are 91.03%, 94.37%, and 89.62% for Dataset A, Dataset B, and Dataset C (combining Dataset A and Dataset B) respectively. Overfitting issues are assessed through k-fold cross-validation. Conclusion Several variants are utilized to present a more rigorous and fair evaluation of our work, especially the importance of extracting clinically relevant features. Moreover, a GCN model using graph data can be a promising solution for an automated feature-based breast image classification system.
Collapse
Affiliation(s)
- Sidratul Montaha
- Department of Computer Science, University of Calgary, Calgary, Canada
| | - Sami Azam
- Faculty of Science and Technology, Charles Darwin University, Casuarina, Australia
| | | | - Sadia Sultana Chowa
- Faculty of Science and Technology, Charles Darwin University, Casuarina, Australia
| | | | - Mirjam Jonkman
- Faculty of Science and Technology, Charles Darwin University, Casuarina, Australia
| |
Collapse
|
28
|
Chowa SS, Azam S, Montaha S, Payel IJ, Bhuiyan MRI, Hasan MZ, Jonkman M. Graph neural network-based breast cancer diagnosis using ultrasound images with optimized graph construction integrating the medically significant features. J Cancer Res Clin Oncol 2023; 149:18039-18064. [PMID: 37982829 PMCID: PMC10725367 DOI: 10.1007/s00432-023-05464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE An automated computerized approach can aid radiologists in the early diagnosis of breast cancer. In this study, a novel method is proposed for classifying breast tumors into benign and malignant, based on the ultrasound images through a Graph Neural Network (GNN) model utilizing clinically significant features. METHOD Ten informative features are extracted from the region of interest (ROI), based on the radiologists' diagnosis markers. The significance of the features is evaluated using density plot and T test statistical analysis method. A feature table is generated where each row represents individual image, considered as node, and the edges between the nodes are denoted by calculating the Spearman correlation coefficient. A graph dataset is generated and fed into the GNN model. The model is configured through ablation study and Bayesian optimization. The optimized model is then evaluated with different correlation thresholds for getting the highest performance with a shallow graph. The performance consistency is validated with k-fold cross validation. The impact of utilizing ROIs and handcrafted features for breast tumor classification is evaluated by comparing the model's performance with Histogram of Oriented Gradients (HOG) descriptor features from the entire ultrasound image. Lastly, a clustering-based analysis is performed to generate a new filtered graph, considering weak and strong relationships of the nodes, based on the similarities. RESULTS The results indicate that with a threshold value of 0.95, the GNN model achieves the highest test accuracy of 99.48%, precision and recall of 100%, and F1 score of 99.28%, reducing the number of edges by 85.5%. The GNN model's performance is 86.91%, considering no threshold value for the graph generated from HOG descriptor features. Different threshold values for the Spearman's correlation score are experimented with and the performance is compared. No significant differences are observed between the previous graph and the filtered graph. CONCLUSION The proposed approach might aid the radiologists in effective diagnosing and learning tumor pattern of breast cancer.
Collapse
Affiliation(s)
- Sadia Sultana Chowa
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia
| | - Sami Azam
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia.
| | - Sidratul Montaha
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia
| | - Israt Jahan Payel
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Md Rahad Islam Bhuiyan
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia
| | - Md Zahid Hasan
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Mirjam Jonkman
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia
| |
Collapse
|
29
|
Gómez-Flores W, Pereira WCDA. Gray-to-color image conversion in the classification of breast lesions on ultrasound using pre-trained deep neural networks. Med Biol Eng Comput 2023; 61:3193-3207. [PMID: 37713158 DOI: 10.1007/s11517-023-02928-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Breast ultrasound (BUS) image classification in benign and malignant classes is often based on pre-trained convolutional neural networks (CNNs) to cope with small-sized training data. Nevertheless, BUS images are single-channel gray-level images, whereas pre-trained CNNs learned from color images with red, green, and blue (RGB) components. Thus, a gray-to-color conversion method is applied to fit the BUS image to the CNN's input layer size. This paper evaluates 13 gray-to-color conversion methods proposed in the literature that follow three strategies: replicating the gray-level image to all RGB channels, decomposing the image to enhance inherent information like the lesion's texture and morphology, and learning a matching layer. Besides, we introduce an image decomposition method based on the lesion's structural information to describe its inner and outer complexity. These gray-to-color conversion methods are evaluated under the same experimental framework using a pre-trained CNN architecture named ResNet-18 and a BUS dataset with more than 3000 images. In addition, the Matthews correlation coefficient (MCC), sensitivity (SEN), and specificity (SPE) measure the classification performance. The experimental results show that decomposition methods outperform replication and learning-based methods when using information from the lesion's binary mask (obtained from a segmentation method), reaching an MCC value greater than 0.70 and specificity up to 0.92, although the sensitivity is about 0.80. On the other hand, regarding the proposed method, the trade-off between sensitivity and specificity is better balanced, obtaining about 0.88 for both indices and an MCC of 0.73. This study contributes to the objective assessment of different gray-to-color conversion approaches in classifying breast lesions, revealing that mask-based decomposition methods improve classification performance. Besides, the proposed method based on structural information improves the sensitivity, obtaining more reliable classification results on malignant cases and potentially benefiting clinical practice.
Collapse
Affiliation(s)
- Wilfrido Gómez-Flores
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Tamaulipas, Ciudad Victoria, 87138, Tamaulipas, Mexico.
| | | |
Collapse
|
30
|
Hossain S, Azam S, Montaha S, Karim A, Chowa SS, Mondol C, Zahid Hasan M, Jonkman M. Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model. Heliyon 2023; 9:e21369. [PMID: 37885728 PMCID: PMC10598544 DOI: 10.1016/j.heliyon.2023.e21369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Breast cancer stands as the second most deadly form of cancer among women worldwide. Early diagnosis and treatment can significantly mitigate mortality rates. Purpose The study aims to classify breast ultrasound images into benign and malignant tumors. This approach involves segmenting the breast's region of interest (ROI) employing an optimized UNet architecture and classifying the ROIs through an optimized shallow CNN model utilizing an ablation study. Method Several image processing techniques are utilized to improve image quality by removing text, artifacts, and speckle noise, and statistical analysis is done to check the enhanced image quality is satisfactory. With the processed dataset, the segmentation of breast tumor ROI is carried out, optimizing the UNet model through an ablation study where the architectural configuration and hyperparameters are altered. After obtaining the tumor ROIs from the fine-tuned UNet model (RKO-UNet), an optimized CNN model is employed to classify the tumor into benign and malignant classes. To enhance the CNN model's performance, an ablation study is conducted, coupled with the integration of an attention unit. The model's performance is further assessed by classifying breast cancer with mammogram images. Result The proposed classification model (RKONet-13) results in an accuracy of 98.41 %. The performance of the proposed model is further compared with five transfer learning models for both pre-segmented and post-segmented datasets. K-fold cross-validation is done to assess the proposed RKONet-13 model's performance stability. Furthermore, the performance of the proposed model is compared with previous literature, where the proposed model outperforms existing methods, demonstrating its effectiveness in breast cancer diagnosis. Lastly, the model demonstrates its robustness for breast cancer classification, delivering an exceptional performance of 96.21 % on a mammogram dataset. Conclusion The efficacy of this study relies on image pre-processing, segmentation with hybrid attention UNet, and classification with fine-tuned robust CNN model. This comprehensive approach aims to determine an effective technique for detecting breast cancer within ultrasound images.
Collapse
Affiliation(s)
- Shahed Hossain
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Sami Azam
- Faculty of Science and Technology, Charles Darwin University, Casuarina, 0909, NT, Australia
| | - Sidratul Montaha
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Asif Karim
- Faculty of Science and Technology, Charles Darwin University, Casuarina, 0909, NT, Australia
| | - Sadia Sultana Chowa
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Chaity Mondol
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Md Zahid Hasan
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Mirjam Jonkman
- Faculty of Science and Technology, Charles Darwin University, Casuarina, 0909, NT, Australia
| |
Collapse
|
31
|
Guo Y, Jiang R, Gu X, Cheng HD, Garg H. A Novel Fuzzy Relative-Position-Coding Transformer for Breast Cancer Diagnosis Using Ultrasonography. Healthcare (Basel) 2023; 11:2530. [PMID: 37761727 PMCID: PMC10531413 DOI: 10.3390/healthcare11182530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer is a leading cause of death in women worldwide, and early detection is crucial for successful treatment. Computer-aided diagnosis (CAD) systems have been developed to assist doctors in identifying breast cancer on ultrasound images. In this paper, we propose a novel fuzzy relative-position-coding (FRPC) Transformer to classify breast ultrasound (BUS) images for breast cancer diagnosis. The proposed FRPC Transformer utilizes the self-attention mechanism of Transformer networks combined with fuzzy relative-position-coding to capture global and local features of the BUS images. The performance of the proposed method is evaluated on one benchmark dataset and compared with those obtained by existing Transformer approaches using various metrics. The experimental outcomes distinctly establish the superiority of the proposed method in achieving elevated levels of accuracy, sensitivity, specificity, and F1 score (all at 90.52%), as well as a heightened area under the receiver operating characteristic (ROC) curve (0.91), surpassing those attained by the original Transformer model (at 89.54%, 89.54%, 89.54%, and 0.89, respectively). Overall, the proposed FRPC Transformer is a promising approach for breast cancer diagnosis. It has potential applications in clinical practice and can contribute to the early detection of breast cancer.
Collapse
Affiliation(s)
- Yanhui Guo
- Department of Computer Science, University of Illinois, Springfield, IL 62703, USA
| | - Ruquan Jiang
- Department of Pediatrics, Xinxiang Medical University, Xinxiang 453003, China;
| | - Xin Gu
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China;
| | - Heng-Da Cheng
- Department of Computer Science, Utah State University, Logan, UT 84322, USA;
| | - Harish Garg
- School of Mathematics, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147004, Punjab, India;
| |
Collapse
|
32
|
Liu Z, Lv Q, Lee CH, Shen L. GSDA: Generative adversarial network-based semi-supervised data augmentation for ultrasound image classification. Heliyon 2023; 9:e19585. [PMID: 37809802 PMCID: PMC10558834 DOI: 10.1016/j.heliyon.2023.e19585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Medical Ultrasound (US) is one of the most widely used imaging modalities in clinical practice, but its usage presents unique challenges such as variable imaging quality. Deep Learning (DL) models can serve as advanced medical US image analysis tools, but their performance is greatly limited by the scarcity of large datasets. To solve the common data shortage, we develop GSDA, a Generative Adversarial Network (GAN)-based semi-supervised data augmentation method. GSDA consists of the GAN and Convolutional Neural Network (CNN). The GAN synthesizes and pseudo-labels high-resolution, high-quality US images, and both real and synthesized images are then leveraged to train the CNN. To address the training challenges of both GAN and CNN with limited data, we employ transfer learning techniques during their training. We also introduce a novel evaluation standard that balances classification accuracy with computational time. We evaluate our method on the BUSI dataset and GSDA outperforms existing state-of-the-art methods. With the high-resolution and high-quality images synthesized, GSDA achieves a 97.9% accuracy using merely 780 images. Given these promising results, we believe that GSDA holds potential as an auxiliary tool for medical US analysis.
Collapse
Affiliation(s)
- Zhaoshan Liu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Qiujie Lv
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- School of Intelligent Systems Engineering, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, China
| | - Chau Hung Lee
- Department of Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
33
|
Qi W, Wu HC, Chan SC. MDF-Net: A Multi-Scale Dynamic Fusion Network for Breast Tumor Segmentation of Ultrasound Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:4842-4855. [PMID: 37639409 DOI: 10.1109/tip.2023.3304518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Breast tumor segmentation of ultrasound images provides valuable information of tumors for early detection and diagnosis. Accurate segmentation is challenging due to low image contrast between areas of interest; speckle noises, and large inter-subject variations in tumor shape and size. This paper proposes a novel Multi-scale Dynamic Fusion Network (MDF-Net) for breast ultrasound tumor segmentation. It employs a two-stage end-to-end architecture with a trunk sub-network for multiscale feature selection and a structurally optimized refinement sub-network for mitigating impairments such as noise and inter-subject variation via better feature exploration and fusion. The trunk network is extended from UNet++ with a simplified skip pathway structure to connect the features between adjacent scales. Moreover, deep supervision at all scales, instead of at the finest scale in UNet++, is proposed to extract more discriminative features and mitigate errors from speckle noise via a hybrid loss function. Unlike previous works, the first stage is linked to a loss function of the second stage so that both the preliminary segmentations and refinement subnetworks can be refined together at training. The refinement sub-network utilizes a structurally optimized MDF mechanism to integrate preliminary segmentation information (capturing general tumor shape and size) at coarse scales and explores inter-subject variation information at finer scales. Experimental results from two public datasets show that the proposed method achieves better Dice and other scores over state-of-the-art methods. Qualitative analysis also indicates that our proposed network is more robust to tumor size/shapes, speckle noise and heavy posterior shadows along tumor boundaries. An optional post-processing step is also proposed to facilitate users in mitigating segmentation artifacts. The efficiency of the proposed network is also illustrated on the "Electron Microscopy neural structures segmentation dataset". It outperforms a state-of-the-art algorithm based on UNet-2022 with simpler settings. This indicates the advantages of our MDF-Nets in other challenging image segmentation tasks with small to medium data sizes.
Collapse
|
34
|
Li Y, El Habib Daho M, Conze PH, Zeghlache R, Le Boité H, Bonnin S, Cosette D, Magazzeni S, Lay B, Le Guilcher A, Tadayoni R, Cochener B, Lamard M, Quellec G. Hybrid Fusion of High-Resolution and Ultra-Widefield OCTA Acquisitions for the Automatic Diagnosis of Diabetic Retinopathy. Diagnostics (Basel) 2023; 13:2770. [PMID: 37685306 PMCID: PMC10486731 DOI: 10.3390/diagnostics13172770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Optical coherence tomography angiography (OCTA) can deliver enhanced diagnosis for diabetic retinopathy (DR). This study evaluated a deep learning (DL) algorithm for automatic DR severity assessment using high-resolution and ultra-widefield (UWF) OCTA. Diabetic patients were examined with 6×6 mm2 high-resolution OCTA and 15×15 mm2 UWF-OCTA using PLEX®Elite 9000. A novel DL algorithm was trained for automatic DR severity inference using both OCTA acquisitions. The algorithm employed a unique hybrid fusion framework, integrating structural and flow information from both acquisitions. It was trained on data from 875 eyes of 444 patients. Tested on 53 patients (97 eyes), the algorithm achieved a good area under the receiver operating characteristic curve (AUC) for detecting DR (0.8868), moderate non-proliferative DR (0.8276), severe non-proliferative DR (0.8376), and proliferative/treated DR (0.9070). These results significantly outperformed detection with the 6×6 mm2 (AUC = 0.8462, 0.7793, 0.7889, and 0.8104, respectively) or 15×15 mm2 (AUC = 0.8251, 0.7745, 0.7967, and 0.8786, respectively) acquisitions alone. Thus, combining high-resolution and UWF-OCTA acquisitions holds the potential for improved early and late-stage DR detection, offering a foundation for enhancing DR management and a clear path for future works involving expanded datasets and integrating additional imaging modalities.
Collapse
Affiliation(s)
- Yihao Li
- Inserm, UMR 1101 LaTIM, F-29200 Brest, France
- Univ Bretagne Occidentale, F-29200 Brest, France
| | - Mostafa El Habib Daho
- Inserm, UMR 1101 LaTIM, F-29200 Brest, France
- Univ Bretagne Occidentale, F-29200 Brest, France
| | - Pierre-Henri Conze
- Inserm, UMR 1101 LaTIM, F-29200 Brest, France
- IMT Atlantique, ITI Department, F-29200 Brest, France
| | - Rachid Zeghlache
- Inserm, UMR 1101 LaTIM, F-29200 Brest, France
- Univ Bretagne Occidentale, F-29200 Brest, France
| | - Hugo Le Boité
- Sorbonne University, F-75006 Paris, France
- Service d’Ophtalmologie, Hôpital Lariboisière, AP-HP, F-75475 Paris, France
| | - Sophie Bonnin
- Service d’Ophtalmologie, Hôpital Lariboisière, AP-HP, F-75475 Paris, France
| | | | | | - Bruno Lay
- ADCIS, F-14280 Saint-Contest, France
| | | | - Ramin Tadayoni
- Service d’Ophtalmologie, Hôpital Lariboisière, AP-HP, F-75475 Paris, France
| | - Béatrice Cochener
- Inserm, UMR 1101 LaTIM, F-29200 Brest, France
- Univ Bretagne Occidentale, F-29200 Brest, France
- Service d’Ophtalmologie, CHRU Brest, F-29200 Brest, France
| | - Mathieu Lamard
- Inserm, UMR 1101 LaTIM, F-29200 Brest, France
- Univ Bretagne Occidentale, F-29200 Brest, France
| | | |
Collapse
|
35
|
Lai DKH, Cheng ESW, Mao YJ, Zheng Y, Yao KY, Ni M, Zhang YQ, Wong DWC, Cheung JCW. Sonoelastography for Testicular Tumor Identification: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. Cancers (Basel) 2023; 15:3770. [PMID: 37568585 PMCID: PMC10417060 DOI: 10.3390/cancers15153770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The objective of this review was to summarize the applications of sonoelastography in testicular tumor identification and inquire about their test performances. Two authors independently searched English journal articles and full conference papers from CINAHL, Embase, IEEE Xplore®, PubMed, Scopus, and Web of Science from inception and organized them into a PIRO (patient, index test, reference test, outcome) framework. Eleven studies (n = 11) were eligible for data synthesis, nine of which (n = 9) utilized strain elastography and two (n = 2) employed shear-wave elastography. Meta-analyses were performed on the distinction between neoplasm (tumor) and non-neoplasm (non-tumor) from four study arms and between malignancy and benignity from seven study arms. The pooled sensitivity of classifying malignancy and benignity was 86.0% (95%CI, 79.7% to 90.6%). There was substantial heterogeneity in the classification of neoplasm and non-neoplasm and in the specificity of classifying malignancy and benignity, which could not be addressed by the subgroup analysis of sonoelastography techniques. Heterogeneity might be associated with the high risk of bias and applicability concern, including a wide spectrum of testicular pathologies and verification bias in the reference tests. Key technical obstacles in the index test were manual compression in strain elastography, qualitative observation of non-standardized color codes, and locating the Regions of Interest (ROI), in addition to decisions in feature extractions. Future research may focus on multiparametric sonoelastography using deep learning models and ensemble learning. A decision model on the benefits-risks of surgical exploration (reference test) could also be developed to direct the test-and-treat strategy for testicular tumors.
Collapse
Affiliation(s)
- Derek Ka-Hei Lai
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ethan Shiu-Wang Cheng
- Department of Electronic and Information Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ye-Jiao Mao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yi Zheng
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ke-Yu Yao
- Department of Materials, Imperial College, London SW7 2AZ, UK
| | - Ming Ni
- Department of Orthopaedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory of Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Qi Zhang
- Department of Orthopaedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
36
|
Zou X, Zhai J, Qian S, Li A, Tian F, Cao X, Wang R. Improved breast ultrasound tumor classification using dual-input CNN with GAP-guided attention loss. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:15244-15264. [PMID: 37679179 DOI: 10.3934/mbe.2023682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Ultrasonography is a widely used medical imaging technique for detecting breast cancer. While manual diagnostic methods are subject to variability and time-consuming, computer-aided diagnostic (CAD) methods have proven to be more efficient. However, current CAD approaches neglect the impact of noise and artifacts on the accuracy of image analysis. To enhance the precision of breast ultrasound image analysis for identifying tissues, organs and lesions, we propose a novel approach for improved tumor classification through a dual-input model and global average pooling (GAP)-guided attention loss function. Our approach leverages a convolutional neural network with transformer architecture and modifies the single-input model for dual-input. This technique employs a fusion module and GAP operation-guided attention loss function simultaneously to supervise the extraction of effective features from the target region and mitigate the effect of information loss or redundancy on misclassification. Our proposed method has three key features: (i) ResNet and MobileViT are combined to enhance local and global information extraction. In addition, a dual-input channel is designed to include both attention images and original breast ultrasound images, mitigating the impact of noise and artifacts in ultrasound images. (ii) A fusion module and GAP operation-guided attention loss function are proposed to improve the fusion of dual-channel feature information, as well as supervise and constrain the weight of the attention mechanism on the fused focus region. (iii) Using the collected uterine fibroid ultrasound dataset to train ResNet18 and load the pre-trained weights, our experiments on the BUSI and BUSC public datasets demonstrate that the proposed method outperforms some state-of-the-art methods. The code will be publicly released at https://github.com/425877/Improved-Breast-Ultrasound-Tumor-Classification.
Collapse
Affiliation(s)
- Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Jintao Zhai
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Shengyou Qian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Ang Li
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Feng Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiaofei Cao
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| | - Runmin Wang
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
37
|
Wang SH, Chen G, Zhong X, Lin T, Shen Y, Fan X, Cao L. Global development of artificial intelligence in cancer field: a bibliometric analysis range from 1983 to 2022. Front Oncol 2023; 13:1215729. [PMID: 37519796 PMCID: PMC10382324 DOI: 10.3389/fonc.2023.1215729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Artificial intelligence (AI) is widely applied in cancer field nowadays. The aim of this study is to explore the hotspots and trends of AI in cancer research. Methods The retrieval term includes four topic words ("tumor," "cancer," "carcinoma," and "artificial intelligence"), which were searched in the database of Web of Science from January 1983 to December 2022. Then, we documented and processed all data, including the country, continent, Journal Impact Factor, and so on using the bibliometric software. Results A total of 6,920 papers were collected and analyzed. We presented the annual publications and citations, most productive countries/regions, most influential scholars, the collaborations of journals and institutions, and research focus and hotspots in AI-based cancer research. Conclusion This study systematically summarizes the current research overview of AI in cancer research so as to lay the foundation for future research.
Collapse
Affiliation(s)
- Sui-Han Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Shen
- Department of General Surgery, The First People’s Hospital of Yu Hang District, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Zafar A, Tanveer J, Ali MU, Lee SW. BU-DLNet: Breast Ultrasonography-Based Cancer Detection Using Deep-Learning Network Selection and Feature Optimization. Bioengineering (Basel) 2023; 10:825. [PMID: 37508852 PMCID: PMC10376009 DOI: 10.3390/bioengineering10070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Early detection of breast lesions and distinguishing between malignant and benign lesions are critical for breast cancer (BC) prognosis. Breast ultrasonography (BU) is an important radiological imaging modality for the diagnosis of BC. This study proposes a BU image-based framework for the diagnosis of BC in women. Various pre-trained networks are used to extract the deep features of the BU images. Ten wrapper-based optimization algorithms, including the marine predator algorithm, generalized normal distribution optimization, slime mold algorithm, equilibrium optimizer (EO), manta-ray foraging optimization, atom search optimization, Harris hawks optimization, Henry gas solubility optimization, path finder algorithm, and poor and rich optimization, were employed to compute the optimal subset of deep features using a support vector machine classifier. Furthermore, a network selection algorithm was employed to determine the best pre-trained network. An online BU dataset was used to test the proposed framework. After comprehensive testing and analysis, it was found that the EO algorithm produced the highest classification rate for each pre-trained model. It produced the highest classification accuracy of 96.79%, and it was trained using only a deep feature vector with a size of 562 in the ResNet-50 model. Similarly, the Inception-ResNet-v2 had the second highest classification accuracy of 96.15% using the EO algorithm. Moreover, the results of the proposed framework are compared with those in the literature.
Collapse
Affiliation(s)
- Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jawad Tanveer
- Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Seung Won Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
39
|
Ferreira MR, Torres HR, Oliveira B, de Araujo ARVF, Morais P, Novais P, Vilaca JL. Deep Learning Networks for Breast Lesion Classification in Ultrasound Images: A Comparative Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083151 DOI: 10.1109/embc40787.2023.10340293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Accurate lesion classification as benign or malignant in breast ultrasound (BUS) images is a critical task that requires experienced radiologists and has many challenges, such as poor image quality, artifacts, and high lesion variability. Thus, automatic lesion classification may aid professionals in breast cancer diagnosis. In this scope, computer-aided diagnosis systems have been proposed to assist in medical image interpretation, outperforming the intra and inter-observer variability. Recently, such systems using convolutional neural networks have demonstrated impressive results in medical image classification tasks. However, the lack of public benchmarks and a standardized evaluation method hampers the performance comparison of networks. This work is a benchmark for lesion classification in BUS images comparing six state-of-the-art networks: GoogLeNet, InceptionV3, ResNet, DenseNet, MobileNetV2, and EfficientNet. For each network, five input data variations that include segmentation information were tested to compare their impact on the final performance. The methods were trained on a multi-center BUS dataset (BUSI and UDIAT) and evaluated using the following metrics: precision, sensitivity, F1-score, accuracy, and area under the curve (AUC). Overall, the lesion with a thin border of background provides the best performance. For this input data, EfficientNet obtained the best results: an accuracy of 97.65% and an AUC of 96.30%.Clinical Relevance- This study showed the potential of deep neural networks to be used in clinical practice for breast lesion classification, also suggesting the best model choices.
Collapse
|
40
|
Zakareya S, Izadkhah H, Karimpour J. A New Deep-Learning-Based Model for Breast Cancer Diagnosis from Medical Images. Diagnostics (Basel) 2023; 13:diagnostics13111944. [PMID: 37296796 DOI: 10.3390/diagnostics13111944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer is one of the most prevalent cancers among women worldwide, and early detection of the disease can be lifesaving. Detecting breast cancer early allows for treatment to begin faster, increasing the chances of a successful outcome. Machine learning helps in the early detection of breast cancer even in places where there is no access to a specialist doctor. The rapid advancement of machine learning, and particularly deep learning, leads to an increase in the medical imaging community's interest in applying these techniques to improve the accuracy of cancer screening. Most of the data related to diseases is scarce. On the other hand, deep-learning models need much data to learn well. For this reason, the existing deep-learning models on medical images cannot work as well as other images. To overcome this limitation and improve breast cancer classification detection, inspired by two state-of-the-art deep networks, GoogLeNet and residual block, and developing several new features, this paper proposes a new deep model to classify breast cancer. Utilizing adopted granular computing, shortcut connection, two learnable activation functions instead of traditional activation functions, and an attention mechanism is expected to improve the accuracy of diagnosis and consequently decrease the load on doctors. Granular computing can improve diagnosis accuracy by capturing more detailed and fine-grained information about cancer images. The proposed model's superiority is demonstrated by comparing it to several state-of-the-art deep models and existing works using two case studies. The proposed model achieved an accuracy of 93% and 95% on ultrasound images and breast histopathology images, respectively.
Collapse
Affiliation(s)
- Salman Zakareya
- Department of Computer Science, University of Tabriz, Tabriz 5166616471, Iran
| | - Habib Izadkhah
- Department of Computer Science, University of Tabriz, Tabriz 5166616471, Iran
- Research Department of Computational Algorithms and Mathematical Models, University of Tabriz, Tabriz 5166616471, Iran
| | - Jaber Karimpour
- Department of Computer Science, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
41
|
Chen H, Ma M, Liu G, Wang Y, Jin Z, Liu C. Breast Tumor Classification in Ultrasound Images by Fusion of Deep Convolutional Neural Network and Shallow LBP Feature. J Digit Imaging 2023; 36:932-946. [PMID: 36720840 PMCID: PMC10287618 DOI: 10.1007/s10278-022-00711-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
Breast cancer is one of the most dangerous and common cancers in women which leads to a major research topic in medical science. To assist physicians in pre-screening for breast cancer to reduce unnecessary biopsies, breast ultrasound and computer-aided diagnosis (CAD) have been used to distinguish between benign and malignant tumors. In this study, we proposed a CAD system for tumor diagnosis using a multi-channel fusion method and feature extraction structure based on multi-feature fusion on breast ultrasound (BUS) images. In the pre-processing stage, the multi-channel fusion method completed the color conversion of the BUS image to make it contain richer information. In the feature extraction stage, the pre-trained ResNet50 network was selected as the basic network, and three levels of features were combined based on adaptive spatial feature fusion (ASFF), and finally, the shallow local binary pattern (LBP) texture features were fused. Support vector machine (SVM) was used for comparative analysis. A retrospective analysis was carried out, and 1615 breast tumor images (572 benign and 1043 malignant) confirmed by pathological examinations were collected. After data processing and augmentation, for an independent test set consisting of 874 breast ultrasound images (457 benign and 417 malignant), the accuracy, precision, recall, specificity, F1 score, and AUC of our method were 96.91%, 98.75%, 94.72%, 98.91%, 0.97, and 0.991, respectively. The results show that the integration of shallow LBP texture features and multi-level depth features can more effectively improve the comprehensive performance of breast tumor diagnosis, and has strong clinical application value. Compared with the past methods, our proposed method is expected to realize the automatic diagnosis of breast tumors and provide an auxiliary tool for radiologists to accurately diagnose breast diseases.
Collapse
Affiliation(s)
- Hua Chen
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Minglun Ma
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Gang Liu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Ying Wang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhihao Jin
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Chong Liu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
42
|
Alhussan AA, Eid MM, Towfek SK, Khafaga DS. Breast Cancer Classification Depends on the Dynamic Dipper Throated Optimization Algorithm. Biomimetics (Basel) 2023; 8:163. [PMID: 37092415 PMCID: PMC10123690 DOI: 10.3390/biomimetics8020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
According to the American Cancer Society, breast cancer is the second largest cause of mortality among women after lung cancer. Women's death rates can be decreased if breast cancer is diagnosed and treated early. Due to the lengthy duration of manual breast cancer diagnosis, an automated approach is necessary for early cancer identification. This research proposes a novel framework integrating metaheuristic optimization with deep learning and feature selection for robustly classifying breast cancer from ultrasound images. The structure of the proposed methodology consists of five stages, namely, data augmentation to improve the learning of convolutional neural network (CNN) models, transfer learning using GoogleNet deep network for feature extraction, selection of the best set of features using a novel optimization algorithm based on a hybrid of dipper throated and particle swarm optimization algorithms, and classification of the selected features using CNN optimized using the proposed optimization algorithm. To prove the effectiveness of the proposed approach, a set of experiments were conducted on a breast cancer dataset, freely available on Kaggle, to evaluate the performance of the proposed feature selection method and the performance of the optimized CNN. In addition, statistical tests were established to study the stability and difference of the proposed approach compared to state-of-the-art approaches. The achieved results confirmed the superiority of the proposed approach with a classification accuracy of 98.1%, which is better than the other approaches considered in the conducted experiments.
Collapse
Affiliation(s)
- Amel Ali Alhussan
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Marwa M. Eid
- Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35712, Egypt
| | - S. K. Towfek
- Delta Higher Institute for Engineering and Technology, Mansoura 35111, Egypt
- Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA
| | - Doaa Sami Khafaga
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
43
|
Chen Y, Zhang X, Li D, Park H, Li X, Liu P, Jin J, Shen Y. Automatic segmentation of thyroid with the assistance of the devised boundary improvement based on multicomponent small dataset. APPL INTELL 2023; 53:1-16. [PMID: 37363389 PMCID: PMC10015528 DOI: 10.1007/s10489-023-04540-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/17/2023]
Abstract
Deep learning has been widely considered in medical image segmentation. However, the difficulty of acquiring medical images and labels can affect the accuracy of the segmentation results for deep learning methods. In this paper, an automatic segmentation method is proposed by devising a multicomponent neighborhood extreme learning machine to improve the boundary attention region of the preliminary segmentation results. The neighborhood features are acquired by training U-Nets with the multicomponent small dataset, which consists of original thyroid ultrasound images, Sobel edge images and superpixel images. Afterward, the neighborhood features are selected by min-redundancy and max-relevance filter in the designed extreme learning machine, and the selected features are used to train the extreme learning machine to obtain supplementary segmentation results. Finally, the accuracy of the segmentation results is improved by adjusting the boundary attention region of the preliminary segmentation results with the supplementary segmentation results. This method combines the advantages of deep learning and traditional machine learning, boosting the accuracy of thyroid segmentation accuracy with a small dataset in a multigroup test.
Collapse
Affiliation(s)
- Yifei Chen
- Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
- Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Korea
| | - Xin Zhang
- Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
| | - Dandan Li
- Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
| | - HyunWook Park
- Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Korea
| | - Xinran Li
- Mathematics, Harbin Institute of Technology, Harbin, 150001 China
| | - Peng Liu
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081 China
| | - Jing Jin
- Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
| | - Yi Shen
- Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
| |
Collapse
|
44
|
An Efficient USE-Net Deep Learning Model for Cancer Detection. INT J INTELL SYST 2023. [DOI: 10.1155/2023/8509433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and monitoring BrCa during treatment. The computer-aided detection methods have been used to interpret BrCa and improve the detection of BrCa during the screening and treatment stages. However, if a new BrCa image is generated for the treatment, it will not classify correctly. The main objective of this research is to classify the BrCa images for newly generated images. The model performs preprocessing, segmentation, feature extraction, and classification. In preprocessing, a hybrid median filtering (HMF) is used to eliminate the noise in the images. The contrast of the images is enhanced using quadrant dynamic histogram equalization (QDHE). Then, ROI segmentation is performed using the USE-Net deep learning model. The CaffeNet model is used for feature extraction on the segmented images, and finally, classification is made using the improved random forest (IRF) with extreme gradient boosting (XGB). The model obtained 97.87% accuracy, 98.45% sensitivity, 95.24% specificity, 98.96% precision, and 98.70% f1-score for ultrasound images. The model gives 98.31% accuracy, 99.29% sensitivity, 90.20% specificity, 98.82% precision, and 99.05% f1-score for mammogram images.
Collapse
|
45
|
Abstract
Medical data refers to health-related information associated with regular patient care or as part of a clinical trial program. There are many categories of such data, such as clinical imaging data, bio-signal data, electronic health records (EHR), and multi-modality medical data. With the development of deep neural networks in the last decade, the emerging pre-training paradigm has become dominant in that it has significantly improved machine learning methods’ performance in a data-limited scenario. In recent years, studies of pre-training in the medical domain have achieved significant progress. To summarize these technology advancements, this work provides a comprehensive survey of recent advances for pre-training on several major types of medical data. In this survey, we summarize a large number of related publications and the existing benchmarking in the medical domain. Especially, the survey briefly describes how some pre-training methods are applied to or developed for medical data. From a data-driven perspective, we examine the extensive use of pre-training in many medical scenarios. Moreover, based on the summary of recent pre-training studies, we identify several challenges in this field to provide insights for future studies.
Collapse
Affiliation(s)
- Yixuan Qiu
- The University of Queensland, Brisbane, 4072 Australia
| | - Feng Lin
- The University of Queensland, Brisbane, 4072 Australia
| | - Weitong Chen
- The University of Adelaide, Adelaide, 5005 Australia
| | - Miao Xu
- The University of Queensland, Brisbane, 4072 Australia
| |
Collapse
|
46
|
A Deep Learning Fusion Approach to Diagnosis the Polycystic Ovary Syndrome (PCOS). APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING 2023. [DOI: 10.1155/2023/9686697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
One of the leading causes of female infertility is PCOS, which is a hormonal disorder affecting women of childbearing age. The common symptoms of PCOS include increased acne, irregular period, increase in body hair, and overweight. Early diagnosis of PCOS is essential to manage the symptoms and reduce the associated health risks. Nonetheless, the diagnosis is based on Rotterdam criteria, including a high level of androgen hormones, ovulation failure, and polycystic ovaries on the ultrasound image (PCOM). At present, doctors and radiologists manually perform PCOM detection using ovary ultrasound by counting the number of follicles and determining their volume in the ovaries, which is one of the challenging PCOS diagnostic criteria. Moreover, such physicians require more tests and checks for biochemical/clinical signs in addition to the patient’s symptoms in order to decide the PCOS diagnosis. Furthermore, clinicians do not utilize a single diagnostic test or specific method to examine patients. This paper introduces the data set that includes the ultrasound image of the ovary with clinical data related to the patient that has been classified as PCOS and non-PCOS. Next, we proposed a deep learning model that can diagnose the PCOM based on the ultrasound image, which achieved 84.81% accuracy using the Inception model. Then, we proposed a fusion model that includes the ultrasound image with clinical data to diagnose the patient if they have PCOS or not. The best model that has been developed achieved 82.46% accuracy by extracting the image features using MobileNet architecture and combine with clinical features.
Collapse
|
47
|
Deep Learning-Based Automatic Detection and Grading of Motion-Related Artifacts on Gadoxetic Acid-Enhanced Liver MRI. Invest Radiol 2023; 58:166-172. [PMID: 36070544 DOI: 10.1097/rli.0000000000000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The aim of this study was to develop and validate a deep learning-based algorithm (DLA) for automatic detection and grading of motion-related artifacts on arterial phase liver magnetic resonance imaging (MRI). MATERIALS AND METHODS Multistep DLA for detection and grading of motion-related artifacts, based on the modified ResNet-101 and U-net, were trained using 336 arterial phase images of gadoxetic acid-enhanced liver MRI examinations obtained in 2017 (training dataset; mean age, 68.6 years [range, 18-95]; 254 men). Motion-related artifacts were evaluated in 4 different MRI slices using a 3-tier grading system. In the validation dataset, 313 images from the same institution obtained in 2018 (internal validation dataset; mean age, 67.2 years [range, 21-87]; 228 men) and 329 from 3 different institutions (external validation dataset; mean age, 64.0 years [range, 23-90]; 214 men) were included, and the per-slice and per-examination performances for the detection of motion-related artifacts were evaluated. RESULTS The per-slice sensitivity and specificity of the DLA for detecting grade 3 motion-related artifacts were 91.5% (97/106) and 96.8% (1134/1172) in the internal validation dataset and 93.3% (265/284) and 91.6% (948/1035) in the external validation dataset. The per-examination sensitivity and specificity were 92.0% (23/25) and 99.7% (287/288) in the internal validation dataset and 90.0% (72/80) and 96.0% (239/249) in the external validation dataset, respectively. The processing time of the DLA for automatic grading of motion-related artifacts was from 4.11 to 4.22 seconds per MRI examination. CONCLUSIONS The DLA enabled automatic and instant detection and grading of motion-related artifacts on arterial phase gadoxetic acid-enhanced liver MRI.
Collapse
|
48
|
Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010069. [PMID: 36671641 PMCID: PMC9854883 DOI: 10.3390/bioengineering10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Ultrasound (US) is often used to diagnose liver masses. Ensemble learning has recently been commonly used for image classification, but its detailed methods are not fully optimized. The purpose of this study is to investigate the usefulness and comparison of some ensemble learning and ensemble pruning techniques using multiple convolutional neural network (CNN) trained models for image classification of liver masses in US images. Dataset of the US images were classified into four categories: benign liver tumor (BLT) 6320 images, liver cyst (LCY) 2320 images, metastatic liver cancer (MLC) 9720 images, primary liver cancer (PLC) 7840 images. In this study, 250 test images were randomly selected for each class, for a total of 1000 images, and the remaining images were used as the training. 16 different CNNs were used for training and testing ultrasound images. The ensemble learning used soft voting (SV), weighted average voting (WAV), weighted hard voting (WHV) and stacking (ST). All four types of ensemble learning (SV, ST, WAV, and WHV) showed higher values of accuracy than the single CNN. All four types also showed significantly higher deep learning (DL) performance than ResNeXt101 alone. For image classification of liver masses using US images, ensemble learning improved the performance of DL over a single CNN.
Collapse
|
49
|
Al-Hejri AM, Al-Tam RM, Fazea M, Sable AH, Lee S, Al-antari MA. ETECADx: Ensemble Self-Attention Transformer Encoder for Breast Cancer Diagnosis Using Full-Field Digital X-ray Breast Images. Diagnostics (Basel) 2022; 13:diagnostics13010089. [PMID: 36611382 PMCID: PMC9818801 DOI: 10.3390/diagnostics13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Early detection of breast cancer is an essential procedure to reduce the mortality rate among women. In this paper, a new AI-based computer-aided diagnosis (CAD) framework called ETECADx is proposed by fusing the benefits of both ensemble transfer learning of the convolutional neural networks as well as the self-attention mechanism of vision transformer encoder (ViT). The accurate and precious high-level deep features are generated via the backbone ensemble network, while the transformer encoder is used to diagnose the breast cancer probabilities in two approaches: Approach A (i.e., binary classification) and Approach B (i.e., multi-classification). To build the proposed CAD system, the benchmark public multi-class INbreast dataset is used. Meanwhile, private real breast cancer images are collected and annotated by expert radiologists to validate the prediction performance of the proposed ETECADx framework. The promising evaluation results are achieved using the INbreast mammograms with overall accuracies of 98.58% and 97.87% for the binary and multi-class approaches, respectively. Compared with the individual backbone networks, the proposed ensemble learning model improves the breast cancer prediction performance by 6.6% for binary and 4.6% for multi-class approaches. The proposed hybrid ETECADx shows further prediction improvement when the ViT-based ensemble backbone network is used by 8.1% and 6.2% for binary and multi-class diagnosis, respectively. For validation purposes using the real breast images, the proposed CAD system provides encouraging prediction accuracies of 97.16% for binary and 89.40% for multi-class approaches. The ETECADx has a capability to predict the breast lesions for a single mammogram in an average of 0.048 s. Such promising performance could be useful and helpful to assist the practical CAD framework applications providing a second supporting opinion of distinguishing various breast cancer malignancies.
Collapse
Affiliation(s)
- Aymen M. Al-Hejri
- School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
- Faculty of Administrative and Computer Sciences, University of Albaydha, Albaydha, Yemen
| | - Riyadh M. Al-Tam
- School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
- Faculty of Administrative and Computer Sciences, University of Albaydha, Albaydha, Yemen
| | - Muneer Fazea
- Department of Radiology, Al-Ma’amon Diagnostic Center, Sana’a, Yemen
- Department of Radiology, School of Medicine, Ibb University of Medical Sciences, Ibb, Yemen
| | - Archana Harsing Sable
- School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
- Correspondence: (A.H.S.); (M.A.A.-a.)
| | - Soojeong Lee
- Department of Computer Engineering, College of Software and Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence, College of Software and Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
- Correspondence: (A.H.S.); (M.A.A.-a.)
| |
Collapse
|
50
|
Kabir SM, Bhuiyan MIH. Correlated-Weighted Statistically Modeled Contourlet and Curvelet Coefficient Image-Based Breast Tumor Classification Using Deep Learning. Diagnostics (Basel) 2022; 13:69. [PMID: 36611361 PMCID: PMC9818942 DOI: 10.3390/diagnostics13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Deep learning-based automatic classification of breast tumors using parametric imaging techniques from ultrasound (US) B-mode images is still an exciting research area. The Rician inverse Gaussian (RiIG) distribution is currently emerging as an appropriate example of statistical modeling. This study presents a new approach of correlated-weighted contourlet-transformed RiIG (CWCtr-RiIG) and curvelet-transformed RiIG (CWCrv-RiIG) image-based deep convolutional neural network (CNN) architecture for breast tumor classification from B-mode ultrasound images. A comparative study with other statistical models, such as Nakagami and normal inverse Gaussian (NIG) distributions, is also experienced here. The weighted entitled here is for weighting the contourlet and curvelet sub-band coefficient images by correlation with their corresponding RiIG statistically modeled images. By taking into account three freely accessible datasets (Mendeley, UDIAT, and BUSI), it is demonstrated that the proposed approach can provide more than 98 percent accuracy, sensitivity, specificity, NPV, and PPV values using the CWCtr-RiIG images. On the same datasets, the suggested method offers superior classification performance to several other existing strategies.
Collapse
Affiliation(s)
- Shahriar M. Kabir
- Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka 1207, Bangladesh
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Mohammed I. H. Bhuiyan
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|