1
|
He X, Islam MR, Ji F, Wang B, Sigal IA. Comparing continuum and direct fiber models of soft tissues: An ocular biomechanics example reveals that continuum models may artificially disrupt the strains at both the tissue and fiber levels. Acta Biomater 2024:S1742-7061(24)00611-1. [PMID: 39424020 DOI: 10.1016/j.actbio.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Collagen fibers are the main load-bearing component of soft tissues but difficult to incorporate into models. Whilst simplified homogenization models suffice for some applications, a thorough mechanistic understanding requires accurate prediction of fiber behavior, including both detailed fiber-level strains and long-distance transmission. Our goal was to compare the performance of a continuum model of the optic nerve head (ONH) built using conventional techniques with a fiber model we recently introduced which explicitly incorporates the complex 3D organization and interaction of collagen fiber bundles [1]. To ensure a fair comparison, we constructed the continuum model with identical geometrical, structural, and boundary specifications as for the fiber model. We found that: 1) although both models accurately matched the intraocular pressure (IOP)-induced globally averaged displacement responses observed in experiments, they diverged significantly in their ability to replicate specific 3D tissue-level strain patterns. Notably, the fiber model faithfully replicated the experimentally observed depth-dependent variability of radial strain, the ring-like pattern of meridional strain, and the radial pattern of circumferential strain, whereas the continuum model failed to do so; 2) the continuum model disrupted the strain transmission along each fiber, a feature captured well by the fiber model. These results demonstrate limitations of the conventional continuum models that rely on homogenization and affine deformation assumptions, which render them incapable of capturing some complex tissue-level and fiber-level deformations. Our results show that the strengths of explicit fiber modeling help capture intricate ONH biomechanics. They potentially also help modeling other fibrous tissues. STATEMENT OF SIGNIFICANCE: Understanding the mechanics of fibrous tissues is crucial for advancing knowledge of various diseases. This study uses the ONH as a test case to compare conventional continuum models with fiber models that explicitly account for the complex fiber structure. We found that the fiber model captured better the biomechanical behaviors at both the tissue level and the fiber level. The insights gained from this study demonstrate the significant potential of fiber models to advance our understanding of not only glaucoma pathophysiology but also other conditions involving fibrous soft tissues. This can contribute to the development of therapeutic strategies across a wide range of applications.
Collapse
Affiliation(s)
- Xuehuan He
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mohammad R Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg TX, United States
| | - Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
2
|
Ji F, Islam MR, Sebastian F, He X, Schilpp H, Wang B, Hua Y, Amini R, Sigal IA. Capturing sclera anisotropy using direct collagen fiber models. Linking microstructure to macroscopic mechanical properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612702. [PMID: 39386446 PMCID: PMC11463644 DOI: 10.1101/2024.09.12.612702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Because of the crucial role of collagen fibers on soft tissue mechanics, there is great interest in techniques to incorporate them in computational models. Recently we introduced a direct fiber modeling approach for sclera based on representing the long-interwoven fibers. Our method differs from the conventional continuum approach to modeling sclera that homogenizes the fibers and describes them as statistical distributions for each element. At large scale our method captured gross collagen fiber bundle architecture from histology and experimental intraocular pressure-induced deformations. At small scale, a direct fiber model of a sclera sample reproduced equi-biaxial experimental behavior from the literature. In this study our goal was a much more challenging task for the direct fiber modeling: to capture specimen-specific 3D fiber architecture and anisotropic mechanics of four sclera samples tested under equibiaxial and four non-equibiaxial loadings. Samples of sclera from three eyes were isolated and tested in five biaxial loadings following an approach previously reported. Using microstructural architecture from polarized light microscopy we then created specimen-specific direct fiber models. Model fiber orientations agreed well with the histological information (adjusted R2's>0.89). Through an inverse-fitting process we determined model characteristics, including specimen-specific fiber mechanical properties to match equibiaxial loading. Interestingly, the equibiaxial properties also reproduced all the non-equibiaxial behaviors. These results indicate that the direct fiber modeling method naturally accounted for tissue anisotropy within its fiber structure. Direct fiber modeling is therefore a promising approach to understand how macroscopic behavior arises from microstructure.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Mohammad R. Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX
| | | | - Xuehuan He
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Hannah Schilpp
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, University of Mississippi, University, MS
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
He X, Islam MR, Ji F, Wang B, Sigal IA. Comparing continuum and direct fiber models of soft tissues. An ocular biomechanics example reveals that continuum models may artificially disrupt the strains at both the tissue and fiber levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.610277. [PMID: 39314407 PMCID: PMC11418952 DOI: 10.1101/2024.09.05.610277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Collagen fibers are the main load-bearing component of soft tissues but difficult to incorporate into models. Whilst simplified homogenization models suffice for some applications, a thorough mechanistic understanding requires accurate prediction of fiber behavior, including both detailed fiber-level strains and long-distance transmission. Our goal was to compare the performance of a continuum model of the optic nerve head (ONH) built using conventional techniques with a fiber model we recently introduced which explicitly incorporates the complex 3D organization and interaction of collagen fiber bundles [1]. To ensure a fair comparison, we constructed the continuum model with identical geometrical, structural, and boundary specifications as for the fiber model. We found that: 1) although both models accurately matched the intraocular pressure (IOP)-induced globally averaged displacement responses observed in experiments, they diverged significantly in their ability to replicate specific 3D tissue-level strain patterns. Notably, the fiber model faithfully replicated the experimentally observed depth-dependent variability of radial strain, the ring-like pattern of meridional strain, and the radial pattern of circumferential strain, whereas the continuum model failed to do so; 2) the continuum model disrupted the strain transmission along each fiber, a feature captured well by the fiber model. These results demonstrate limitations of the conventional continuum models that rely on homogenization and affine deformation assumptions, which render them incapable of capturing some complex tissue-level and fiber-level deformations. Our results show that the strengths of explicit fiber modeling help capture intricate ONH biomechanics. They potentially also help modeling other fibrous tissues.
Collapse
Affiliation(s)
- Xuehuan He
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad R. Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg TX, USA
| | - Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Naftali S, Della Rocca K, Gershoni A, Ehrlich R, Ratnovsky A. Mechanical impact of epiretinal membranes on the retina utilizing finite element analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108020. [PMID: 38237448 DOI: 10.1016/j.cmpb.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Epiretinal membrane (ERM) is a transparent membrane that forms on the surface of the neurosensory retina, causing tangential traction on the retinal surface, which may contribute to cell proliferation and contraction. Epiretinal membranes (ERMs) may be asymptomatic in some patients, while in others the membranes can progress, resulting in macular thickening and macular traction, thus distorting and inducing loss of central visual function and metamorphopsia. Currently, treatment options include follow-up or pars plana vitrectomy with an ERM peel, aiming to relieve the macular traction and improve vision and metamorphopsia. No specific criteria exist for predicting which patients might progress and need early surgery to improve and maintain good vision. The decision for surgery is based on the individual's symptoms and the physician's judgment. This study aimed to evaluate the mechanical impact in terms of stress and deformations of the ERM and to qualitatively compare them with the clinical progression of fovea thickening observed through optical coherence tomography (OCT) images. METHODS Numerical simulation on a three-dimensional geometrical retina and ERM model was applied to isolate factors that can be used to predict its progression and prognosis. OCT images of 14 patients with ERM were used to derive the fovea thickness progression before and after vitrectomy surgery with ERM peeling. RESULTS The results clearly show that the increase in ERM contractility level increases the developed stress at the fovea, which spreads and advances toward its base. The highest stress level (2.1 kPa) was developed at the highest and asymmetric contractility, producing non-uniform distributed deformations that distort the fovea structure. CONCLUSIONS These findings imply that high and asymmetric ERM contractility should be evaluated clinically as a factor that might signal the need for early vitrectomy surgery to avoid irreversible visual loss. Moreover, the OCT images revealed that in some cases, the thickness of the fovea indeed remains high, even after ∼12 months postoperatively, which also indicates that the deformation of the fovea in these cases is irreversible.
Collapse
Affiliation(s)
- Sara Naftali
- School of Medical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, 6998812, Israel.
| | - Keren Della Rocca
- School of Medical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, 6998812, Israel
| | - Assaf Gershoni
- Ophthalmology Division, Rabin Medical Center, Petach Tikva, Israel; Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Rita Ehrlich
- Ophthalmology Division, Rabin Medical Center, Petach Tikva, Israel; Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Anat Ratnovsky
- School of Medical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, 6998812, Israel
| |
Collapse
|
5
|
Islam MR, Ji F, Bansal M, Hua Y, Sigal IA. Fibrous finite element modeling of the optic nerve head region. Acta Biomater 2024; 175:123-137. [PMID: 38147935 PMCID: PMC12040294 DOI: 10.1016/j.actbio.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The optic nerve head (ONH) region at the posterior pole of the eye is supported by a fibrous structure of collagen fiber bundles. Discerning how the fibrous structure determines the region biomechanics is crucial to understand normal physiology, and the roles of biomechanics on vision loss. The fiber bundles within the ONH structure exhibit complex three-dimensional (3D) organization and continuity across the various tissue components. Computational models of the ONH, however, usually represent collagen fibers in a homogenized fashion without accounting for their continuity across tissues, fibers interacting with each other and other fiber-specific effects in a fibrous structure. We present a fibrous finite element (FFE) model of the ONH that incorporates discrete collagen fiber bundles and their histology-based 3D organization to study ONH biomechanics as a fibrous structure. The FFE model was constructed using polarized light microscopy data of porcine ONH cryosections, representing individual fiber bundles in the sclera, dura and pia maters with beam elements and canal tissues as continuum structures. The FFE model mimics the histological in-plane orientation and width distributions of collagen bundles as well as their continuity across different tissues. Modeling the fiber bundles as linear materials, the FFE model predicts the nonlinear ONH response observed in an inflation experiment from the literature. The model also captures important microstructural mechanisms including fiber interactions and long-range strain transmission among bundles that have not been considered before. The FFE model presented here advances our understanding of the role of fibrous collagen structure in the ONH biomechanics. STATEMENT OF SIGNIFICANCE: The microstructure and mechanics of the optic nerve head (ONH) are central to ocular physiology. Histologically, the ONH region exhibits a complex continuous fibrous structure of collagen bundles. Understanding the role of the fibrous collagen structure on ONH biomechanics requires high-fidelity computational models previously unavailable. We present a computational model of the ONH that incorporates histology-based fibrous collagen structure derived from polarized light microscopy images. The model predictions agree with experiments in the literature, and provide insight into important microstructural mechanisms of fibrous tissue biomechanics, such as long-range strain transmission along fiber bundles. Our model can be used to study the microstructural basis of biomechanical damage and the effects of collagen remodeling in glaucoma.
Collapse
Affiliation(s)
- Mohammad R Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg TX, USA
| | - Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA
| | - Manik Bansal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Biomedical Engineering, University of Mississippi, MS, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA.
| |
Collapse
|
6
|
Karimi A, Khan S, Razaghi R, Aga M, Rahmati SM, White E, Kelley MJ, Jian Y, Acott TS. Segmental biomechanics of the normal and glaucomatous human aqueous outflow pathway. Acta Biomater 2024; 173:148-166. [PMID: 37944773 PMCID: PMC10841915 DOI: 10.1016/j.actbio.2023.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The conventional aqueous outflow pathway, encompassing the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and inner wall endothelium of Schlemm's canal (SC), governs intraocular pressure (IOP) regulation. This study targets the biomechanics of low-flow (LF) and high-flow (HF) regions within the aqueous humor outflow pathway in normal and glaucomatous human donor eyes, using a combined experimental and computational approach. LF and HF TM/JCT/SC complex tissues from normal and glaucomatous eyes underwent uniaxial tensile testing. Dynamic motion of the TM/JCT/SC complex was recorded using customized green-light optical coherence tomography during SC pressurization in cannulated anterior segment wedges. A hyperviscoelastic model quantified TM/JCT/SC complex properties. A fluid-structure interaction model simulated tissue-aqueous humor interaction. FluoSpheres were introduced into the pathway via negative pressure in the SC, with their motion tracked using two-photon excitation microscopy. Tensile test results revealed that the elastic moduli of the LF and HF regions in glaucomatous eyes are 3.5- and 1.5-fold stiffer than the normal eyes, respectively. The FE results also showed significantly larger shear moduli in the TM, JCT, and SC of the glaucomatous eyes compared to the normal subjects. The LF regions in normal eyes demonstrated larger elastic moduli compared to the HF regions in glaucomatous eyes. The resultant strain in the outflow tissues and velocity of the aqueous humor in the FSI models were in good agreement with the digital volume correlation and 3D particle image velocimetry data, respectively. This study uncovers stiffer biomechanical responses in glaucomatous eyes, with LF regions stiffer than HF regions in both normal and glaucomatous eyes. STATEMENT OF SIGNIFICANCE: This study delves into the biomechanics of the conventional aqueous outflow pathway, a crucial regulator of intraocular pressure and ocular health. By analyzing mechanical differences in low-flow and high-flow regions of normal and glaucomatous eyes, this research unveils the stiffer response in glaucomatous eyes. The distinction between regions' properties offers insights into aqueous humor outflow regulation, while the integration of experimental and computational methods enhances credibility. These findings have potential implications for disease management and present a vital step toward innovative ophthalmic interventions. This study advances our understanding of glaucoma's biomechanical basis and its broader impact on ocular health.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Shanjida Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Yifan Jian
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Towler J, Consejo A, Zhou D, Romano V, Levis H, Boote C, Elsheikh A, Geraghty B, Abass A. Typical localised element-specific finite element anterior eye model. Heliyon 2023; 9:e13944. [PMID: 37101628 PMCID: PMC10123217 DOI: 10.1016/j.heliyon.2023.e13944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Purpose The study presents an averaged anterior eye geometry model combined with a localised material model that is straightforward, appropriate and amenable for implementation in finite element (FE) modelling. Methods Both right and left eye profile data of 118 subjects (63 females and 55 males) aged 22-67 years (38.5 ± 7.6) were used to build an averaged geometry model. Parametric representation of the averaged geometry model was achieved through two polynomials dividing the eye into three smoothly connected volumes. This study utilised the collagen microstructure x-ray data of 6 ex-vivo healthy human eyes, 3 right eyes and 3 left eyes in pairs from 3 donors, 1 male and 2 females aged between 60 and 80 years, to build a localised element-specific material model for the eye. Results Fitting the cornea and the posterior sclera sections to a 5th-order Zernike polynomial resulted in 21 coefficients. The averaged anterior eye geometry model recorded a limbus tangent angle of 37° at a radius of 6.6 mm from the corneal apex. In terms of material models, the difference between the stresses generated in the inflation simulation up to 15 mmHg in the ring-segmented material model and localised element-specific material model were significantly different (p < 0.001) with the ring-segmented material model recording average Von-Mises stress 0.0168 ± 0.0046 MPa and the localised element-specific material model recording average Von-Mises stress 0.0144 ± 0.0025 MPa. Conclusions The study illustrates an averaged geometry model of the anterior human eye that is easy to generate through two parametric equations. This model is combined with a localised material model that can be used either parametrically through a Zernike fitted polynomial or non-parametrically as a function of the azimuth angle and the elevation angle of the eye globe. Both averaged geometry and localised material models were built in a way that makes them easy to implement in FE analysis without additional computation cost compared to the limbal discontinuity so-called idealised eye geometry model or ring-segmented material model.
Collapse
Affiliation(s)
- Joseph Towler
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Dong Zhou
- Department of Civil Engineering and Industrial Design, School of Engineering, University of Liverpool, Liverpool, UK
| | - Vito Romano
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Medical and Surgical Specialities, Radiological Sciences, And Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Hannah Levis
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Craig Boote
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Ahmed Elsheikh
- Department of Civil Engineering and Industrial Design, School of Engineering, University of Liverpool, Liverpool, UK
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Brendan Geraghty
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Ahmed Abass
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
- Department of Production Engineering and Mechanical Design, Faculty of Engineering, Port Said University, Egypt
| |
Collapse
|
8
|
Karimi A, Halabian M, Razaghi R, Downs JC, Kelley MJ, Acott TS. Modeling the Endothelial Glycocalyx Layer in the Human Conventional Aqueous Outflow Pathway. Cells 2022; 11:3925. [PMID: 36497183 PMCID: PMC9740116 DOI: 10.3390/cells11233925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/07/2022] Open
Abstract
A layer of proteoglycans and glycoproteins known as glycocalyx covers the surface of the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and Schlemm's canal (SC) inner wall of the conventional aqueous outflow pathway in the eye. This has been shown to play a role in the mechanotransduction of fluid shear stress and in the regulation of the outflow resistance. The outflow resistance in the conventional outflow pathway is the main determinant of the intraocular pressure (IOP) through an active, two-way, fluid-structure interaction coupling between the outflow tissues and aqueous humor. A 3D microstructural finite element (FE) model of a healthy human eye TM/JCT/SC complex with interspersed aqueous humor was constructed. A very thin charged double layer that represents the endothelial glycocalyx layer covered the surface of the elastic outflow tissues. The aqueous humor was modeled as electroosmotic flow that is charged when it is in contact with the outflow tissues. The electrical-fluid-structure interaction (EFSI) method was used to couple the charged double layer (glycocalyx), fluid (aqueous humor), and solid (outflow tissues). When the IOP was elevated to 15 mmHg, the maximum aqueous humor velocity in the EFSI model was decreased by 2.35 mm/s (9%) compared to the fluid-structure interaction (FSI) model. The charge or electricity in the living human conventional outflow pathway generated by the charged endothelial glycocalyx layer plays a minor biomechanical role in the resultant stresses and strains as well as the hydrodynamics of the aqueous humor.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mahdi Halabian
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
Karimi A, Razaghi R, Rahmati SM, Downs JC, Acott TS, Kelley MJ, Wang RK, Johnstone M. The Effect of Intraocular Pressure Load Boundary on the Biomechanics of the Human Conventional Aqueous Outflow Pathway. Bioengineering (Basel) 2022; 9:672. [PMID: 36354583 PMCID: PMC9687513 DOI: 10.3390/bioengineering9110672] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Aqueous humor outflow resistance in the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) endothelium of the conventional outflow pathway actively contribute to intraocular pressure (IOP) regulation. Outflow resistance is actively affected by the dynamic outflow pressure gradient across the TM, JCT, and SC inner wall tissues. The resistance effect implies the presence of a fluid-structure interaction (FSI) coupling between the outflow tissues and the aqueous humor. However, the biomechanical interactions between viscoelastic outflow tissues and aqueous humor dynamics are largely unknown. METHODS A 3D microstructural finite element (FE) model of a healthy human eye TM/JCT/SC complex was constructed with elastic and viscoelastic material properties for the bulk extracellular matrix and embedded elastic cable elements. The FE models were subjected to both idealized and a physiologic IOP load boundary using the FSI method. RESULTS The elastic material model for both the idealized and physiologic IOP load boundary at equal IOPs showed similar stresses and strains in the outflow tissues as well as pressure in the aqueous humor. However, outflow tissues with viscoelastic material properties were sensitive to the IOP load rate, resulting in different mechanical and hydrodynamic responses in the tissues and aqueous humor. CONCLUSIONS Transient IOP fluctuations may cause a relatively large IOP difference of ~20 mmHg in a very short time frame of ~0.1 s, resulting in a rate stiffening in the outflow tissues. Rate stiffening reduces strains and causes a rate-dependent pressure gradient across the outflow tissues. Thus, the results suggest it is necessary to use a viscoelastic material model in outflow tissues that includes the important role of IOP load rate.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Correlation study of biomechanical changes between diabetic eye disease and glaucoma using finite element model of human eye with different iris-lens channel distances. Med Eng Phys 2022; 109:103910. [DOI: 10.1016/j.medengphy.2022.103910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
11
|
Karimi A, Razaghi R, Padilla S, Rahmati SM, Downs JC, Acott TS, Kelley MJ, Wang RK, Johnstone M. Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes. J Clin Med 2022; 11:6049. [PMID: 36294371 PMCID: PMC9605362 DOI: 10.3390/jcm11206049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Although the tissues comprising the ocular conventional outflow pathway have shown strong viscoelastic mechanical response to aqueous humor pressure dynamics, the viscoelastic mechanical properties of the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) inner wall are largely unknown. METHODS A quadrant of the anterior segment from two human donor eyes at low- and high-flow (LF and HF) outflow regions was pressurized and imaged using optical coherence tomography (OCT). A finite element (FE) model of the TM, the adjacent JCT, and the SC inner wall was constructed and viscoelastic beam elements were distributed in the extracellular matrix (ECM) of the TM and JCT to represent anisotropic collagen. An inverse FE-optimization algorithm was used to calculate the viscoelastic properties of the ECM/beam elements such that the TM/JCT/SC model and OCT imaging data best matched over time. RESULTS The ECM of the glaucoma tissues showed significantly larger time-dependent shear moduli compared to the heathy tissues. Significantly larger shear moduli were also observed in the LF regions of both the healthy and glaucoma eyes compared to the HF regions. CONCLUSIONS The outflow tissues in both glaucoma eyes and HF regions are stiffer and less able to respond to dynamic IOP.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Steven Padilla
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | | | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Karimi A, Razaghi R, Rahmati SM, Girkin CA, Downs JC. Relative Contributions of Intraocular and Cerebrospinal Fluid Pressures to the Biomechanics of the Lamina Cribrosa and Laminar Neural Tissues. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 36255364 PMCID: PMC9587471 DOI: 10.1167/iovs.63.11.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose The laminar region of the optic nerve head (ONH), thought to be the site of damage to the retinal ganglion cell axons in glaucoma, is continuously loaded on its anterior and posterior surfaces by dynamic intraocular pressure (IOP) and orbital cerebrospinal fluid pressure (CSFP), respectively. Thus, translaminar pressure (TLP; TLP = IOP-CSFP) has been proposed as a glaucoma risk factor. Methods Three eye-specific finite element models of the posterior human eye were constructed, including full 3D microstructures of the load-bearing lamina cribrosa (LC) with interspersed laminar neural tissues (NTs), and heterogeneous, anisotropic, hyperelastic material formulations for the surrounding peripapillary sclera and adjacent pia. ONH biomechanical responses were simulated using three combinations of IOP and CSFP loadings consistent with posture change from sitting to supine. Results Results show that tensile, compressive, and shear stresses and strains in the ONH were higher in the supine position compared to the sitting position (P < 0.05). In addition, LC beams bear three to five times more TLP-driven stress than interspersed laminar NT, whereas laminar NT exhibit three to five times greater strain than supporting LC (P < 0.05). Compared with CSFP, IOP drove approximately four times greater stress and strain in the LC, NT, and peripapillary sclera, normalized per mm Hg pressure change. In addition, IOP drove approximately three-fold greater scleral canal expansion and anterior-posterior laminar deformation than CSFP per mm Hg (P < 0.05). Conclusions Whereas TLP has been hypothesized to play a prominent role in ONH biomechanics, the IOP and CSFP effects are not equivalent, as IOP-driven stress, strain, and deformation play a more dominant role than CSFP effects.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Christopher A. Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|