1
|
González-Parra G, Mahmud MS, Kadelka C. Learning from the COVID-19 pandemic: A systematic review of mathematical vaccine prioritization models. Infect Dis Model 2024; 9:1057-1080. [PMID: 38988830 PMCID: PMC11233876 DOI: 10.1016/j.idm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 07/12/2024] Open
Abstract
As the world becomes ever more connected, the chance of pandemics increases as well. The recent COVID-19 pandemic and the concurrent global mass vaccine roll-out provides an ideal setting to learn from and refine our understanding of infectious disease models for better future preparedness. In this review, we systematically analyze and categorize mathematical models that have been developed to design optimal vaccine prioritization strategies of an initially limited vaccine. As older individuals are disproportionately affected by COVID-19, the focus is on models that take age explicitly into account. The lower mobility and activity level of older individuals gives rise to non-trivial trade-offs. Secondary research questions concern the optimal time interval between vaccine doses and spatial vaccine distribution. This review showcases the effect of various modeling assumptions on model outcomes. A solid understanding of these relationships yields better infectious disease models and thus public health decisions during the next pandemic.
Collapse
Affiliation(s)
- Gilberto González-Parra
- Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain
- Department of Mathematics, New Mexico Tech, 801 Leroy Place, Socorro, 87801, NM, USA
| | - Md Shahriar Mahmud
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA
| | - Claus Kadelka
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA
| |
Collapse
|
2
|
Beishuizen BHH, Stein ML, Buis JS, Tostmann A, Green C, Duggan J, Connolly MA, Rovers CP, Timen A. A systematic literature review on public health and healthcare resources for pandemic preparedness planning. BMC Public Health 2024; 24:3114. [PMID: 39529010 PMCID: PMC11552315 DOI: 10.1186/s12889-024-20629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Generating insights into resource demands during outbreaks is an important aspect of pandemic preparedness. The EU PANDEM-2 project used resource modelling to explore the demand profile for key resources during pandemic scenarios. This review aimed to identify public health and healthcare resources needed to respond to pandemic threats and the ranges of parameter values on the use of these resources for pandemic influenza (including the novel influenza A(H1N1)pdm09 pandemic) and the COVID-19 pandemic, to support modelling activities. METHODS We conducted a systematic literature review and searched Embase and Medline databases (1995 - June 2023) for articles that included a model, scenario, or simulation of pandemic resources and/or describe resource parameters, for example personal protective equipment (PPE) usage, length of stay (LoS) in intensive care unit (ICU), or vaccine efficacy. Papers with data on resource parameters from all countries were included. RESULTS We identified 2754 articles of which 147 were included in the final review. Forty-six different resource parameters with values related to non-ICU beds (n = 43 articles), ICU beds (n = 57), mechanical ventilation (n = 39), healthcare workers (n = 12), pharmaceuticals (n = 21), PPE (n = 8), vaccines (n = 26), and testing and tracing (n = 19). Differences between resource types related to pandemic influenza and COVID-19 were observed, for example on mechanical ventilation (mostly for COVID-19) and testing & tracing (all for COVID-19). CONCLUSION This review provides an overview of public health and healthcare resources with associated parameters in the context of pandemic influenza and the COVID-19 pandemic. Providing insight into the ranges of plausible parameter values on the use of public health and healthcare resources improves the accuracy of results of modelling different scenarios, and thus decision-making by policy makers and hospital planners. This review also highlights a scarcity of published data on important public health resources.
Collapse
Affiliation(s)
- Berend H H Beishuizen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
- Department of Primary and Community Care, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Mart L Stein
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Joeri S Buis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Alma Tostmann
- Department of Medical Microbiology, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Caroline Green
- School of Computer Science and Insight Centre for Data Analytics, University of Galway, Galway, Ireland
| | - Jim Duggan
- School of Computer Science and Insight Centre for Data Analytics, University of Galway, Galway, Ireland
| | - Máire A Connolly
- School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Chantal P Rovers
- Department of Internal Medicine, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Aura Timen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Primary and Community Care, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Gonzalez-Parra G, Mahmud MS, Kadelka C. Learning from the COVID-19 pandemic: a systematic review of mathematical vaccine prioritization models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303726. [PMID: 38496570 PMCID: PMC10942533 DOI: 10.1101/2024.03.04.24303726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
As the world becomes ever more connected, the chance of pandemics increases as well. The recent COVID-19 pandemic and the concurrent global mass vaccine roll-out provides an ideal setting to learn from and refine our understanding of infectious disease models for better future preparedness. In this review, we systematically analyze and categorize mathematical models that have been developed to design optimal vaccine prioritization strategies of an initially limited vaccine. As older individuals are disproportionately affected by COVID-19, the focus is on models that take age explicitly into account. The lower mobility and activity level of older individuals gives rise to non-trivial trade-offs. Secondary research questions concern the optimal time interval between vaccine doses and spatial vaccine distribution. This review showcases the effect of various modeling assumptions on model outcomes. A solid understanding of these relationships yields better infectious disease models and thus public health decisions during the next pandemic.
Collapse
Affiliation(s)
- Gilberto Gonzalez-Parra
- Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain
- Department of Mathematics, New Mexico Tech, 801 Leroy Place, Socorro, 87801, NM, USA
| | - Md Shahriar Mahmud
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA
| | - Claus Kadelka
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA
| |
Collapse
|
4
|
Trejo I, Hung PY, Matrajt L. Covid19Vaxplorer: A free, online, user-friendly COVID-19 vaccine allocation comparison tool. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002136. [PMID: 38252671 PMCID: PMC10802966 DOI: 10.1371/journal.pgph.0002136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
There are many COVID-19 vaccines currently available, however, Low- and middle-income countries (LMIC) still have large proportions of their populations unvaccinated. Decision-makers must decide how to effectively allocate available vaccines (e.g. boosters or primary series vaccination, which age groups to target) but LMIC often lack the resources to undergo quantitative analyses of vaccine allocation, resulting in ad-hoc policies. We developed Covid19Vaxplorer (https://covid19vaxplorer.fredhutch.org/), a free, user-friendly online tool that simulates region-specific COVID-19 epidemics in conjunction with vaccination with the purpose of providing public health officials worldwide with a tool for vaccine allocation planning and comparison. We developed an age-structured mathematical model of SARS-CoV-2 transmission and COVID-19 vaccination. The model considers vaccination with up to three different vaccine products, primary series and boosters. We simulated partial immunity derived from waning of natural infection and vaccination. The model is embedded in an online tool, Covid19Vaxplorer that was optimized for its ease of use. By prompting users to fill information through several windows to input local parameters (e.g. cumulative and current prevalence), epidemiological parameters (e.g basic reproduction number, current social distancing interventions), vaccine parameters (e.g. vaccine efficacy, duration of immunity) and vaccine allocation (both by age groups and by vaccination status). Covid19Vaxplorer connects the user to the mathematical model and simulates, in real time, region-specific epidemics. The tool then produces key outcomes including expected numbers of deaths, hospitalizations and cases, with the possibility of simulating several scenarios of vaccine allocation at once for a side-by-side comparison. We provide two usage examples of Covid19Vaxplorer for vaccine allocation in Haiti and Afghanistan, which had as of Spring 2023, 2% and 33% of their populations vaccinated, and show that for these particular examples, using available vaccine as primary series vaccinations prevents more deaths than using them as boosters.
Collapse
Affiliation(s)
- Imelda Trejo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Pei-Yao Hung
- Institute For Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laura Matrajt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Luebben G, González-Parra G, Cervantes B. Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10828-10865. [PMID: 37322963 PMCID: PMC11216547 DOI: 10.3934/mbe.2023481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper we study different vaccination strategies that could have been implemented for the early COVID-19 pandemic. We use a demographic epidemiological mathematical model based on differential equations in order to investigate the efficacy of a variety of vaccination strategies under limited vaccine supply. We use the number of deaths as the metric to measure the efficacy of each of these strategies. Finding the optimal strategy for the vaccination programs is a complex problem due to the large number of variables that affect the outcomes. The constructed mathematical model takes into account demographic risk factors such as age, comorbidity status and social contacts of the population. We perform simulations to assess the performance of more than three million vaccination strategies which vary depending on the vaccine priority of each group. This study focuses on the scenario corresponding to the early vaccination period in the USA, but can be extended to other countries. The results of this study show the importance of designing an optimal vaccination strategy in order to save human lives. The problem is extremely complex due to the large amount of factors, high dimensionality and nonlinearities. We found that for low/moderate transmission rates the optimal strategy prioritizes high transmission groups, but for high transmission rates, the optimal strategy focuses on groups with high CFRs. The results provide valuable information for the design of optimal vaccination programs. Moreover, the results help to design scientific vaccination guidelines for future pandemics.
Collapse
Affiliation(s)
- Giulia Luebben
- Department of Mathematics, New Mexico Tech, New Mexico, 87801, USA
| | | | - Bishop Cervantes
- Department of Mathematics, New Mexico Tech, New Mexico, 87801, USA
| |
Collapse
|
6
|
Sulis E, Mariani S, Montagna S. A survey on agents applications in healthcare: Opportunities, challenges and trends. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 236:107525. [PMID: 37084529 DOI: 10.1016/j.cmpb.2023.107525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The agent abstraction is a powerful one, developed decades ago to represent crucial aspects of artificial intelligence research. The meaning has transformed over the years and now there are different nuances across research communities. At its core, an agent is an autonomous computational entity capable of sensing, acting, and capturing interactions with other agents and its environment. This review examines how agent-based techniques have been implemented and evaluated in a specific and very important domain, i.e. healthcare research. METHODS We survey key areas of agent-based research in healthcare, e.g. individual and collective behaviours, communicable and non-communicable diseases, and social epidemiology. We propose a systematic search and critical review of relevant recent works, introduced by an exploratory network analysis. RESULTS Network analysis enables to devise out 5 main research clusters, the most active authors, and 4 main research topics. CONCLUSIONS Our findings support discussion of some future directions for increasing the value of agent-based approaches in healthcare.
Collapse
Affiliation(s)
- Emilio Sulis
- Computer Science Department, University of Torino, Via Pessinetto 12, Turin, 10149, Italy.
| | - Stefano Mariani
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Viale A. Allegri 9, Reggio Emilia, 42121, Italy
| | - Sara Montagna
- Department of Pure and Applied Sciences, University of Urbino, Piazza della Repubblica, 13, Urbino, 61029, Italy
| |
Collapse
|
7
|
Beerman JT, Beaumont GG, Giabbanelli PJ. A Scoping Review of Three Dimensions for Long-Term COVID-19 Vaccination Models: Hybrid Immunity, Individual Drivers of Vaccinal Choice, and Human Errors. Vaccines (Basel) 2022; 10:1716. [PMID: 36298581 PMCID: PMC9607873 DOI: 10.3390/vaccines10101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The virus that causes COVID-19 changes over time, occasionally leading to Variants of Interest (VOIs) and Variants of Concern (VOCs) that can behave differently with respect to detection kits, treatments, or vaccines. For instance, two vaccination doses were 61% effective against the BA.1 predominant variant, but only 24% effective when BA.2 became predominant. While doses still confer protection against severe disease outcomes, the BA.5 variant demonstrates the possibility that individuals who have received a few doses built for previous variants can still be infected with newer variants. As previous vaccines become less effective, new ones will be released to target specific variants and the whole process of vaccinating the population will restart. While previous models have detailed logistical aspects and disease progression, there are three additional key elements to model COVID-19 vaccination coverage in the long term. First, the willingness of the population to participate in regular vaccination campaigns is essential for long-term effective COVID-19 vaccination coverage. Previous research has shown that several categories of variables drive vaccination status: sociodemographic, health-related, psychological, and information-related constructs. However, the inclusion of these categories in future models raises questions about the identification of specific factors (e.g., which sociodemographic aspects?) and their operationalization (e.g., how to initialize agents with a plausible combination of factors?). While previous models separately accounted for natural- and vaccine-induced immunity, the reality is that a significant fraction of individuals will be both vaccinated and infected over the coming years. Modeling the decay in immunity with respect to new VOCs will thus need to account for hybrid immunity. Finally, models rarely assume that individuals make mistakes, even though this over-reliance on perfectly rational individuals can miss essential dynamics. Using the U.S. as a guiding example, our scoping review summarizes these aspects (vaccinal choice, immunity, and errors) through ten recommendations to support the modeling community in developing long-term COVID-19 vaccination models.
Collapse
Affiliation(s)
- Jack T. Beerman
- Department of Computer Science & Software Engineering, Miami University, Oxford, OH 45056, USA
| | - Gwendal G. Beaumont
- Department of Computer Science & Software Engineering, Miami University, Oxford, OH 45056, USA
- IMT Mines Ales, 6 Av. de Clavieres, 30100 Ales, France
| | - Philippe J. Giabbanelli
- Department of Computer Science & Software Engineering, Miami University, Oxford, OH 45056, USA
| |
Collapse
|