1
|
Gao C, Ajith S, Peelen MV. Object representations drive emotion schemas across a large and diverse set of daily-life scenes. Commun Biol 2025; 8:697. [PMID: 40325234 PMCID: PMC12053605 DOI: 10.1038/s42003-025-08145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025] Open
Abstract
The rapid emotional evaluation of objects and events is essential in daily life. While visual scenes reliably evoke emotions, it remains unclear whether emotion schemas evoked by daily-life scenes depend on object processing systems or are extracted independently. To explore this, we collected emotion ratings for 4913 daily-life scenes from 300 participants, and predicted these ratings from representations in deep neural networks and functional magnetic resonance imaging (fMRI) activity patterns in visual cortex. AlexNet, an object-based model, outperformed EmoNet, an emotion-based model, in predicting emotion ratings for daily-life scenes, while EmoNet excelled for explicitly evocative scenes. Emotion information was processed hierarchically within the object recognition system, consistent with the visual cortex's organization. Activity patterns in the lateral occipital complex (LOC), an object-selective region, reliably predicted emotion ratings and outperformed other visual regions. These findings suggest that the emotional evaluation of daily-life scenes is mediated by visual object processing, with additional mechanisms engaged when object content is uninformative.
Collapse
Affiliation(s)
- Chuanji Gao
- School of Psychology, Nanjing Normal University, Nanjing, China.
| | - Susan Ajith
- Department of Medicine, Justus-Liebig-Universität Gießen, Gießen, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Ou Y, Allen EJ, Kay KN, Oxenham AJ. Cortical substrates of perceptual confusion between pitch and timbre. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639197. [PMID: 40027705 PMCID: PMC11870464 DOI: 10.1101/2025.02.19.639197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Pitch and timbre are two fundamental perceptual attributes of sound that help us distinguish voices in speech and appreciate music. Brightness, one of the primary dimensions of timbre, is governed by different acoustic parameters compared to pitch, but the two can be confused perceptually when varied simultaneously. Here we combine human behavior and fMRI to provide evidence of a potential neural substrate to explain this important but poorly understood perceptual confusion. We identify orderly mappings of both pitch and brightness within auditory cortex and reveal two independent lines of evidence for cortical confusion between them. First, the preferred pitch of individual voxels decreases systematically as brightness increases, and vice versa, consistent with predictions based on perceptual confusion. Second, pitch and brightness mapping share a common high-low-high gradient across auditory cortex, implying a shared trajectory of cortical activation for changes in each dimension. The results provide a cortical substrate at both local and global scales for an established auditory perceptual phenomenon that is thought to reflect efficient coding of features ubiquitous in natural sound statistics.
Collapse
|
3
|
Lord B, Allen JJB, Young S, Sanguinetti JL. Enhancing Equanimity With Noninvasive Brain Stimulation: A Novel Framework for Mindfulness Interventions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:384-392. [PMID: 39708953 DOI: 10.1016/j.bpsc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Mindfulness has gained widespread recognition for its benefits for mental health, cognitive performance, and well-being. However, the multifaceted nature of mindfulness, which encompasses elements such as attentional focus, emotional regulation, and present-moment awareness, complicates its definition and measurement. A key component that may underlie its broad benefits is equanimity-the ability to maintain an open and nonreactive attitude toward all sensory experiences. Empirical research suggests that mindfulness works through a combination of top-down attentional control and bottom-up sensory and emotional processes and that equanimity's role in regulating those bottom-up processes drives the psychological and physiological benefits, making it a promising target for both theoretical and practical exploration. Given these findings, the development of interventions that specifically augment equanimity could improve the impact of mindfulness practices. Research into noninvasive brain stimulation (NIBS) suggests that it is a potential tool for altering neural circuits involved in mindfulness. However, most NIBS studies reported to date have focused on improving cognitive control systems and have left equanimity relatively unexplored. Preliminary findings from focused ultrasound interventions targeting the posterior cingulate cortex suggest that NIBS can directly facilitate equanimity by inhibiting self-referential processing in the default mode network to promote a more present-centered state of awareness. Future research should prioritize the integration of NIBS with well-defined mindfulness training protocols, focusing on equanimity as a core target. This approach could provide a novel framework for advancing both contemplative neuroscience and clinical applications, offering new insights into the mechanisms of mindfulness and refining NIBS methodologies to support individualized, precision wellness interventions.
Collapse
Affiliation(s)
- Brian Lord
- Center for Consciousness Studies, Science Enhanced Mindful Awareness Lab, University of Arizona, Tuscon, Arizona; Department of Psychology, University of Arizona, Tuscon, Arizona.
| | - John J B Allen
- Center for Consciousness Studies, Science Enhanced Mindful Awareness Lab, University of Arizona, Tuscon, Arizona; Department of Psychology, University of Arizona, Tuscon, Arizona
| | - Shinzen Young
- Center for Consciousness Studies, Science Enhanced Mindful Awareness Lab, University of Arizona, Tuscon, Arizona; Sanmai Technologies, PBC, Sunnyvale, California
| | - Joseph L Sanguinetti
- Center for Consciousness Studies, Science Enhanced Mindful Awareness Lab, University of Arizona, Tuscon, Arizona; Sanmai Technologies, PBC, Sunnyvale, California
| |
Collapse
|
4
|
Veillette JP, Chao AF, Nith R, Lopes P, Nusbaum HC. Overlapping Cortical Substrate of Biomechanical Control and Subjective Agency. J Neurosci 2025; 45:e1673242025. [PMID: 40127938 PMCID: PMC12044032 DOI: 10.1523/jneurosci.1673-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Every movement requires the nervous system to solve a complex biomechanical control problem, but this process is mostly veiled from one's conscious awareness. Simultaneously, we also have conscious experience of controlling our movements-our sense of agency (SoA). Whether SoA corresponds to those neural representations that implement actual neuromuscular control is an open question with ethical, medical, and legal implications. If SoA is the conscious experience of control, this predicts that SoA can be decoded from the same brain structures that implement the so-called "inverse dynamics" computations for planning movement. We correlated human (male and female) fMRI measurements during hand movements with the internal representations of a deep neural network (DNN) performing the same hand control task in a biomechanical simulation-revealing detailed cortical encodings of sensorimotor states, idiosyncratic to each subject. We then manipulated SoA by usurping control of participants' muscles via electrical stimulation, and found that the same voxels which were best explained by modeled inverse dynamics representations-which, strikingly, were located in canonically visual areas-also predicted SoA. Importantly, model-brain correspondences and robust SoA decoding could both be achieved within single subjects, enabling relationships between motor representations and awareness to be studied at the level of the individual.Significance Statement The inherent complexity of biomechanical control problems is belied by the seeming simplicity of directing movements in our subjective experience. This aspect of our experience suggests we have limited conscious access to the neural and mental representations involved in controlling the body - but of which of the many possible representations are we, in fact, aware? Understanding which motor control representations percolate into awareness has taken on increasing importance as emerging neural interface technologies push the boundaries of human autonomy. In our study, we leverage machine learning models that have learned to control simulated bodies to localize biomechanical control representations in the brain. Then, we show that these brain regions predict perceived agency over the musculature during functional electrical stimulation.
Collapse
Affiliation(s)
- John P Veillette
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | - Alfred F Chao
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | - Romain Nith
- Department of Computer Science, University of Chicago, Chicago, IL 60637
| | - Pedro Lopes
- Department of Computer Science, University of Chicago, Chicago, IL 60637
| | - Howard C Nusbaum
- Department of Psychology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
5
|
Freund MC, Chen R, Chen G, Braver TS. Complementary benefits of multivariate and hierarchical models for identifying individual differences in cognitive control. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2025; 3:imag_a_00447. [PMID: 39957839 PMCID: PMC11823007 DOI: 10.1162/imag_a_00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 02/18/2025]
Abstract
Understanding individual differences in cognitive control is a central goal in psychology and neuroscience. Reliably measuring these differences, however, has proven extremely challenging, at least when using standard measures in cognitive neuroscience such as response times or task-based fMRI activity. While prior work has pinpointed the source of the issue-the vast amount of cross-trial variability within these measures-solutions remain elusive. Here, we propose one potential way forward: an analytic framework that combines hierarchical Bayesian modeling with multivariate decoding of trial-level fMRI data. Using this framework and longitudinal data from the Dual Mechanisms of Cognitive Control project, we estimated individuals' neural responses associated with cognitive control within a color-word Stroop task, then assessed the reliability of these individuals' responses across a time interval of several months. We show that in many prefrontal and parietal brain regions, test-retest reliability was near maximal, and that only hierarchical models were able to reveal this state of affairs. Further, when compared to traditional univariate contrasts, multivariate decoding enabled individual-level correlations to be estimated with significantly greater precision. We specifically link these improvements in precision to the optimized suppression of cross-trial variability in decoding. Together, these findings not only indicate that cognitive control-related neural responses individuate people in a highly stable manner across time, but also suggest that integrating hierarchical and multivariate models provides a powerful approach for investigating individual differences in cognitive control, one that can effectively address the issue of high-variability measures.
Collapse
Affiliation(s)
- Michael C. Freund
- Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, United States
| | - Ruiqi Chen
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Gang Chen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Todd S. Braver
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, United States
| |
Collapse
|
6
|
Mattoni M, Fisher AJ, Gates KM, Chein J, Olino TM. Group-to-individual generalizability and individual-level inferences in cognitive neuroscience. Neurosci Biobehav Rev 2025; 169:106024. [PMID: 39889869 PMCID: PMC11835466 DOI: 10.1016/j.neubiorev.2025.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Much of cognitive neuroscience research is focused on group-averages and interindividual brain-behavior associations. However, many theories core to the goal of cognitive neuroscience, such as hypothesized neural mechanisms for a behavior, are inherently based on intraindividual processes. To accommodate this mismatch between study design and theory, research frequently relies on an implicit assumption that group-level, between-person inferences extend to individual-level, within-person processes. The assumption of group-to-individual generalizability, formally referred to as ergodicity, requires that a process be both homogenous within a population and stationary within individuals over time. Our goal in this review is to assess this assumption and provide an accessible introduction to idiographic science (study of the individual) for the cognitive neuroscientist, ultimately laying a foundation for increased focus on the study of intraindividual processes. We first review the history of idiographic science in psychology to connect this longstanding literature with recent individual-level research goals in cognitive neuroscience. We then consider two requirements of group-to-individual generalizability, pattern homogeneity and stationarity, and suggest that most processes in cognitive neuroscience do not meet these assumptions. Consequently, interindividual findings are inappropriate for the intraindividual inferences that many theories are based on. To address this challenge, we suggest precision imaging as an ideal path forward for intraindividual study and present a research framework for complementary interindividual and intraindividual study.
Collapse
Affiliation(s)
- Matthew Mattoni
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA.
| | - Aaron J Fisher
- University of California-Berkeley, Department of Psychology, 2121 Berkeley Way, Berkeley, CA, USA
| | - Kathleen M Gates
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Jason Chein
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA
| | - Thomas M Olino
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA
| |
Collapse
|
7
|
Lee DH, Lee S, Woo CW. Decoding pain: uncovering the factors that affect the performance of neuroimaging-based pain models. Pain 2025; 166:360-375. [PMID: 39324942 PMCID: PMC11726494 DOI: 10.1097/j.pain.0000000000003392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 09/27/2024]
Abstract
ABSTRACT Neuroimaging-based pain biomarkers, when combined with machine learning techniques, have demonstrated potential in decoding pain intensity and diagnosing clinical pain conditions. However, a systematic evaluation of how different modeling options affect model performance remains unexplored. This study presents the results from a comprehensive literature survey and benchmark analysis. We conducted a survey of 57 previously published articles that included neuroimaging-based predictive modeling of pain, comparing classification and prediction performance based on the following modeling variables-the levels of data, spatial scales, idiographic vs population models, and sample sizes. The findings revealed a preference for population-level modeling with brain-wide features, aligning with the goal of clinical translation of neuroimaging biomarkers. However, a systematic evaluation of the influence of different modeling options was hindered by a limited number of independent test results. This prompted us to conduct benchmark analyses using a locally collected functional magnetic resonance imaging dataset (N = 124) involving an experimental thermal pain task. The results demonstrated that data levels, spatial scales, and sample sizes significantly impact model performance. Specifically, incorporating more pain-related brain regions, increasing sample sizes, and averaging less data during training and more data during testing improved performance. These findings offer useful guidance for developing neuroimaging-based biomarkers, underscoring the importance of strategic selection of modeling approaches to build better-performing neuroimaging pain biomarkers. However, the generalizability of these findings to clinical pain requires further investigation.
Collapse
Affiliation(s)
- Dong Hee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Sungwoo Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
8
|
Lee HJ, Dworetsky A, Labora N, Gratton C. Using precision approaches to improve brain-behavior prediction. Trends Cogn Sci 2025; 29:170-183. [PMID: 39419740 DOI: 10.1016/j.tics.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Predicting individual behavioral traits from brain idiosyncrasies has broad practical implications, yet predictions vary widely. This constraint may be driven by a combination of signal and noise in both brain and behavioral variables. Here, we expand on this idea, highlighting the potential of extended sampling 'precision' studies. First, we discuss their relevance to improving the reliability of individualized estimates by minimizing measurement noise. Second, we review how targeted within-subject experiments, when combined with individualized analysis or modeling frameworks, can maximize signal. These improvements in signal-to-noise facilitated by precision designs can help boost prediction studies. We close by discussing the integration of precision approaches with large-sample consortia studies to leverage the advantages of both.
Collapse
Affiliation(s)
- Hyejin J Lee
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - Ally Dworetsky
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Nathan Labora
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
9
|
Fortier E, Bellec P, Boyle JA, Fuente A. MRI noise and auditory health: Can one hundred scans be linked to hearing loss? The case of the Courtois NeuroMod project. PLoS One 2025; 20:e0309513. [PMID: 39823462 PMCID: PMC11741633 DOI: 10.1371/journal.pone.0309513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/13/2024] [Indexed: 01/19/2025] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most commonly used tools in neuroscience. However, it implies exposure to high noise levels. Exposure to noise can lead to temporary or permanent hearing loss, especially when the exposure is long and/or repeated. Little is known about the hearing risks for people undergoing several MRI examinations, especially in the context of longitudinal studies. The goal of this study was to assess the potential impact of repeated exposure to MRI noise on hearing in research participants undergoing dozens of MRI scans. This investigation was made possible thanks to an unprecedented intensive MRI research data collection effort (the Courtois NeuroMod project) where participants have been scanned weekly (up to twice a week), with the use of hearing protection, since 2018. Their hearing was tested periodically, over a period of 1.5 years. First, baseline pure-tone thresholds and distortion product otoacoustic emission (DPOAE) amplitudes were acquired before the beginning of this study. Hearing tests were then scheduled immediately before/immediately after a scan and with a delay of two to seven days after a scan. Pure-tone thresholds and DPOAE amplitudes showed no scanner noise impact right after the scan session when compared to the values acquired right before the scan session. Pure-tone thresholds and DPOAE amplitudes acquired in the delayed condition and compared to the baseline showed similar results. These results suggest an absence of impact from MRI noise exposure. Overall, our results show that an intensive longitudinal MRI study like the Courtois NeuroMod project likely does not cause hearing damage to participants when they properly utilize adequate hearing protection.
Collapse
Affiliation(s)
- Eddy Fortier
- Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Pierre Bellec
- Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Julie A. Boyle
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Adrian Fuente
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- École d’orthophonie et d’audiologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
10
|
Badwal MW, Bergmann J, Roth JHR, Doeller CF, Hebart MN. The Scope and Limits of Fine-Grained Image and Category Information in the Ventral Visual Pathway. J Neurosci 2025; 45:e0936242024. [PMID: 39505406 PMCID: PMC11735656 DOI: 10.1523/jneurosci.0936-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024] Open
Abstract
Humans can easily abstract incoming visual information into discrete semantic categories. Previous research employing functional MRI (fMRI) in humans has identified cortical organizing principles that allow not only for coarse-scale distinctions such as animate versus inanimate objects but also more fine-grained distinctions at the level of individual objects. This suggests that fMRI carries rather fine-grained information about individual objects. However, most previous work investigating fine-grained category representations either additionally included coarse-scale category comparisons of objects, which confounds fine-grained and coarse-scale distinctions, or only used a single exemplar of each object, which confounds visual and semantic information. To address these challenges, here we used multisession human fMRI (female and male) paired with a broad yet homogenous stimulus class of 48 terrestrial mammals, with two exemplars per mammal. Multivariate decoding and representational similarity analysis revealed high image-specific reliability in low- and high-level visual regions, indicating stable representational patterns at the image level. In contrast, analyses across exemplars of the same animal yielded only small effects in the lateral occipital complex (LOC), indicating rather subtle category effects in this region. Variance partitioning with a deep neural network and shape model showed that across-exemplar effects in the early visual cortex were largely explained by low-level visual appearance, while representations in LOC appeared to also contain higher category-specific information. These results suggest that representations typically measured with fMRI are dominated by image-specific visual or coarse-grained category information but indicate that commonly employed fMRI protocols may reveal subtle yet reliable distinctions between individual objects.
Collapse
Affiliation(s)
- Markus W Badwal
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Vision & Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Neurosurgery, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Johanna Bergmann
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Johannes H R Roth
- Vision & Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Medicine, Justus Liebig University, Giessen 35390 Germany
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Martin N Hebart
- Vision & Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Medicine, Justus Liebig University, Giessen 35390 Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Giessen, and Darmstadt, Marburg 35032, Germany
| |
Collapse
|
11
|
Ratcliffe M, Velasco PF. The nature of grief: implications for the neurobiology of emotion. Neurosci Conscious 2024; 2024:niae041. [PMID: 39712210 PMCID: PMC11661370 DOI: 10.1093/nc/niae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
This paper explores the limitations of neurobiological approaches to human emotional experience, focusing on the case of grief. We propose that grief is neither an episodic emotion nor a longer-term mood but instead a heterogeneous, temporally extended process. A grief process can incorporate all manner of experiences, thoughts, and activities, most or all of which are not grief-specific. Furthermore, its course over time is shaped in various different ways by interpersonal, social, and cultural environments. This poses methodological challenges for any attempt to relate grief to the brain. Grief also illustrates wider limitations of approaches that conceive of emotions as brief episodes, abstracted from the dynamic, holistic, longer-term organization of human emotional life.
Collapse
Affiliation(s)
- Matthew Ratcliffe
- Department of Philosophy, University of York, York YO10 5DD, United Kingdom
| | - Pablo Fernandez Velasco
- Department of Philosophy, University of York, York YO10 5DD, United Kingdom
- Institute of Behavioral Neuroscience, University College London, 26 Bedford Way, London WC1H 0AP, United Kingdom
| |
Collapse
|
12
|
Nakai T, Constant-Varlet C, Prado J. Encoding models for developmental cognitive computational neuroscience: Promise, challenges, and potential. Dev Cogn Neurosci 2024; 70:101470. [PMID: 39504850 PMCID: PMC11570778 DOI: 10.1016/j.dcn.2024.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Cognitive computational neuroscience has received broad attention in recent years as an emerging area integrating cognitive science, neuroscience, and artificial intelligence. At the heart of this field, approaches using encoding models allow for explaining brain activity from latent and high-dimensional features, including artificial neural networks. With the notable exception of temporal response function models that are applied to electroencephalography, most prior studies have focused on adult subjects, making it difficult to capture how brain representations change with learning and development. Here, we argue that future developmental cognitive neuroscience studies would benefit from approaches relying on encoding models. We provide an overview of encoding models used in adult functional magnetic resonance imaging research. This research has notably used data with a small number of subjects, but with a large number of samples per subject. Studies using encoding models also generally require task-based neuroimaging data. Though these represent challenges for developmental studies, we argue that these challenges may be overcome by using functional alignment techniques and naturalistic paradigms. These methods would facilitate encoding model analysis in developmental neuroimaging research, which may lead to important theoretical advances.
Collapse
Affiliation(s)
- Tomoya Nakai
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France; Araya Inc., Tokyo, Japan.
| | - Charlotte Constant-Varlet
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France.
| |
Collapse
|
13
|
Racicot J, Smine S, Afzali K, Orban P. Functional brain connectivity changes associated with day-to-day fluctuations in affective states. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1141-1154. [PMID: 39322824 PMCID: PMC11525411 DOI: 10.3758/s13415-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Affective neuroscience has traditionally relied on cross-sectional studies to uncover the brain correlates of affects, emotions, and moods. Such findings obfuscate intraindividual variability that may reveal meaningful changing affect states. The few functional magnetic resonance imaging longitudinal studies that have linked changes in brain function to the ebbs and flows of affective states over time have mostly investigated a single individual. In this study, we explored how the functional connectivity of brain areas associated with affective processes can explain within-person fluctuations in self-reported positive and negative affects across several subjects. To do so, we leveraged the Day2day dataset that includes 40 to 50 resting-state functional magnetic resonance imaging scans along self-reported positive and negative affectivity from a sample of six healthy participants. Sparse multivariate mixed-effect linear models could explain 15% and 11% of the within-person variation in positive and negative affective states, respectively. Evaluation of these models' generalizability to new data demonstrated the ability to predict approximately 5% and 2% of positive and negative affect variation. The functional connectivity of limbic areas, such as the amygdala, hippocampus, and insula, appeared most important to explain the temporal dynamics of affects over days, weeks, and months.
Collapse
Affiliation(s)
- Jeanne Racicot
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Département de Psychiatrie et d'addictologie, Université de Montréal, Montréal, Canada
| | - Salima Smine
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
| | - Kamran Afzali
- Consortium Santé Numérique, Université de Montréal, Montréal, Canada
| | - Pierre Orban
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada.
- Département de Psychiatrie et d'addictologie, Université de Montréal, Montréal, Canada.
| |
Collapse
|
14
|
Blanco R, Preti MG, Koba C, Ville DVD, Crimi A. Comparing structure-function relationships in brain networks using EEG and fNIRS. Sci Rep 2024; 14:28976. [PMID: 39578593 PMCID: PMC11584861 DOI: 10.1038/s41598-024-79817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Identifying relationships between structural and functional networks is crucial for understanding the large-scale organization of the human brain. The potential contribution of emerging techniques like functional near-infrared spectroscopy to investigate the structure-functional relationship has yet to be explored. In our study, using simultaneous Electroencephalography (EEG) and Functional near-infrared spectroscopy (fNIRS) recordings from 18 subjects, we characterize global and local structure-function coupling using source-reconstructed EEG and fNIRS signals in both resting state and motor imagery tasks, as this relationship during task periods remains underexplored. Employing the mathematical framework of graph signal processing, we investigate how this relationship varies across electrical and hemodynamic networks and different brain states. Results show that fNIRS structure-function coupling resembles slower-frequency EEG coupling at rest, with variations across brain states and oscillations. Locally, the relationship is heterogeneous, with greater coupling in the sensory cortex and increased decoupling in the association cortex, following the unimodal to transmodal gradient. Discrepancies between EEG and fNIRS are noted, particularly in the frontoparietal network. Cross-band representations of neural activity revealed lower correspondence between electrical and hemodynamic activity in the transmodal cortex, irrespective of brain state while showing specificity for the somatomotor network during a motor imagery task. Overall, these findings initiate a multimodal comprehension of structure-function relationship and brain organization when using affordable functional brain imaging.
Collapse
Affiliation(s)
- Rosmary Blanco
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland.
| | - Maria Giulia Preti
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cemal Koba
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland
| | - Dimitri Van De Ville
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandro Crimi
- Computer Science faculty, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
15
|
Contier O, Baker CI, Hebart MN. Distributed representations of behaviour-derived object dimensions in the human visual system. Nat Hum Behav 2024; 8:2179-2193. [PMID: 39251723 PMCID: PMC11576512 DOI: 10.1038/s41562-024-01980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
Object vision is commonly thought to involve a hierarchy of brain regions processing increasingly complex image features, with high-level visual cortex supporting object recognition and categorization. However, object vision supports diverse behavioural goals, suggesting basic limitations of this category-centric framework. To address these limitations, we mapped a series of dimensions derived from a large-scale analysis of human similarity judgements directly onto the brain. Our results reveal broadly distributed representations of behaviourally relevant information, demonstrating selectivity to a wide variety of novel dimensions while capturing known selectivities for visual features and categories. Behaviour-derived dimensions were superior to categories at predicting brain responses, yielding mixed selectivity in much of visual cortex and sparse selectivity in category-selective clusters. This framework reconciles seemingly disparate findings regarding regional specialization, explaining category selectivity as a special case of sparse response profiles among representational dimensions, suggesting a more expansive view on visual processing in the human brain.
Collapse
Affiliation(s)
- Oliver Contier
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Martin N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Peng Y, Gong X, Lu H, Fang F. Human Visual Pathways for Action Recognition versus Deep Convolutional Neural Networks: Representation Correspondence in Late but Not Early Layers. J Cogn Neurosci 2024; 36:2458-2480. [PMID: 39106158 DOI: 10.1162/jocn_a_02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Deep convolutional neural networks (DCNNs) have attained human-level performance for object categorization and exhibited representation alignment between network layers and brain regions. Does such representation alignment naturally extend to other visual tasks beyond recognizing objects in static images? In this study, we expanded the exploration to the recognition of human actions from videos and assessed the representation capabilities and alignment of two-stream DCNNs in comparison with brain regions situated along ventral and dorsal pathways. Using decoding analysis and representational similarity analysis, we show that DCNN models do not show hierarchical representation alignment to human brain across visual regions when processing action videos. Instead, later layers of DCNN models demonstrate greater representation similarities to the human visual cortex. These findings were revealed for two display formats: photorealistic avatars with full-body information and simplified stimuli in the point-light display. The discrepancies in representation alignment suggest fundamental differences in how DCNNs and the human brain represent dynamic visual information related to actions.
Collapse
Affiliation(s)
- Yujia Peng
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
- Institute for Artificial Intelligence, Peking University, Beijing, People's Republic of China
- National Key Laboratory of General Artificial Intelligence, Beijing Institute for General Artificial Intelligence, Beijing, China
- Department of Psychology, University of California, Los Angeles
| | - Xizi Gong
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
| | - Hongjing Lu
- Department of Psychology, University of California, Los Angeles
- Department of Statistics, University of California, Los Angeles
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Kupers ER, Knapen T, Merriam EP, Kay KN. Principles of intensive human neuroimaging. Trends Neurosci 2024; 47:856-864. [PMID: 39455343 PMCID: PMC11563852 DOI: 10.1016/j.tins.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.
Collapse
Affiliation(s)
- Eline R Kupers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, the Netherlands; Cognitive Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Conwell C, Prince JS, Kay KN, Alvarez GA, Konkle T. A large-scale examination of inductive biases shaping high-level visual representation in brains and machines. Nat Commun 2024; 15:9383. [PMID: 39477923 PMCID: PMC11526138 DOI: 10.1038/s41467-024-53147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The rapid release of high-performing computer vision models offers new potential to study the impact of different inductive biases on the emergent brain alignment of learned representations. Here, we perform controlled comparisons among a curated set of 224 diverse models to test the impact of specific model properties on visual brain predictivity - a process requiring over 1.8 billion regressions and 50.3 thousand representational similarity analyses. We find that models with qualitatively different architectures (e.g. CNNs versus Transformers) and task objectives (e.g. purely visual contrastive learning versus vision- language alignment) achieve near equivalent brain predictivity, when other factors are held constant. Instead, variation across visual training diets yields the largest, most consistent effect on brain predictivity. Many models achieve similarly high brain predictivity, despite clear variation in their underlying representations - suggesting that standard methods used to link models to brains may be too flexible. Broadly, these findings challenge common assumptions about the factors underlying emergent brain alignment, and outline how we can leverage controlled model comparison to probe the common computational principles underlying biological and artificial visual systems.
Collapse
Affiliation(s)
- Colin Conwell
- Department of Psychology, Harvard University, Cambridge, MA, USA.
| | - Jacob S Prince
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - George A Alvarez
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Talia Konkle
- Department of Psychology, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Kempner Institute for Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Bourne JA, Cichy RM, Kiorpes L, Morrone MC, Arcaro MJ, Nielsen KJ. Development of Higher-Level Vision: A Network Perspective. J Neurosci 2024; 44:e1291242024. [PMID: 39358020 PMCID: PMC11450542 DOI: 10.1523/jneurosci.1291-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Most studies on the development of the visual system have focused on the mechanisms shaping early visual stages up to the level of primary visual cortex (V1). Much less is known about the development of the stages after V1 that handle the higher visual functions fundamental to everyday life. The standard model for the maturation of these areas is that it occurs sequentially, according to the positions of areas in the adult hierarchy. Yet, the existing literature reviewed here paints a different picture, one in which the adult configuration emerges through a sequence of unique network configurations that are not mere partial versions of the adult hierarchy. In addition to studying higher visual development per se to fill major gaps in knowledge, it will be crucial to adopt a network-level perspective in future investigations to unravel normal developmental mechanisms, identify vulnerabilities to developmental disorders, and eventually devise treatments for these disorders.
Collapse
Affiliation(s)
- James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, Maryland 20814
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Einstein Center for Neurosciences Berlin, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, New York 10003
| | - Maria Concetta Morrone
- IRCCS Fondazione Stella Maris, Pisa 56128, Italy
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Michael J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kristina J Nielsen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
20
|
Petersen SE, Seitzman BA, Nelson SM, Wig GS, Gordon EM. Principles of cortical areas and their implications for neuroimaging. Neuron 2024; 112:2837-2853. [PMID: 38834069 DOI: 10.1016/j.neuron.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.
Collapse
Affiliation(s)
- Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin A Seitzman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Lynch CJ, Elbau IG, Ng T, Ayaz A, Zhu S, Wolk D, Manfredi N, Johnson M, Chang M, Chou J, Summerville I, Ho C, Lueckel M, Bukhari H, Buchanan D, Victoria LW, Solomonov N, Goldwaser E, Moia S, Caballero-Gaudes C, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Kay K, Aloysi A, Gordon EM, Bhati MT, Williams N, Power JD, Zebley B, Grosenick L, Gunning FM, Liston C. Frontostriatal salience network expansion in individuals in depression. Nature 2024; 633:624-633. [PMID: 39232159 PMCID: PMC11410656 DOI: 10.1038/s41586-024-07805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Decades of neuroimaging studies have shown modest differences in brain structure and connectivity in depression, hindering mechanistic insights or the identification of risk factors for disease onset1. Furthermore, whereas depression is episodic, few longitudinal neuroimaging studies exist, limiting understanding of mechanisms that drive mood-state transitions. The emerging field of precision functional mapping has used densely sampled longitudinal neuroimaging data to show behaviourally meaningful differences in brain network topography and connectivity between and in healthy individuals2-4, but this approach has not been applied in depression. Here, using precision functional mapping and several samples of deeply sampled individuals, we found that the frontostriatal salience network is expanded nearly twofold in the cortex of most individuals with depression. This effect was replicable in several samples and caused primarily by network border shifts, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was stable over time, unaffected by mood state and detectable in children before the onset of depression later in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in frontostriatal circuits that tracked fluctuations in specific symptoms and predicted future anhedonia symptoms. Together, these findings identify a trait-like brain network topology that may confer risk for depression and mood-state-dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Tommy Ng
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Nicola Manfredi
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Chang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Claire Ho
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Maximilian Lueckel
- Leibniz Institute for Resilience Research, Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hussain Bukhari
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Derrick Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Nili Solomonov
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Goldwaser
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Stefano Moia
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | | | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Amy Aloysi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahendra T Bhati
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Wang T, Lee TS, Yao H, Hong J, Li Y, Jiang H, Andolina IM, Tang S. Large-scale calcium imaging reveals a systematic V4 map for encoding natural scenes. Nat Commun 2024; 15:6401. [PMID: 39080309 PMCID: PMC11289446 DOI: 10.1038/s41467-024-50821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Biological visual systems have evolved to process natural scenes. A full understanding of visual cortical functions requires a comprehensive characterization of how neuronal populations in each visual area encode natural scenes. Here, we utilized widefield calcium imaging to record V4 cortical response to tens of thousands of natural images in male macaques. Using this large dataset, we developed a deep-learning digital twin of V4 that allowed us to map the natural image preferences of the neural population at 100-µm scale. This detailed map revealed a diverse set of functional domains in V4, each encoding distinct natural image features. We validated these model predictions using additional widefield imaging and single-cell resolution two-photon imaging. Feature attribution analysis revealed that these domains lie along a continuum from preferring spatially localized shape features to preferring spatially dispersed surface features. These results provide insights into the organizing principles that govern natural scene encoding in V4.
Collapse
Affiliation(s)
- Tianye Wang
- Peking University School of Life Sciences, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China
| | - Tai Sing Lee
- Computer Science Department and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Haoxuan Yao
- Peking University School of Life Sciences, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China
| | - Jiayi Hong
- Peking University School of Life Sciences, Beijing, 100871, China
| | - Yang Li
- Peking University School of Life Sciences, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China
| | - Hongfei Jiang
- Peking University School of Life Sciences, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China
| | - Ian Max Andolina
- The Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shiming Tang
- Peking University School of Life Sciences, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, 100871, China.
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China.
| |
Collapse
|
23
|
Contier O, Baker CI, Hebart MN. Distributed representations of behavior-derived object dimensions in the human visual system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.553812. [PMID: 37662312 PMCID: PMC10473665 DOI: 10.1101/2023.08.23.553812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Object vision is commonly thought to involve a hierarchy of brain regions processing increasingly complex image features, with high-level visual cortex supporting object recognition and categorization. However, object vision supports diverse behavioral goals, suggesting basic limitations of this category-centric framework. To address these limitations, we mapped a series of dimensions derived from a large-scale analysis of human similarity judgments directly onto the brain. Our results reveal broadly distributed representations of behaviorally-relevant information, demonstrating selectivity to a wide variety of novel dimensions while capturing known selectivities for visual features and categories. Behavior-derived dimensions were superior to categories at predicting brain responses, yielding mixed selectivity in much of visual cortex and sparse selectivity in category-selective clusters. This framework reconciles seemingly disparate findings regarding regional specialization, explaining category selectivity as a special case of sparse response profiles among representational dimensions, suggesting a more expansive view on visual processing in the human brain.
Collapse
Affiliation(s)
- O Contier
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - C I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda MD, USA
| | - M N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Takemura H, Kruper JA, Miyata T, Rokem A. Tractometry of Human Visual White Matter Pathways in Health and Disease. Magn Reson Med Sci 2024; 23:316-340. [PMID: 38866532 PMCID: PMC11234945 DOI: 10.2463/mrms.rev.2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Diffusion-weighted MRI (dMRI) provides a unique non-invasive view of human brain tissue properties. The present review article focuses on tractometry analysis methods that use dMRI to assess the properties of brain tissue within the long-range connections comprising brain networks. We focus specifically on the major white matter tracts that convey visual information. These connections are particularly important because vision provides rich information from the environment that supports a large range of daily life activities. Many of the diseases of the visual system are associated with advanced aging, and tractometry of the visual system is particularly important in the modern aging society. We provide an overview of the tractometry analysis pipeline, which includes a primer on dMRI data acquisition, voxelwise model fitting, tractography, recognition of white matter tracts, and calculation of tract tissue property profiles. We then review dMRI-based methods for analyzing visual white matter tracts: the optic nerve, optic tract, optic radiation, forceps major, and vertical occipital fasciculus. For each tract, we review background anatomical knowledge together with recent findings in tractometry studies on these tracts and their properties in relation to visual function and disease. Overall, we find that measurements of the brain's visual white matter are sensitive to a range of disorders and correlate with perceptual abilities. We highlight new and promising analysis methods, as well as some of the current barriers to progress toward integration of these methods into clinical practice. These barriers, such as variability in measurements between protocols and instruments, are targets for future development.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - John A Kruper
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| | - Toshikazu Miyata
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Giannakopoulou O, Kakkos I, Dimitrakopoulos GN, Tarousi M, Sun Y, Bezerianos A, Koutsouris DD, Matsopoulos GK. Individual Variability in Brain Connectivity Patterns and Driving-Fatigue Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:3894. [PMID: 38931678 PMCID: PMC11207888 DOI: 10.3390/s24123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Mental fatigue during driving poses significant risks to road safety, necessitating accurate assessment methods to mitigate potential hazards. This study explores the impact of individual variability in brain networks on driving fatigue assessment, hypothesizing that subject-specific connectivity patterns play a pivotal role in understanding fatigue dynamics. By conducting a linear regression analysis of subject-specific brain networks in different frequency bands, this research aims to elucidate the relationships between frequency-specific connectivity patterns and driving fatigue. As such, an EEG sustained driving simulation experiment was carried out, estimating individuals' brain networks using the Phase Lag Index (PLI) to capture shared connectivity patterns. The results unveiled notable variability in connectivity patterns across frequency bands, with the alpha band exhibiting heightened sensitivity to driving fatigue. Individualized connectivity analysis underscored the complexity of fatigue assessment and the potential for personalized approaches. These findings emphasize the importance of subject-specific brain networks in comprehending fatigue dynamics, while providing sensor space minimization, advocating for the development of efficient mobile sensor applications for real-time fatigue detection in driving scenarios.
Collapse
Affiliation(s)
- Olympia Giannakopoulou
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - Ioannis Kakkos
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
- Department of Biomedical Engineering, University of West Attica, 12243 Athens, Greece
| | | | - Marilena Tarousi
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anastasios Bezerianos
- Brain Dynamics Laboratory, Barrow Neurological Institute (BNI), St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Dimitrios D. Koutsouris
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - George K. Matsopoulos
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| |
Collapse
|
26
|
Willbrand EH, Tsai YH, Gagnant T, Weiner KS. Updating the sulcal landscape of the human lateral parieto-occipital junction provides anatomical, functional, and cognitive insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544284. [PMID: 38798426 PMCID: PMC11118496 DOI: 10.1101/2023.06.08.544284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent work has uncovered relationships between evolutionarily new small and shallow cerebral indentations, or sulci, and human behavior. Yet, this relationship remains unexplored in the lateral parietal cortex (LPC) and the lateral parieto-occipital junction (LPOJ). After defining thousands of sulci in a young adult cohort, we revised the previous LPC/LPOJ sulcal landscape to include four previously overlooked, small, shallow, and variable sulci. One of these sulci (ventral supralateral occipital sulcus, slocs-v) is present in nearly every hemisphere and is morphologically, architecturally, and functionally dissociable from neighboring sulci. A data-driven, model-based approach, relating sulcal depth to behavior further revealed that the morphology of only a subset of LPC/LPOJ sulci, including the slocs-v, is related to performance on a spatial orientation task. Our findings build on classic neuroanatomical theories and identify new neuroanatomical targets for future "precision imaging" studies exploring the relationship among brain structure, brain function, and cognitive abilities in individual participants.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Yi-Heng Tsai
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Gagnant
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
27
|
Faghel-Soubeyrand S, Richoz AR, Waeber D, Woodhams J, Caldara R, Gosselin F, Charest I. Neural computations in prosopagnosia. Cereb Cortex 2024; 34:bhae211. [PMID: 38795358 PMCID: PMC11127037 DOI: 10.1093/cercor/bhae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024] Open
Abstract
We report an investigation of the neural processes involved in the processing of faces and objects of brain-lesioned patient PS, a well-documented case of pure acquired prosopagnosia. We gathered a substantial dataset of high-density electrophysiological recordings from both PS and neurotypicals. Using representational similarity analysis, we produced time-resolved brain representations in a format that facilitates direct comparisons across time points, different individuals, and computational models. To understand how the lesions in PS's ventral stream affect the temporal evolution of her brain representations, we computed the temporal generalization of her brain representations. We uncovered that PS's early brain representations exhibit an unusual similarity to later representations, implying an excessive generalization of early visual patterns. To reveal the underlying computational deficits, we correlated PS' brain representations with those of deep neural networks (DNN). We found that the computations underlying PS' brain activity bore a closer resemblance to early layers of a visual DNN than those of controls. However, the brain representations in neurotypicals became more akin to those of the later layers of the model compared to PS. We confirmed PS's deficits in high-level brain representations by demonstrating that her brain representations exhibited less similarity with those of a DNN of semantics.
Collapse
Affiliation(s)
- Simon Faghel-Soubeyrand
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Rd, Oxford OX2 6GG
| | - Anne-Raphaelle Richoz
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Delphine Waeber
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Jessica Woodhams
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, UK
| | - Roberto Caldara
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Frédéric Gosselin
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
| | - Ian Charest
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
| |
Collapse
|
28
|
Fischer H, Nilsson ME, Ebner NC. Why the Single-N Design Should Be the Default in Affective Neuroscience. AFFECTIVE SCIENCE 2024; 5:62-66. [PMID: 38495781 PMCID: PMC10942943 DOI: 10.1007/s42761-023-00182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/07/2023] [Indexed: 03/19/2024]
Abstract
Many studies in affective neuroscience rely on statistical procedures designed to estimate population averages and base their main conclusions on group averages. However, the obvious unit of analysis in affective neuroscience is the individual, not the group, because emotions are individual phenomena that typically vary across individuals. Conclusions based on group averages may therefore be misleading or wrong, if interpreted as statements about emotions of an individual, or meaningless, if interpreted as statements about the group, which has no emotions. We therefore advocate the Single-N design as the default strategy in research on emotions, testing one or several individuals extensively with the primary purpose of obtaining results at the individual level. In neuroscience, the equivalent to the Single-N design is deep imaging, the emerging trend of extensive measurements of activity in single brains. Apart from the fact that individuals react differently to emotional stimuli, they also vary in shape and size of their brains. Group-based analysis of brain imaging data therefore refers to an "average brain" that was activated in a way that may not be representative of the physiology of any of the tested individual brains, nor of how these brains responded to the experimental stimuli. Deep imaging avoids such group-averaging artifacts by simply focusing on the individual brain. This methodological shift toward individual analysis has already opened new research areas in fields like vision science. Inspired by this, we call for a corresponding shift in affective neuroscience, away from group averages, and toward experimental designs targeting the individual.
Collapse
Affiliation(s)
- Håkan Fischer
- Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden
- Stockholm University Brain Imaging Center (SUBIC), 106 91 Stockholm, Sweden
- Department of Psychology, University of Florida, Gainesville, FL 32611 USA
| | - Mats E. Nilsson
- Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden
| | - Natalie C. Ebner
- Department of Psychology, University of Florida, Gainesville, FL 32611 USA
- Institute of Aging, University of Florida, Gainesville, FL 32611 USA
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32611 USA
- Florida Institute for Cybersecurity Research, University of Florida, Gainesville, FL 32610-0165 USA
| |
Collapse
|
29
|
Wulms N, Kugel H, Cnyrim C, Tenberge A, Schwindt W, Dannlowski U, Berger K, Sundermann B, Minnerup H. Cerebral MRI in a prospective cohort study on depression and atherosclerosis: the BiDirect sample, processing pipelines, and analysis tools. Eur Radiol Exp 2024; 8:16. [PMID: 38332362 PMCID: PMC10853141 DOI: 10.1186/s41747-023-00415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/23/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The use of cerebral magnetic resonance imaging (MRI) in observational studies has increased exponentially in recent years, making it critical to provide details about the study sample, image processing, and extracted imaging markers to validate and replicate study results. This article reviews the cerebral MRI dataset from the now-completed BiDirect cohort study, as an update and extension of the feasibility report published after the first two examination time points. METHODS We report the sample and flow of participants spanning four study sessions and twelve years. In addition, we provide details on the acquisition protocol; the processing pipelines, including standardization and quality control methods; and the analytical tools used and markers available. RESULTS All data were collected from 2010 to 2021 at a single site in Münster, Germany, starting with a population of 2,257 participants at baseline in 3 different cohorts: a population-based cohort (n = 911 at baseline, 672 with MRI data), patients diagnosed with depression (n = 999, 736 with MRI data), and patients with manifest cardiovascular disease (n = 347, 52 with MRI data). During the study period, a total of 4,315 MRI sessions were performed, and over 535 participants underwent MRI at all 4 time points. CONCLUSIONS Images were converted to Brain Imaging Data Structure (a standard for organizing and describing neuroimaging data) and analyzed using common tools, such as CAT12, FSL, Freesurfer, and BIANCA to extract imaging biomarkers. The BiDirect study comprises a thoroughly phenotyped study population with structural and functional MRI data. RELEVANCE STATEMENT The BiDirect Study includes a population-based sample and two patient-based samples whose MRI data can help answer numerous neuropsychiatric and cardiovascular research questions. KEY POINTS • The BiDirect study included characterized patient- and population-based cohorts with MRI data. • Data were standardized to Brain Imaging Data Structure and processed with commonly available software. • MRI data and markers are available upon request.
Collapse
Affiliation(s)
- Niklas Wulms
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany.
| | - Harald Kugel
- Clinic of Radiology Radiology, University Hospital Muenster, Münster, Germany
| | - Christian Cnyrim
- Department of Clinical Radiology, Klinikum Ibbenbueren, Ibbenbueren, Germany
| | - Anja Tenberge
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Wolfram Schwindt
- Clinic of Radiology Radiology, University Hospital Muenster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Benedikt Sundermann
- Clinic of Radiology Radiology, University Hospital Muenster, Münster, Germany
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
30
|
Soulos P, Isik L. Disentangled deep generative models reveal coding principles of the human face processing network. PLoS Comput Biol 2024; 20:e1011887. [PMID: 38408105 PMCID: PMC10919870 DOI: 10.1371/journal.pcbi.1011887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Despite decades of research, much is still unknown about the computations carried out in the human face processing network. Recently, deep networks have been proposed as a computational account of human visual processing, but while they provide a good match to neural data throughout visual cortex, they lack interpretability. We introduce a method for interpreting brain activity using a new class of deep generative models, disentangled representation learning models, which learn a low-dimensional latent space that "disentangles" different semantically meaningful dimensions of faces, such as rotation, lighting, or hairstyle, in an unsupervised manner by enforcing statistical independence between dimensions. We find that the majority of our model's learned latent dimensions are interpretable by human raters. Further, these latent dimensions serve as a good encoding model for human fMRI data. We next investigate the representation of different latent dimensions across face-selective voxels. We find that low- and high-level face features are represented in posterior and anterior face-selective regions, respectively, corroborating prior models of human face recognition. Interestingly, though, we find identity-relevant and irrelevant face features across the face processing network. Finally, we provide new insight into the few "entangled" (uninterpretable) dimensions in our model by showing that they match responses in the ventral stream and carry information about facial identity. Disentangled face encoding models provide an exciting alternative to standard "black box" deep learning approaches for modeling and interpreting human brain data.
Collapse
Affiliation(s)
- Paul Soulos
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Leyla Isik
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Wall J, Xie H, Wang X. Temporal Interactions between Maintenance of Cerebral Cortex Thickness and Physical Activity from an Individual Person Micro-Longitudinal Perspective and Implications for Precision Medicine. J Pers Med 2024; 14:127. [PMID: 38392561 PMCID: PMC10890462 DOI: 10.3390/jpm14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Maintenance of brain structure is essential for neurocognitive health. Precision medicine has interests in understanding how maintenance of an individual person's brain, including cerebral cortical structure, interacts with lifestyle factors like physical activity. Cortical structure, including cortical thickness, has recognized relationships with physical activity, but concepts of these relationships come from group, not individual, focused findings. Whether or how group-focused concepts apply to an individual person is fundamental to precision medicine interests but remains unclear. This issue was studied in a healthy man using concurrent micro-longitudinal tracking of magnetic resonance imaging-defined cortical thickness and accelerometer-defined steps/day over six months. These data permitted detailed examination of temporal relationships between thickness maintenance and physical activity at an individual level. Regression analyses revealed graded significant and trend-level temporal interactions between preceding activity vs. subsequent thickness maintenance and between preceding thickness maintenance vs. subsequent activity. Interactions were bidirectional, delayed/prolonged over days/weeks, positive, bilateral, directionally asymmetric, and limited in strength. These novel individual-focused findings in some ways are predicted, but in other ways remain unaddressed or undetected, by group-focused work. We suggest that individual-focused concepts of temporal interactions between maintenance of cortical structure and activity can provide needed new insight for personalized tailoring of physical activity, cortical, and neurocognitive health.
Collapse
Affiliation(s)
- John Wall
- Department of Neurosciences, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA; (H.X.); (X.W.)
| | - Hong Xie
- Department of Neurosciences, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA; (H.X.); (X.W.)
| | - Xin Wang
- Department of Neurosciences, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA; (H.X.); (X.W.)
- Department of Psychiatry, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
- Department of Radiology, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
32
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
33
|
Chen C, Messinger DS, Chen C, Yan H, Duan Y, Ince RAA, Garrod OGB, Schyns PG, Jack RE. Cultural facial expressions dynamically convey emotion category and intensity information. Curr Biol 2024; 34:213-223.e5. [PMID: 38141619 PMCID: PMC10831323 DOI: 10.1016/j.cub.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023]
Abstract
Communicating emotional intensity plays a vital ecological role because it provides valuable information about the nature and likelihood of the sender's behavior.1,2,3 For example, attack often follows signals of intense aggression if receivers fail to retreat.4,5 Humans regularly use facial expressions to communicate such information.6,7,8,9,10,11 Yet how this complex signaling task is achieved remains unknown. We addressed this question using a perception-based, data-driven method to mathematically model the specific facial movements that receivers use to classify the six basic emotions-"happy," "surprise," "fear," "disgust," "anger," and "sad"-and judge their intensity in two distinct cultures (East Asian, Western European; total n = 120). In both cultures, receivers expected facial expressions to dynamically represent emotion category and intensity information over time, using a multi-component compositional signaling structure. Specifically, emotion intensifiers peaked earlier or later than emotion classifiers and represented intensity using amplitude variations. Emotion intensifiers are also more similar across emotions than classifiers are, suggesting a latent broad-plus-specific signaling structure. Cross-cultural analysis further revealed similarities and differences in expectations that could impact cross-cultural communication. Specifically, East Asian and Western European receivers have similar expectations about which facial movements represent high intensity for threat-related emotions, such as "anger," "disgust," and "fear," but differ on those that represent low threat emotions, such as happiness and sadness. Together, our results provide new insights into the intricate processes by which facial expressions can achieve complex dynamic signaling tasks by revealing the rich information embedded in facial expressions.
Collapse
Affiliation(s)
- Chaona Chen
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK.
| | - Daniel S Messinger
- Departments of Psychology, Pediatrics, and Electrical & Computer Engineering, University of Miami, 5665 Ponce De Leon Blvd, Coral Gables, FL 33146, USA
| | - Cheng Chen
- Foreign Language Department, Teaching Centre for General Courses, Chengdu Medical College, 601 Tianhui Street, Chengdu 610083, China
| | - Hongmei Yan
- The MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, North Jianshe Road, Chengdu 611731, China
| | - Yaocong Duan
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK
| | - Robin A A Ince
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK
| | - Oliver G B Garrod
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK
| | - Philippe G Schyns
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK
| | - Rachael E Jack
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK
| |
Collapse
|
34
|
McMahon E, Bonner MF, Isik L. Hierarchical organization of social action features along the lateral visual pathway. Curr Biol 2023; 33:5035-5047.e8. [PMID: 37918399 PMCID: PMC10841461 DOI: 10.1016/j.cub.2023.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Recent theoretical work has argued that in addition to the classical ventral (what) and dorsal (where/how) visual streams, there is a third visual stream on the lateral surface of the brain specialized for processing social information. Like visual representations in the ventral and dorsal streams, representations in the lateral stream are thought to be hierarchically organized. However, no prior studies have comprehensively investigated the organization of naturalistic, social visual content in the lateral stream. To address this question, we curated a naturalistic stimulus set of 250 3-s videos of two people engaged in everyday actions. Each clip was richly annotated for its low-level visual features, mid-level scene and object properties, visual social primitives (including the distance between people and the extent to which they were facing), and high-level information about social interactions and affective content. Using a condition-rich fMRI experiment and a within-subject encoding model approach, we found that low-level visual features are represented in early visual cortex (EVC) and middle temporal (MT) area, mid-level visual social features in extrastriate body area (EBA) and lateral occipital complex (LOC), and high-level social interaction information along the superior temporal sulcus (STS). Communicative interactions, in particular, explained unique variance in regions of the STS after accounting for variance explained by all other labeled features. Taken together, these results provide support for representation of increasingly abstract social visual content-consistent with hierarchical organization-along the lateral visual stream and suggest that recognizing communicative actions may be a key computational goal of the lateral visual pathway.
Collapse
Affiliation(s)
- Emalie McMahon
- Department of Cognitive Science, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, 237 Krieger Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - Michael F Bonner
- Department of Cognitive Science, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, 237 Krieger Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leyla Isik
- Department of Cognitive Science, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, 237 Krieger Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Suite 400 West, Wyman Park Building, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
35
|
Rastegarnia S, St-Laurent M, DuPre E, Pinsard B, Bellec P. Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset. Neuroimage 2023; 283:120395. [PMID: 37832707 DOI: 10.1016/j.neuroimage.2023.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Brain decoding aims to infer cognitive states from patterns of brain activity. Substantial inter-individual variations in functional brain organization challenge accurate decoding performed at the group level. In this paper, we tested whether accurate brain decoding models can be trained entirely at the individual level. We trained several classifiers on a dense individual functional magnetic resonance imaging (fMRI) dataset for which six participants completed the entire Human Connectome Project (HCP) task battery >13 times over ten separate fMRI sessions. We evaluated nine decoding methods, from Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP) to Graph Convolutional Neural Networks (GCN). All decoders were trained to classify single fMRI volumes into 21 experimental conditions simultaneously, using ∼7 h of fMRI data per participant. The best prediction accuracies were achieved with GCN and MLP models, whose performance (57-67 % accuracy) approached state-of-the-art accuracy (76 %) with models trained at the group level on >1 K hours of data from the original HCP sample. Our SVM model also performed very well (54-62 % accuracy). Feature importance maps derived from MLP -our best-performing model- revealed informative features in regions relevant to particular cognitive domains, notably in the motor cortex. We also observed that inter-subject classification achieved substantially lower accuracy than subject-specific models, indicating that our decoders learned individual-specific features. This work demonstrates that densely-sampled neuroimaging datasets can be used to train accurate brain decoding models at the individual level. We expect this work to become a useful benchmark for techniques that improve model generalization across multiple subjects and acquisition conditions.
Collapse
Affiliation(s)
- Shima Rastegarnia
- Université de Montréal, Montréal, QC, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.
| | - Marie St-Laurent
- Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | | | - Basile Pinsard
- Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Pierre Bellec
- Université de Montréal, Montréal, QC, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| |
Collapse
|
36
|
Nakuci J, Yeon J, Xue K, Kim JH, Kim SP, Rahnev D. Quantifying the contribution of subject and group factors in brain activation. Cereb Cortex 2023; 33:11092-11101. [PMID: 37771044 PMCID: PMC10646690 DOI: 10.1093/cercor/bhad348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Research in neuroscience often assumes universal neural mechanisms, but increasing evidence points toward sizeable individual differences in brain activations. What remains unclear is the extent of the idiosyncrasy and whether different types of analyses are associated with different levels of idiosyncrasy. Here we develop a new method for addressing these questions. The method consists of computing the within-subject reliability and subject-to-group similarity of brain activations and submitting these values to a computational model that quantifies the relative strength of group- and subject-level factors. We apply this method to a perceptual decision-making task (n = 50) and find that activations related to task, reaction time, and confidence are influenced equally strongly by group- and subject-level factors. Both group- and subject-level factors are dwarfed by a noise factor, though higher levels of smoothing increases their contributions relative to noise. Overall, our method allows for the quantification of group- and subject-level factors of brain activations and thus provides a more detailed understanding of the idiosyncrasy levels in brain activations.
Collapse
Affiliation(s)
- Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jiwon Yeon
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Kai Xue
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Ji-Hyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
37
|
Tuckute G, Sathe A, Srikant S, Taliaferro M, Wang M, Schrimpf M, Kay K, Fedorenko E. Driving and suppressing the human language network using large language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537080. [PMID: 37090673 PMCID: PMC10120732 DOI: 10.1101/2023.04.16.537080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Transformer models such as GPT generate human-like language and are highly predictive of human brain responses to language. Here, using fMRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict the magnitude of brain response associated with each sentence. Then, we use the model to identify new sentences that are predicted to drive or suppress responses in the human language network. We show that these model-selected novel sentences indeed strongly drive and suppress activity of human language areas in new individuals. A systematic analysis of the model-selected sentences reveals that surprisal and well-formedness of linguistic input are key determinants of response strength in the language network. These results establish the ability of neural network models to not only mimic human language but also noninvasively control neural activity in higher-level cortical areas, like the language network.
Collapse
Affiliation(s)
- Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Shashank Srikant
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- MIT-IBM Watson AI Lab, Cambridge, MA 02142, USA
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mingye Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Martin Schrimpf
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Quest for Intelligence, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
38
|
Kraus B, Zinbarg R, Braga RM, Nusslock R, Mittal VA, Gratton C. Insights from personalized models of brain and behavior for identifying biomarkers in psychiatry. Neurosci Biobehav Rev 2023; 152:105259. [PMID: 37268180 PMCID: PMC10527506 DOI: 10.1016/j.neubiorev.2023.105259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
A main goal in translational neuroscience is to identify neural correlates of psychopathology ("biomarkers") that can be used to facilitate diagnosis, prognosis, and treatment. This goal has led to substantial research into how psychopathology symptoms relate to large-scale brain systems. However, these efforts have not yet resulted in practical biomarkers used in clinical practice. One reason for this underwhelming progress may be that many study designs focus on increasing sample size instead of collecting additional data within each individual. This focus limits the reliability and predictive validity of brain and behavioral measures in any one person. As biomarkers exist at the level of individuals, an increased focus on validating them within individuals is warranted. We argue that personalized models, estimated from extensive data collection within individuals, can address these concerns. We review evidence from two, thus far separate, lines of research on personalized models of (1) psychopathology symptoms and (2) fMRI measures of brain networks. We close by proposing approaches uniting personalized models across both domains to improve biomarker research.
Collapse
Affiliation(s)
- Brian Kraus
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Richard Zinbarg
- Department of Psychology, Northwestern University, Evanston, IL, USA; The Family Institute at Northwestern University, Evanston, IL, USA
| | - Rodrigo M Braga
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Chicago, IL, USA; Northwestern University, Medical Social Sciences, Chicago, IL, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Psychology, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
39
|
Liu ZQ, Shafiei G, Baillet S, Misic B. Spatially heterogeneous structure-function coupling in haemodynamic and electromagnetic brain networks. Neuroimage 2023; 278:120276. [PMID: 37451374 DOI: 10.1016/j.neuroimage.2023.120276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in connectomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing structural connectivity estimated using diffusion MRI with functional connectivity estimated using both neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-function coupling is heterogeneous across brain regions and frequency bands. The link between structural and functional connectivity is generally stronger in multiple MEG frequency bands compared to resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands compared to faster frequency bands. We also find that structure-function coupling systematically follows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation, peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-informed inter-regional communication metrics than using structural connectivity alone. Collectively, these results place neurophysiological and haemodynamic structure-function relationships in a common frame of reference and provide a starting point for a multi-modal understanding of structure-function coupling in the brain.
Collapse
Affiliation(s)
- Zhen-Qi Liu
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
40
|
Gong Z, Zhou M, Dai Y, Wen Y, Liu Y, Zhen Z. A large-scale fMRI dataset for the visual processing of naturalistic scenes. Sci Data 2023; 10:559. [PMID: 37612327 PMCID: PMC10447576 DOI: 10.1038/s41597-023-02471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
One ultimate goal of visual neuroscience is to understand how the brain processes visual stimuli encountered in the natural environment. Achieving this goal requires records of brain responses under massive amounts of naturalistic stimuli. Although the scientific community has put a lot of effort into collecting large-scale functional magnetic resonance imaging (fMRI) data under naturalistic stimuli, more naturalistic fMRI datasets are still urgently needed. We present here the Natural Object Dataset (NOD), a large-scale fMRI dataset containing responses to 57,120 naturalistic images from 30 participants. NOD strives for a balance between sampling variation between individuals and sampling variation between stimuli. This enables NOD to be utilized not only for determining whether an observation is generalizable across many individuals, but also for testing whether a response pattern is generalized to a variety of naturalistic stimuli. We anticipate that the NOD together with existing naturalistic neuroimaging datasets will serve as a new impetus for our understanding of the visual processing of naturalistic stimuli.
Collapse
Affiliation(s)
- Zhengxin Gong
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Ming Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuxuan Dai
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Yushan Wen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Youyi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
41
|
Wang Y, Lee H, Kuhl BA. Mapping multidimensional content representations to neural and behavioral expressions of episodic memory. Neuroimage 2023; 277:120222. [PMID: 37327954 PMCID: PMC10424734 DOI: 10.1016/j.neuroimage.2023.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Human neuroimaging studies have shown that the contents of episodic memories are represented in distributed patterns of neural activity. However, these studies have mostly been limited to decoding simple, unidimensional properties of stimuli. Semantic encoding models, in contrast, offer a means for characterizing the rich, multidimensional information that comprises episodic memories. Here, we extensively sampled four human fMRI subjects to build semantic encoding models and then applied these models to reconstruct content from natural scene images as they were viewed and recalled from memory. First, we found that multidimensional semantic information was successfully reconstructed from activity patterns across visual and lateral parietal cortices, both when viewing scenes and when recalling them from memory. Second, whereas visual cortical reconstructions were much more accurate when images were viewed versus recalled from memory, lateral parietal reconstructions were comparably accurate across visual perception and memory. Third, by applying natural language processing methods to verbal recall data, we showed that fMRI-based reconstructions reliably matched subjects' verbal descriptions of their memories. In fact, reconstructions from ventral temporal cortex more closely matched subjects' own verbal recall than other subjects' verbal recall of the same images. Fourth, encoding models reliably transferred across subjects: memories were successfully reconstructed using encoding models trained on data from entirely independent subjects. Together, these findings provide evidence for successful reconstructions of multidimensional and idiosyncratic memory representations and highlight the differential sensitivity of visual cortical and lateral parietal regions to information derived from the external visual environment versus internally-generated memories.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China; Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Hongmi Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
42
|
Lynch CJ, Elbau I, Ng T, Ayaz A, Zhu S, Manfredi N, Johnson M, Wolk D, Power JD, Gordon EM, Kay K, Aloysi A, Moia S, Caballero-Gaudes C, Victoria LW, Solomonov N, Goldwaser E, Zebley B, Grosenick L, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Williams N, Gunning FM, Liston C. Expansion of a frontostriatal salience network in individuals with depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.551651. [PMID: 37645792 PMCID: PMC10461904 DOI: 10.1101/2023.08.09.551651] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hundreds of neuroimaging studies spanning two decades have revealed differences in brain structure and functional connectivity in depression, but with modest effect sizes, complicating efforts to derive mechanistic pathophysiologic insights or develop biomarkers. 1 Furthermore, although depression is a fundamentally episodic condition, few neuroimaging studies have taken a longitudinal approach, which is critical for understanding cause and effect and delineating mechanisms that drive mood state transitions over time. The emerging field of precision functional mapping using densely-sampled longitudinal neuroimaging data has revealed unexpected, functionally meaningful individual differences in brain network topology in healthy individuals, 2-5 but these approaches have never been applied to individuals with depression. Here, using precision functional mapping techniques and 11 datasets comprising n=187 repeatedly sampled individuals and >21,000 minutes of fMRI data, we show that the frontostriatal salience network is expanded two-fold in most individuals with depression. This effect was replicable in multiple samples, including large-scale, group-average data (N=1,231 subjects), and caused primarily by network border shifts affecting specific functional systems, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was unexpectedly stable over time, unaffected by changes in mood state, and detectable in children before the subsequent onset of depressive symptoms in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in specific frontostriatal circuits that tracked fluctuations in specific symptom domains and predicted future anhedonia symptoms before they emerged. Together, these findings identify a stable trait-like brain network topology that may confer risk for depression and mood-state dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
|
43
|
Huang Z, Du C, Wang Y, Fu K, He H. Graph-Enhanced Emotion Neural Decoding. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2262-2273. [PMID: 37027550 DOI: 10.1109/tmi.2023.3246220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Brain signal-based emotion recognition has recently attracted considerable attention since it has powerful potential to be applied in human-computer interaction. To realize the emotional interaction of intelligent systems with humans, researchers have made efforts to decode human emotions from brain imaging data. The majority of current efforts use emotion similarities (e.g., emotion graphs) or brain region similarities (e.g., brain networks) to learn emotion and brain representations. However, the relationships between emotions and brain regions are not explicitly incorporated into the representation learning process. As a result, the learned representations may not be informative enough to benefit specific tasks, e.g., emotion decoding. In this work, we propose a novel idea of graph-enhanced emotion neural decoding, which takes advantage of a bipartite graph structure to integrate the relationships between emotions and brain regions into the neural decoding process, thus helping learn better representations. Theoretical analyses conclude that the suggested emotion-brain bipartite graph inherits and generalizes the conventional emotion graphs and brain networks. Comprehensive experiments on visually evoked emotion datasets demonstrate the effectiveness and superiority of our approach.
Collapse
|
44
|
Yip SW, Barch DM, Chase HW, Flagel S, Huys QJ, Konova AB, Montague R, Paulus M. From Computation to Clinic. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:319-328. [PMID: 37519475 PMCID: PMC10382698 DOI: 10.1016/j.bpsgos.2022.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Theory-driven and data-driven computational approaches to psychiatry have enormous potential for elucidating mechanism of disease and providing translational linkages between basic science findings and the clinic. These approaches have already demonstrated utility in providing clinically relevant understanding, primarily via back translation from clinic to computation, revealing how specific disorders or symptoms map onto specific computational processes. Nonetheless, forward translation, from computation to clinic, remains rare. In addition, consensus regarding specific barriers to forward translation-and on the best strategies to overcome these barriers-is limited. This perspective review brings together expert basic and computationally trained researchers and clinicians to 1) identify challenges specific to preclinical model systems and clinical translation of computational models of cognition and affect, and 2) discuss practical approaches to overcoming these challenges. In doing so, we highlight recent evidence for the ability of computational approaches to predict treatment responses in psychiatric disorders and discuss considerations for maximizing the clinical relevance of such models (e.g., via longitudinal testing) and the likelihood of stakeholder adoption (e.g., via cost-effectiveness analyses).
Collapse
Affiliation(s)
- Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Deanna M. Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University, St. Louis, Missouri
| | - Henry W. Chase
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shelly Flagel
- Department of Psychiatry and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Quentin J.M. Huys
- Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Institute of Neurology, University College London, London, United Kingdom
- Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Anna B. Konova
- Department of Psychiatry and Brain Health Institute, Rutgers University, Piscataway, New Jersey
| | - Read Montague
- Fralin Biomedical Research Institute and Department of Physics, Virginia Tech, Blacksburg, Virginia
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
45
|
Kotoula V, Evans JW, Punturieri CE, Zarate CA. Review: The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression. FRONTIERS IN NEUROIMAGING 2023; 2:1110258. [PMID: 37554642 PMCID: PMC10406217 DOI: 10.3389/fnimg.2023.1110258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/12/2023] [Indexed: 08/10/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that can be used to examine neural responses with and without the use of a functional task. Indeed, fMRI has been used in clinical trials and pharmacological research studies. In mental health, it has been used to identify brain areas linked to specific symptoms but also has the potential to help identify possible treatment targets. Despite fMRI's many advantages, such findings are rarely the primary outcome measure in clinical trials or research studies. This article reviews fMRI studies in depression that sought to assess the efficacy and mechanism of action of compounds with antidepressant effects. Our search results focused on selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed treatments for depression and ketamine, a fast-acting antidepressant treatment. Normalization of amygdala hyperactivity in response to negative emotional stimuli was found to underlie successful treatment response to SSRIs as well as ketamine, indicating a potential common pathway for both conventional and fast-acting antidepressants. Ketamine's rapid antidepressant effects make it a particularly useful compound for studying depression with fMRI; its effects on brain activity and connectivity trended toward normalizing the increases and decreases in brain activity and connectivity associated with depression. These findings highlight the considerable promise of fMRI as a tool for identifying treatment targets in depression. However, additional studies with improved methodology and study design are needed before fMRI findings can be translated into meaningful clinical trial outcomes.
Collapse
|
46
|
Doerig A, Sommers RP, Seeliger K, Richards B, Ismael J, Lindsay GW, Kording KP, Konkle T, van Gerven MAJ, Kriegeskorte N, Kietzmann TC. The neuroconnectionist research programme. Nat Rev Neurosci 2023:10.1038/s41583-023-00705-w. [PMID: 37253949 DOI: 10.1038/s41583-023-00705-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to model behavioural and neural data, an approach we call 'neuroconnectionism'. ANNs have been not only lauded as the current best models of information processing in the brain but also criticized for failing to account for basic cognitive functions. In this Perspective article, we propose that arguing about the successes and failures of a restricted set of current ANNs is the wrong approach to assess the promise of neuroconnectionism for brain science. Instead, we take inspiration from the philosophy of science, and in particular from Lakatos, who showed that the core of a scientific research programme is often not directly falsifiable but should be assessed by its capacity to generate novel insights. Following this view, we present neuroconnectionism as a general research programme centred around ANNs as a computational language for expressing falsifiable theories about brain computation. We describe the core of the programme, the underlying computational framework and its tools for testing specific neuroscientific hypotheses and deriving novel understanding. Taking a longitudinal view, we review past and present neuroconnectionist projects and their responses to challenges and argue that the research programme is highly progressive, generating new and otherwise unreachable insights into the workings of the brain.
Collapse
Affiliation(s)
- Adrien Doerig
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Rowan P Sommers
- Department of Neurobiology of Language, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Katja Seeliger
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Blake Richards
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- School of Computer Science, McGill University, Montréal, QC, Canada
- Mila, Montréal, QC, Canada
- Montréal Neurological Institute, Montréal, QC, Canada
- Learning in Machines and Brains Program, CIFAR, Toronto, ON, Canada
| | | | | | - Konrad P Kording
- Learning in Machines and Brains Program, CIFAR, Toronto, ON, Canada
- Bioengineering, Neuroscience, University of Pennsylvania, Pennsylvania, PA, USA
| | | | | | | | - Tim C Kietzmann
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
47
|
Tambini A, Miller J, Ehlert L, Kiyonaga A, D’Esposito M. Structured memory representations develop at multiple time scales in hippocampal-cortical networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535935. [PMID: 37066263 PMCID: PMC10104124 DOI: 10.1101/2023.04.06.535935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Influential views of systems memory consolidation posit that the hippocampus rapidly forms representations of specific events, while neocortical networks extract regularities across events, forming the basis of schemas and semantic knowledge. Neocortical extraction of schematic memory representations is thought to occur on a protracted timescale of months, especially for information that is unrelated to prior knowledge. However, this theorized evolution of memory representations across extended timescales, and differences in the temporal dynamics of consolidation across brain regions, lack reliable empirical support. To examine the temporal dynamics of memory representations, we repeatedly exposed human participants to structured information via sequences of fractals, while undergoing longitudinal fMRI for three months. Sequence-specific activation patterns emerged in the hippocampus during the first 1-2 weeks of learning, followed one week later by high-level visual cortex, and subsequently the medial prefrontal and parietal cortices. Schematic, sequence-general representations emerged in the prefrontal cortex after 3 weeks of learning, followed by the medial temporal lobe and anterior temporal cortex. Moreover, hippocampal and most neocortical representations showed sustained rather than time-limited dynamics, suggesting that representations tend to persist across learning. These results show that specific hippocampal representations emerge early, followed by both specific and schematic representations at a gradient of timescales across hippocampal-cortical networks as learning unfolds. Thus, memory representations do not exist only in specific brain regions at a given point in time, but are simultaneously present at multiple levels of abstraction across hippocampal-cortical networks.
Collapse
Affiliation(s)
- Arielle Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY
| | - Jacob Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT
| | - Luke Ehlert
- Department of Neurobiology and Behavior, University of California. Irvine, CA
| | - Anastasia Kiyonaga
- Department of Cognitive Science, University of California, San Diego, CA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA
- Department of Psychology, University of California, Berkeley, CA
| |
Collapse
|
48
|
Porter A, Nielsen A, Dorn M, Dworetsky A, Edmonds D, Gratton C. Masked features of task states found in individual brain networks. Cereb Cortex 2023; 33:2879-2900. [PMID: 35802477 PMCID: PMC10016040 DOI: 10.1093/cercor/bhac247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Completing complex tasks requires that we flexibly integrate information across brain areas. While studies have shown how functional networks are altered during different tasks, this work has generally focused on a cross-subject approach, emphasizing features that are common across people. Here we used extended sampling "precision" fMRI data to test the extent to which task states generalize across people or are individually specific. We trained classifiers to decode state using functional network data in single-person datasets across 5 diverse task states. Classifiers were then tested on either independent data from the same person or new individuals. Individualized classifiers were able to generalize to new participants. However, classification performance was significantly higher within a person, a pattern consistent across model types, people, tasks, feature subsets, and even for decoding very similar task conditions. Notably, these findings also replicated in a new independent dataset. These results suggest that individual-focused approaches can uncover robust features of brain states, including features obscured in cross-subject analyses. Individual-focused approaches have the potential to deepen our understanding of brain interactions during complex cognition.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| | - Ashley Nielsen
- Department of Neurology, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, United States
| | - Megan Dorn
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| | - Ally Dworetsky
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| | - Donnisa Edmonds
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| | - Caterina Gratton
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
- Department of Neurology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| |
Collapse
|
49
|
Hranilovich JA, Legget KT, Dodd KC, Wylie KP, Tregellas JR. Functional magnetic resonance imaging of headache: Issues, best-practices, and new directions, a narrative review. Headache 2023; 63:309-321. [PMID: 36942411 PMCID: PMC10089616 DOI: 10.1111/head.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To ensure readers are informed consumers of functional magnetic resonance imaging (fMRI) research in headache, to outline ongoing challenges in this area of research, and to describe potential considerations when asked to collaborate on fMRI research in headache, as well as to suggest future directions for improvement in the field. BACKGROUND Functional MRI has played a key role in understanding headache pathophysiology, and mapping networks involved with headache-related brain activity have the potential to identify intervention targets. Some investigators have also begun to explore its use for diagnosis. METHODS/RESULTS The manuscript is a narrative review of the current best practices in fMRI in headache research, including guidelines on transparency and reproducibility. It also contains an outline of the fundamentals of MRI theory, task-related study design, resting-state functional connectivity, relevant statistics and power analysis, image preprocessing, and other considerations essential to the field. CONCLUSION Best practices to increase reproducibility include methods transparency, eliminating error, using a priori hypotheses and power calculations, using standardized instruments and diagnostic criteria, and developing large-scale, publicly available datasets.
Collapse
Affiliation(s)
- Jennifer A Hranilovich
- Division of Child Neurology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Keith C Dodd
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
50
|
Hebart MN, Contier O, Teichmann L, Rockter AH, Zheng CY, Kidder A, Corriveau A, Vaziri-Pashkam M, Baker CI. THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior. eLife 2023; 12:e82580. [PMID: 36847339 PMCID: PMC10038662 DOI: 10.7554/elife.82580] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/25/2023] [Indexed: 03/01/2023] Open
Abstract
Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements of brain activity and behavior. Here, we present THINGS-data, a multimodal collection of large-scale neuroimaging and behavioral datasets in humans, comprising densely sampled functional MRI and magnetoencephalographic recordings, as well as 4.70 million similarity judgments in response to thousands of photographic images for up to 1,854 object concepts. THINGS-data is unique in its breadth of richly annotated objects, allowing for testing countless hypotheses at scale while assessing the reproducibility of previous findings. Beyond the unique insights promised by each individual dataset, the multimodality of THINGS-data allows combining datasets for a much broader view into object processing than previously possible. Our analyses demonstrate the high quality of the datasets and provide five examples of hypothesis-driven and data-driven applications. THINGS-data constitutes the core public release of the THINGS initiative (https://things-initiative.org) for bridging the gap between disciplines and the advancement of cognitive neuroscience.
Collapse
Affiliation(s)
- Martin N Hebart
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Department of Medicine, Justus Liebig University GiessenGiessenGermany
| | - Oliver Contier
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Lina Teichmann
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Adam H Rockter
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Charles Y Zheng
- Machine Learning Core, National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Alexis Kidder
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Anna Corriveau
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Maryam Vaziri-Pashkam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| |
Collapse
|