1
|
Forbes B, Bäckman P, Cabal A, Clark A, Ehrhardt C, Hastedt JE, Hickey AJ, Hochhaus G, Jiang W, Kassinos S, Kuehl PJ, Olsson B, Prime D, Son YJ, Teague S, Tehler U, Wylie J. iBCS: 4. Application of the Inhalation Biopharmaceutics Classification System to the Development of Orally Inhaled Drug Products. Mol Pharm 2025; 22:1740-1751. [PMID: 40079210 PMCID: PMC11979882 DOI: 10.1021/acs.molpharmaceut.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
This is the fourth paper in a series describing an inhalation biopharmaceutics classification system (iBCS), an initiative supported by the Product Quality Research Institute. The paper examines the application of the inhalation Biopharmaceutics Classification System (iBCS) through the drug discovery, development, and postapproval phases for orally inhaled drug products (OIDP) and for the development of generic OIDPs. We consider the implication of the iBCS class in terms of product performance and identify the practical gaps that must be filled to enable the classification system to be adopted into day-to-day practice. Consideration is given to the critical experimental data required and the methods for their generation with a focus on: (i) dose to the lungs, (ii) drug solubility in relevant media and methods to model the dissolution of respirable formulations, and (iii) pulmonary drug permeability. As described in three prior publications, the iBCS was developed to classify inhaled drugs based on physicochemical and biorelevant product attributes in a manner that will allow formulators and discovery chemists to identify and mitigate product development risks. It was not established to enable in vitro determination of bioequivalence between orally inhaled drug products. However, once analytical methods are in place to correctly classify inhaled drugs, the system has the potential to provide an understanding of the development risks associated with both establishing bioequivalence between two drug products and enabling postapproval changes based on product iBCS class.
Collapse
Affiliation(s)
- Ben Forbes
- King’s
College London, London SE1 9NH, U.K.
| | | | - Antonio Cabal
- Eisai, Woodcliff Lake, New Jersey 07677, United States
| | - Andy Clark
- Aerogen
Pharma, San Mateo, California 94402, United States
| | - Carsten Ehrhardt
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Jayne E. Hastedt
- JDP
Pharma
Consulting, San Carlos, California 94070, United States
| | - Anthony J. Hickey
- University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- RTI
International, Research Triangle
Park, North Carolina 27709, United States
| | | | - Wenlei Jiang
- Center
for Drug Evaluation and Research, Office of Generic Drugs, Office
of Research and Standards, U.S. FDA, Silver Spring, Maryland 20993, United States
| | | | - Philip J. Kuehl
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Bo Olsson
- Emmace
Consulting, SE-223 63 Lund, Sweden
| | - David Prime
- Pulmonary Drug
Delivery Consultant, Ware SG12, U.K.
| | - Yoen-Ju Son
- Genentech, South San Francisco, California 94080, United States
| | | | - Ulrika Tehler
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Jennifer Wylie
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Salmanipour S, Sokhansanj A, Jafari N, Hamishehkar H, Saha SC. Engineering nanoliposomal tiotropium bromide embedded in a lactose-arginine carrier forming Trojan-particle dry powders for efficient pulmonary drug delivery: A combined approach of in vitro-3D printing and in silico-CFD modeling. Int J Pharm 2025; 671:125171. [PMID: 39798623 DOI: 10.1016/j.ijpharm.2025.125171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features. This formulation was examined through in vitro-3D-printing and in silico-CFD analysis. Nanoliposomes and powder were evaluated for physicochemical attributes, aerosolization, encapsulation-efficiency (EE%), and release. Both liposomes (90 nm) and powder particles (3 µm) were spherical. Liposomes had an EE% over 95 % and a zeta-potential of -28.3 mV. The optimal formulation was tested in vitro at 30, 60, and 90 L/min using a 3D-printed airway replica. CFD analysis evaluated particle deposition in steady and realistic inhalation with monodisperse and polydisperse particles. Based on realistic airway geometry, model utilized k-ω-SST turbulence model for the continuous phase and Lagrangian-DEM for the discrete phase, analyzed through ANSYS Fluent. The 20 %-arginine nanoliposomal-tiotropium formulation outperformed others due to arginine's dispersibility and therapeutic benefits, including nitric oxide conversion. The formulation competes with commercial dry powders due to its chemical, biochemical advantages, and Trojan-based physical traits, reducing exhalation risk. Simulation data aligned with experimental findings, showing that higher inhalation flows increase particle deposition in airways due to greater inertia and turbulence. At 60 L/min, the polydisperse model matched experimental data better than the monodisperse model. Alongside improving dry powder performance via a nanoliposomal formulation, this research highlights the development of a novel CFD method for their assessment.
Collapse
Affiliation(s)
- Salar Salmanipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Sokhansanj
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Nahideh Jafari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street Baku, AZ1096, Azerbaijan.
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia.
| |
Collapse
|
3
|
Kuprat AP, Feng Y, Corley RA, Darquenne C. Subject-Specific Multi-Scale Modeling of the Fate of Inhaled Aerosols. JOURNAL OF AEROSOL SCIENCE 2025; 183:106471. [PMID: 39678160 PMCID: PMC11636312 DOI: 10.1016/j.jaerosci.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Determining the fate of inhaled aerosols in the respiratory system is essential in assessing the potential toxicity of inhaled airborne materials, responses to airborne pathogens, or in improving inhaled drug delivery. The availability of high-resolution clinical lung imaging and advances in the reconstruction of lung airways from CT images have led to the development of subject-specific in-silico 3D models of aerosol dosimetry, often referred to as computational fluid-particle-dynamics (CFPD) models. As CFPD models require extensive computing resources, they are typically confined to the upper and large airways. These models can be combined with lower-dimensional models to form multiscale models that predict the transport and deposition of inhaled aerosols in the entire respiratory tract. Understanding where aerosols deposit is only the first of potentially several key events necessary to predict an outcome, being a detrimental health effect or a therapeutic response. To that end, multiscale approaches that combine CFPD with physiologically-based pharmacokinetics (PBPK) models have been developed to evaluate the absorption, distribution, metabolism, and excretion (ADME) of toxic or medicinal chemicals in one or more compartments of the human body. CFPD models can also be combined with host cell dynamics (HCD) models to assess regional immune system responses. This paper reviews the state of the art of these different multiscale approaches and discusses the potential role of personalized or subject-specific modeling in respiratory health.
Collapse
Affiliation(s)
- A P Kuprat
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Y Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - R A Corley
- Greek Creek Toxicokinetics Consulting, LLC, Boise, ID, USA
| | - C Darquenne
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
4
|
Hickey AJ, Maloney SE, Kuehl PJ, Phillips JE, Wolff RK. Practical Considerations in Dose Extrapolation from Animals to Humans. J Aerosol Med Pulm Drug Deliv 2024; 37:77-89. [PMID: 38237032 PMCID: PMC11807867 DOI: 10.1089/jamp.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/06/2023] [Indexed: 04/21/2024] Open
Abstract
Animal studies are an important component of drug product development and the regulatory review process since modern practices have been in place, for almost a century. A variety of experimental systems are available to generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharmacological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of variability between species include the formulation, delivery system, and species-specific biological factors. It is important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.
Collapse
Affiliation(s)
- Anthony J. Hickey
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Sara E. Maloney
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Philip J. Kuehl
- Division: Scientific Core Laboratories; Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | |
Collapse
|
5
|
Bessler R, Bhardwaj S, Malka D, Fishler R, Sznitman J. Exploring the role of electrostatic deposition on inhaled aerosols in alveolated microchannels. Sci Rep 2023; 13:23069. [PMID: 38155187 PMCID: PMC10754925 DOI: 10.1038/s41598-023-49946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Large amounts of net electrical charge are known to accumulate on inhaled aerosols during their generation using commonly-available inhalers. This effect often leads to superfluous deposition in the extra-thoracic airways at the cost of more efficient inhalation therapy. Since the electrostatic force is inversely proportional to the square of the distance between an aerosol and the airway wall, its role has long been recognized as potentially significant in the deep lungs. Yet, with the complexity of exploring such phenomenon directly at the acinar scales, in vitro experiments have been largely limited to upper airways models. Here, we devise a microfluidic alveolated airway channel coated with conductive material to quantify in vitro the significance of electrostatic effects on inhaled aerosol deposition. Specifically, our aerosol exposure assays showcase inhaled spherical particles of 0.2, 0.5, and 1.1 μm that are recognized to reach the acinar regions, whereby deposition is typically attributed to the leading roles of diffusion and sedimentation. In our experiments, electrostatic effects are observed to largely prevent aerosols from depositing inside alveolar cavities. Rather, deposition is overwhelmingly biased along the inter-alveolar septal spaces, even when aerosols are charged with only a few elementary charges. Our observations give new insight into the role of electrostatics at the acinar scales and emphasize how charged particles under 2 µm may rapidly overshadow the traditionally accepted dominance of diffusion or sedimentation when considering aerosol deposition phenomena in the deep lungs.
Collapse
Affiliation(s)
- Ron Bessler
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Graduate Program in Nanoscience and Nanotechnology, RBNI, Technion-Israel Institute of Technology, Haifa, Israel
| | - Saurabh Bhardwaj
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Daniel Malka
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rami Fishler
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Poorbahrami K, Allshouse MR, Oakes JM. Dosimetry Sensitivity in a Lower Dimensional Model of Patient-Specific Asthma Subjects. IEEE Trans Biomed Eng 2023; 70:2581-2591. [PMID: 37030850 DOI: 10.1109/tbme.2023.3255784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
OBJECTIVE Experimental uncertainty will impact in silico model calculations of aerosol delivery and deposition. Patient-specific dosimetry models are often parameterized based on medical imaging data, which contain inherent experimental variability. METHODS Here, we created and parameterized 1D models of three subject-specific asthmatic subjects and randomly assigned perturbations of up to 15 % on airway diameter, segmental volume, and defected volume. Sensitivity of imaging data experimental variability on dosimetry metrics were quantified. RESULTS Lobar particle delivery primarily depended on the distal segmental volumes; 15 % range of noise resulted in delivery to the upper right lobe to vary at most from 15.2 and 18.2 % for one of the severe subjects. Particle deposition was most sensitive to airway diameter; 95 % confidence intervals spanned from 8 to 10.6 % in the mild/moderate subject for 15 % variation on input metrics for 5 [Formula: see text] diameter particles. While these results provide possible ranges of dosimetry calculations for a specific subject, the perturbations were not sufficient to model the large observed inter-subject variability (8.9, 19, and 14.5 % deposition, subjects 1--3, respectively, 5 [Formula: see text] diameter particles). CONCLUSION This study highlights that in silico model predictions are robust in the presence of experimental uncertainty and that it continues to be necessary to perform subject-specific simulations, especially within the presence of heterogeneous airway disease. SIGNIFICANCE Sensitivity analysis provides confidence in calculating deposition in the airways of asthmatic subjects within the presence of experimental uncertainty.
Collapse
|
7
|
Nof E, Bhardwaj S, Koullapis P, Bessler R, Kassinos S, Sznitman J. In vitro-in silico correlation of three-dimensional turbulent flows in an idealized mouth-throat model. PLoS Comput Biol 2023; 19:e1010537. [PMID: 36952557 PMCID: PMC10072468 DOI: 10.1371/journal.pcbi.1010537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/04/2023] [Accepted: 02/08/2023] [Indexed: 03/25/2023] Open
Abstract
There exists an ongoing need to improve the validity and accuracy of computational fluid dynamics (CFD) simulations of turbulent airflows in the extra-thoracic and upper airways. Yet, a knowledge gap remains in providing experimentally-resolved 3D flow benchmarks with sufficient data density and completeness for useful comparison with widely-employed numerical schemes. Motivated by such shortcomings, the present work details to the best of our knowledge the first attempt to deliver in vitro-in silico correlations of 3D respiratory airflows in a generalized mouth-throat model and thereby assess the performance of Large Eddy Simulations (LES) and Reynolds-Averaged Numerical Simulations (RANS). Numerical predictions are compared against 3D volumetric flow measurements using Tomographic Particle Image Velocimetry (TPIV) at three steady inhalation flowrates varying from shallow to deep inhalation conditions. We find that a RANS k-ω SST model adequately predicts velocity flow patterns for Reynolds numbers spanning 1'500 to 7'000, supporting results in close proximity to a more computationally-expensive LES model. Yet, RANS significantly underestimates turbulent kinetic energy (TKE), thus underlining the advantages of LES as a higher-order turbulence modeling scheme. In an effort to bridge future endevours across respiratory research disciplines, we provide end users with the present in vitro-in silico correlation data for improved predictive CFD models towards inhalation therapy and therapeutic or toxic dosimetry endpoints.
Collapse
Affiliation(s)
- Eliram Nof
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Saurabh Bhardwaj
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Pantelis Koullapis
- Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ron Bessler
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Stavros Kassinos
- Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
9
|
Zhang X, Li F, Rajaraman PK, Choi J, Comellas AP, Hoffman EA, Smith BM, Lin CL. A computed tomography imaging-based subject-specific whole-lung deposition model. Eur J Pharm Sci 2022; 177:106272. [PMID: 35908637 PMCID: PMC9477651 DOI: 10.1016/j.ejps.2022.106272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
The respiratory tract is an important route for beneficial drug aerosol or harmful particulate matter to enter the body. To assess the therapeutic response or disease risk, whole-lung deposition models have been developed, but were limited by compartment, symmetry or stochastic approaches. In this work, we proposed an imaging-based subject-specific whole-lung deposition model. The geometries of airways and lobes were segmented from computed tomography (CT) lung images at total lung capacity (TLC), and the regional air-volume changes were calculated by registering CT images at TLC and functional residual capacity (FRC). The geometries were used to create the structure of entire subject-specific conducting airways and acinar units. The air-volume changes were used to estimate the function of subject-specific ventilation distributions among acinar units and regulate flow rates in respiratory airway models. With the airway dimensions rescaled to a desired lung volume and the airflow field simulated by a computational fluid dynamics model, particle deposition fractions were calculated using deposition probability formulae adjusted with an enhancement factor to account for the effects of secondary flow and airway geometry in proximal airways. The proposed model was validated in silico against existing whole-lung deposition models, three-dimensional (3D) computational fluid and particle dynamics (CFPD) for an acinar unit, and 3D CFPD deep lung model comprising conducting and respiratory regions. The model was further validated in vivo against the lobar particle distribution and the coefficient of variation of particle distribution obtained from CT and single-photon emission computed tomography (SPECT) images, showing good agreement. Subject-specific airway structure increased the deposition fraction of 10.0-μm particles and 0.01-μm particles by approximately 10%. An enhancement factor increased the overall deposition fractions, especially for particle sizes between 0.1 and 1.0 μm.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, Iowa 52242, USA; IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Frank Li
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | | - Jiwoong Choi
- Department of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, Iowa 52242, USA; Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Alejandro P Comellas
- Department of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, Iowa 52242, USA; Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, Kansas, USA; Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Benjamin M Smith
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, McGill University Health Centre Research Institute, Montreal, Canada
| | - Ching-Long Lin
- Department of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, Iowa 52242, USA; IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Radiology, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
10
|
de Boer AH, Hagedoorn P, Grasmeijer F. Dry powder inhalation, part 2: the present and future. Expert Opin Drug Deliv 2022; 19:1045-1059. [PMID: 35984322 DOI: 10.1080/17425247.2022.2112570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The manufacture of modern dry powder inhalers (DPIs), starting with the Spinhaler (Fisons) in 1967, was only possible thanks to a series of technological developments in the 20th century, of which many started first around 1950. Not until then, it became possible to design and develop effective, cheap and mass-produced DPIs. The link between these technological developments and DPI development has never been presented and discussed before in reviews about the past and present of DPI technology. AREAS COVERED The diversity of currently used DPIs with single dose, multiple-unit dose and multi-dose DPIs is discussed, including the benefits and drawbacks of this diversity for correct use and the efficacy of the therapy. No specific databases or search engines otherwise than PubMed and Google have been used. EXPERT OPINION Considering the relatively poor efficacy regarding lung deposition of currently used DPIs, the high rates of incorrect inhaler use and inhalation errors and the poor adherence to the therapy with inhalers, much effort must be put in improving these shortcomings for future DPI designs. Delivered fine particle doses must be increased, correct inhaler handling must become more intuitive and simpler to perform, and the use of multiple inhalers must be avoided.
Collapse
Affiliation(s)
- Anne Haaije de Boer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,PureIMS B.V, Roden, The Netherlands
| |
Collapse
|
11
|
Ansari M, Gandhi HA, Foster DG, White AD. Iterative Symbolic Regression for Learning Transport Equations. AIChE J 2022. [DOI: 10.1002/aic.17695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mehrad Ansari
- Department of Chemical Engineering University of Rochester Rochester New York USA
| | - Heta A. Gandhi
- Department of Chemical Engineering University of Rochester Rochester New York USA
| | - David G. Foster
- Department of Chemical Engineering University of Rochester Rochester New York USA
| | - Andrew D. White
- Department of Chemical Engineering University of Rochester Rochester New York USA
| |
Collapse
|
12
|
Nof E, Zidan H, Artzy-Schnirman A, Mouhadeb O, Beckerman M, Bhardwaj S, Elias-Kirma S, Gur D, Beth-Din A, Levenberg S, Korin N, Ordentlich A, Sznitman J. Human Multi-Compartment Airways-on-Chip Platform for Emulating Respiratory Airborne Transmission: From Nose to Pulmonary Acini. Front Physiol 2022; 13:853317. [PMID: 35350687 PMCID: PMC8957966 DOI: 10.3389/fphys.2022.853317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.
Collapse
Affiliation(s)
- Eliram Nof
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hikaia Zidan
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Odelia Mouhadeb
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Margarita Beckerman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Saurabh Bhardwaj
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Shani Elias-Kirma
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Didi Gur
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arie Ordentlich
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
Dong J, Yang Y, Zhu Y. Recent advances in the understanding of alveolar flow. BIOMICROFLUIDICS 2022; 16:021502. [PMID: 35464135 PMCID: PMC9010052 DOI: 10.1063/5.0084415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Understanding the dynamics of airflow in alveoli and its effect on the behavior of particle transport and deposition is important for understanding lung functions and the cause of many lung diseases. The studies on these areas have drawn substantial attention over the last few decades. This Review discusses the recent progress in the investigation of behavior of airflow in alveoli. The information obtained from studies on the structure of the lung airway tree and alveolar topology is provided first. The current research progress on the modeling of alveoli is then reviewed. The alveolar cell parameters at different generation of branches, issues to model real alveolar flow, and the current numerical and experimental approaches are discussed. The findings on flow behavior, in particular, flow patterns and the mechanism of chaotic flow generation in the alveoli are reviewed next. The different flow patterns under different geometrical and flow conditions are discussed. Finally, developments on microfluidic devices such as lung-on-a-chip devices are reviewed. The issues of current devices are discussed.
Collapse
Affiliation(s)
| | | | - Yonggang Zhu
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Fate of inhaled aerosols under the influence of glottal motion in a realistic insilico human tracheobronchial tree model. Eur J Pharm Sci 2022; 173:106172. [DOI: 10.1016/j.ejps.2022.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022]
|
15
|
Concepts of advanced therapeutic delivery systems for the management of remodeling and inflammation in airway diseases. Future Med Chem 2022; 14:271-288. [PMID: 35019757 PMCID: PMC8890134 DOI: 10.4155/fmc-2021-0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory disorders affect millions of people worldwide. Pathophysiological changes to the normal airway wall structure, including changes in the composition and organization of its cellular and molecular constituents, are referred to as airway remodeling. The inadequacy of effective treatment strategies and scarcity of novel therapies available for the treatment and management of chronic respiratory diseases have given rise to a serious impediment in the clinical management of such diseases. The progress made in advanced drug delivery, has offered additional advantages to fight against the emerging complications of airway remodeling. This review aims to address the gaps in current knowledge about airway remodeling, the relationships between remodeling, inflammation, clinical phenotypes and the significance of using novel drug delivery methods.
Collapse
|
16
|
Sznitman J. Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics. Chem Rev 2021; 122:7182-7204. [PMID: 34964615 DOI: 10.1021/acs.chemrev.1c00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dynamics of respiratory airflows and the associated transport mechanisms of inhaled aerosols characteristic of the deep regions of the lungs are of broad interest in assessing both respiratory health risks and inhalation therapy outcomes. In the present review, we present a comprehensive discussion of our current understanding of airflow and aerosol transport phenomena that take place within the unique and complex anatomical environment of the deep lungs, characterized by submillimeter 3D alveolated airspaces and nominally slow resident airflows, known as low-Reynolds-number flows. We exemplify the advances brought forward by experimental efforts, in conjunction with numerical simulations, to revisit past mechanistic theories of respiratory airflow and particle transport in the distal acinar regions. Most significantly, we highlight how microfluidic-based platforms spanning the past decade have accelerated opportunities to deliver anatomically inspired in vitro solutions that capture with sufficient realism and accuracy the leading mechanisms governing both respiratory airflow and aerosol transport at true scale. Despite ongoing challenges and limitations with microfabrication techniques, the efforts witnessed in recent years have provided previously unattainable in vitro quantifications on the local transport properties in the deep pulmonary acinar airways. These may ultimately provide new opportunities to explore improved strategies of inhaled drug delivery to the deep acinar regions by investigating further the mechanistic interactions between airborne particulate carriers and respiratory airflows at the pulmonary microscales.
Collapse
Affiliation(s)
- Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
17
|
Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021; 176:113901. [PMID: 34331989 PMCID: PMC7611797 DOI: 10.1016/j.addr.2021.113901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Sivan Arber Raviv
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Jeny Shklover
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Adi Gross
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Avi Schroeder
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
18
|
Huang F, Zhu Q, Zhou X, Gou D, Yu J, Li R, Tong Z, Yang R. Role of CFD based in silico modelling in establishing an in vitro-in vivo correlation of aerosol deposition in the respiratory tract. Adv Drug Deliv Rev 2021; 170:369-385. [PMID: 32971228 DOI: 10.1016/j.addr.2020.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Effective evaluation and prediction of aerosol transport deposition in the human respiratory tracts are critical to aerosol drug delivery and evaluation of inhalation products. Establishment of an in vitro-in vivo correlation (IVIVC) requires the understanding of flow and aerosol behaviour and underlying mechanisms at the microscopic scale. The achievement of the aim can be facilitated via computational fluid dynamics (CFD) based in silico modelling which treats the aerosol delivery as a two-phase flow. CFD modelling research, in particular coupling with discrete phase model (DPM) and discrete element method (DEM) approaches, has been rapidly developed in the past two decades. This paper reviews the recent development in this area. The paper covers the following aspects: geometric models of the respiratory tract, CFD turbulence models for gas phase and its coupling with DPM/DEM for aerosols, and CFD investigation of the effects of key factors associated with geometric variations, flow and powder characteristics. The review showed that in silico study based on CFD models can effectively evaluate and predict aerosol deposition pattern in human respiratory tracts. The review concludes with recommendations on future research to improve in silico prediction to achieve better IVIVC.
Collapse
Affiliation(s)
- Fen Huang
- School of Energy and Environment, Southeast University, Nanjing 210096, China; Department of Chemical Engineering, Monash University, Clayton, Vic 3800, Australia
| | - Qixuan Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xudong Zhou
- Department of Chemical Engineering, Monash University, Clayton, Vic 3800, Australia
| | - Dazhao Gou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiaqi Yu
- Institute for Process Modelling and Optimization, JITRI, Suzhou 215000, China
| | - Renjie Li
- Institute for Process Modelling and Optimization, JITRI, Suzhou 215000, China
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Runyu Yang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Abstract
This review covers the scope of multiscale computational fluid dynamics (CFD), laying the framework for studying hydrodynamics with and without chemical reactions in single and multiple phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics at the individual scale are excluded in this review. Scoping single-scale Eulerian CFD approaches, the necessity of multiscale CFD is highlighted. First, the Eulerian CFD theory, including the governing and turbulence equations, is described for single and multiple phases. The Reynolds-averaged Navier–Stokes (RANS)-based turbulence model such as the standard k-ε equation is briefly presented, which is commonly used for industrial flow conditions. Following the general CFD theories based on the first-principle laws, a multiscale CFD strategy interacting between micro- and macroscale domains is introduced. Next, the applications of single-scale CFD are presented for chemical and biological processes such as gas distributors, combustors, gas storage tanks, bioreactors, fuel cells, random- and structured-packing columns, gas-liquid bubble columns, and gas-solid and gas-liquid-solid fluidized beds. Several multiscale simulations coupled with Eulerian CFD are reported, focusing on the coupling strategy between two scales. Finally, challenges to multiscale CFD simulations are discussed. The need for experimental validation of CFD results is also presented to lay the groundwork for digital twins supported by CFD. This review culminates in conclusions and perspectives of multiscale CFD.
Collapse
|
20
|
Shachar-Berman L, Bhardwaj S, Ostrovski Y, Das P, Koullapis P, Kassinos S, Sznitman J. In Silico Optimization of Fiber-Shaped Aerosols in Inhalation Therapy for Augmented Targeting and Deposition across the Respiratory Tract. Pharmaceutics 2020; 12:E230. [PMID: 32151016 PMCID: PMC7150950 DOI: 10.3390/pharmaceutics12030230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/25/2022] Open
Abstract
Motivated by a desire to uncover new opportunities for designing the size and shape of fiber-shaped aerosols towards improved pulmonary drug delivery deposition outcomes, we explore the transport and deposition characteristics of fibers under physiologically inspired inhalation conditions in silico, mimicking a dry powder inhaler (DPI) maneuver in adult lung models. Here, using computational fluid dynamics (CFD) simulations, we resolve the transient translational and rotational motion of inhaled micron-sized ellipsoid particles under the influence of aerodynamic (i.e., drag, lift) and gravitational forces in a respiratory tract model spanning the first seven bifurcating generations (i.e., from the mouth to upper airways), coupled to a more distal airway model representing nine generations of the mid-bronchial tree. Aerosol deposition efficiencies are quantified as a function of the equivalent diameter (dp) and geometrical aspect ratio (AR), and these are compared to outcomes with traditional spherical particles of equivalent mass. Our results help elucidate how deposition patterns are intimately coupled to dp and AR, whereby high AR fibers in the narrow range of dp = 6-7 µm yield the highest deposition efficiency for targeting the upper- and mid-bronchi, whereas fibers in the range of dp= 4-6 µm are anticipated to cross through the conducting regions and reach the deeper lung regions. Our efforts underscore previously uncovered opportunities to design the shape and size of fiber-like aerosols towards targeted pulmonary drug delivery with increased deposition efficiencies, in particular by leveraging their large payloads for deep lung deposition.
Collapse
Affiliation(s)
- Lihi Shachar-Berman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (L.S.-B.); (S.B.); (Y.O.)
| | - Saurabh Bhardwaj
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (L.S.-B.); (S.B.); (Y.O.)
| | - Yan Ostrovski
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (L.S.-B.); (S.B.); (Y.O.)
| | - Prashant Das
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Pantelis Koullapis
- Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; (P.K.); (S.K.)
| | - Stavros Kassinos
- Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; (P.K.); (S.K.)
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (L.S.-B.); (S.B.); (Y.O.)
| |
Collapse
|