1
|
Campos J, Palha AT, Fernandes LS, Cibrão JR, Pinho TS, Serra SC, Silva NA, Michael-Titus AT, Salgado AJ. Modeling Spinal Cord Injury in a Dish with Hyperosmotic Stress: Population-Specific Effects and the Modulatory Role of Mesenchymal Stromal Cell Secretome. Int J Mol Sci 2025; 26:3298. [PMID: 40244122 PMCID: PMC11989751 DOI: 10.3390/ijms26073298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Innovations in spinal cord injury (SCI) models are crucial for developing effective therapies. This study introduces a novel in vitro SCI model using cultures of primary mixed spinal cord cells from rat pups, featuring key spinal cord cell types. This model offers distinct advantages in terms of feasibility, reproducibility, and cost-effectiveness, requiring only basic cell culture equipment. Following hyperosmotic stress via sorbitol treatment, the model recapitulated SCI pathophysiological hallmarks, with a 65% reduction in cell viability and gradual cell death over 48 h, making it ideal for evaluating neuroprotective agents. Notably, the human adipose tissue stem cell (hASC) secretome provided significant protection: it preserved metabolic viability, reduced β amyloid precursor protein (β-APP) expression in surviving neurons, and modulated the shift in the astrocytic morphotype. A transcriptomic profile of the effect of the hASC secretome treatment showed significant functional enrichments related to cell proliferation and cycle progression pathways. In addition to supporting the use of the hASC secretome as a therapy for SCI, this study is the first to use sorbitol as a hyperosmolar stressor to recapitulate key aspects of SCI pathophysiology. Thereby, this model can be used as a promising platform for evaluating therapeutic agents targeting neuroprotection and neuroregeneration, offering outputs related to cell death, neuronal stress, and protection, as well as induction of glial reactivity.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Ana T. Palha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Luís S. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Tiffany S. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| |
Collapse
|
2
|
Zhang B, Li F, Shi Y, Ji C, Kong Q, Sun K, Sun X. Single-cell RNA sequencing integrated with bulk RNA sequencing analysis reveals the protective effects of lactate-mediated lactylation of microglia-related proteins on spinal cord injury. CNS Neurosci Ther 2024; 30:e70028. [PMID: 39218784 PMCID: PMC11366449 DOI: 10.1111/cns.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal cord injury (SCI) results in significant neurological deficits, and microglia play the critical role in regulating the immune microenvironment and neurological recovery. Protein lactylation has been found to modulate the function of immune cells. Therefore, this study aimed to elucidate the effects of glycolysis-derived lactate on microglial function and its potential neuroprotective mechanisms via lactylation after SCI. METHODS Single-cell RNA sequencing (scRNA-seq) data were obtained from figshare to analyze cellular and molecular alterations within the spinal cord post-SCI, further focusing on the expression of microglia-related genes for cell sub-clustering, trajectory analysis, and glycolysis function analysis. We also evaluated the expression of lactylation-related genes in microglia between day 7 after SCI and sham group. Additionally, we established the mice SCI model and performed the bulk RNA sequencing in a time-dependent manner. The expression of glycolysis- and lactylation-related genes was evaluated, as well as the immune infiltration analysis based on the lactylation-related genes. Then, we investigated the bio-effects of lactate on the inflammation and polarization phenotype of microglia. Finally, adult male C57BL/6 mice were subjected to exercise first to increase lactate level, before SCI surgery, aiming to evaluate the protective effects of lactate-mediated lactylation of microglia-related proteins on SCI. RESULTS scRNA-seq identified a subcluster of microglia, recombinant chemokine C-X3-C-motif receptor 1+ (CX3CR1+) microglia, which is featured by M1-like phenotype and increased after SCI. KEGG analysis revealed the dysfunctional glycolysis in microglia after SCI surgery, and AUCell analysis suggested that the decreased glycolysis an increased oxidative phosphorylation in CX3CR1+ microglia. Differential gene analysis suggested that several lactylation-related genes (Fabp5, Lgals1, Vim, and Nefl) were downregulated in CX3CR1+ microglia at day 7 after SCI, further validated by the results from bulk RNA sequencing. Immunofluorescence staining indicated the expression of lactate dehydrogenase A (LDHA) in CX3CR1+ microglia also decreased at day 7 after SCI. Cellular experiments demonstrated that the administration of lactate could increase the lactylation level and inhibit the pro-inflammatory phenotype in microglia. Functionally, exercise-mediated lactate production resulted in improved locomotor recovery and decreased inflammatory markers in SCI mice compared to SCI alone. CONCLUSIONS In the subacute phase of SCI, metabolic remodeling in microglia may be key therapeutic targets to promote nerve regeneration, and lactate contributed to neuroprotection after SCI by influencing microglial lactylation and inflammatory phenotype, which offered a novel approach for therapeutic intervention.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Fudong Li
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Yangyang Shi
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Chenglong Ji
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
- Department of OrthopedicsNaval Medical Center of PLAShanghaiChina
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Sullivan D, Vaglio BJ, Cararo-Lopes MM, Wong RDP, Graudejus O, Firestein BL. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner. Ann Biomed Eng 2024; 52:1021-1038. [PMID: 38294641 DOI: 10.1007/s10439-023-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage. In the current study, we use stretchable microelectrode arrays (sMEAs) to model the primary injury of TBI to study the electrophysiological effects of physically injuring cortical cells. We recorded electrophysiological activity before injury and then stretched the flexible membrane of the sMEAs to injure the cells to varying degrees. At 1, 24, and 72 h post-stretch, we recorded activity to analyze differences in spike rate, Fano factor, burstlet rate, burstlet width, synchrony of firing, local network efficiency, and Q statistic. Our results demonstrate that mechanical injury changes the firing properties of cortical neuron networks in culture in a time- and severity-dependent manner. Our results suggest that changes to electrophysiological properties after stretch are dependent on the strength of synchronization between neurons prior to injury.
Collapse
Affiliation(s)
- Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marina M Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ruben D Ponce Wong
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
| | - Oliver Graudejus
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
- School of Molecular Science, Arizona State University, Tempe, AZ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
4
|
Virtuoso A, Galanis C, Lenz M, Papa M, Vlachos A. Regional Microglial Response in Entorhino-Hippocampal Slice Cultures to Schaffer Collateral Lesion and Metalloproteinases Modulation. Int J Mol Sci 2024; 25:2346. [PMID: 38397023 PMCID: PMC10889226 DOI: 10.3390/ijms25042346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Michele Papa
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks–BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Ray SK. TUNEL-n-DIFL Method for Detection and Estimation of Apoptosis Specifically in Neurons and Glial Cells in Mixed Culture and Animal Models of Central Nervous System Diseases and Injuries. Methods Mol Biol 2024; 2761:1-26. [PMID: 38427225 DOI: 10.1007/978-1-0716-3662-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Detection of merely apoptosis does not reveal the type of central nervous system (CNS) cells that are dying in the CNS diseases and injuries. In situ detection and estimation of amount of apoptosis specifically in neurons or glial cells (astrocytes, oligodendrocytes, and microglia) can unveil valuable information for designing therapeutics for protection of the CNS cells and functional recovery. A method was first developed and reported from our laboratory for in situ detection and estimation of amount of apoptosis precisely in neurons and glial cells using in vitro and in vivo models of CNS diseases and injuries. This is a combination of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and double immunofluorescent labeling (DIFL) or simply TUNEL-n-DIFL method for in situ detection and estimation of amount of apoptosis in a specific CNS cell type. An anti-digoxigenin (DIG) IgG antibody conjugated with 7-amino-4-methylcoumarin-3-acetic acid (AMCA) for blue fluorescence, fluorescein isothiocyanate (FITC) for green fluorescence, or Texas Red (TR) for red fluorescence can be used for in situ detection of apoptotic cell DNA, which is earlier labeled with TUNEL using alkali-stable DIG-11-dUTP. A primary anti-NeuN (neurons), anti-GFAP (astrocytes), anti-MBP (oligodendrocytes), or anti-OX-42 (microglia) IgG antibody and a secondary IgG antibody conjugated with one of the above fluorophores (other than that of ani-DIG antibody) are used for in situ detection of apoptosis in a specific CNS cell type in the mixed culture and animal models of the CNS diseases and injuries.
Collapse
Affiliation(s)
- Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
6
|
Hong JY, Lee J, Kim H, Yeo C, Jeon WJ, Lee YJ, Ha IH. Shinbaro2 enhances axonal extension beyond the glial scar for functional recovery in rats with contusive spinal cord injury. Biomed Pharmacother 2023; 168:115710. [PMID: 37862963 DOI: 10.1016/j.biopha.2023.115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that often results in the inflammatory condition of glial scar tissue formation, impeding neural regeneration and recovery. Reducing the inflammatory response and inhibiting glial formation are promising strategies for improving SCI outcomes. Here, we introduce a new role for Shinbaro2 (Sh2), known for its anti-inflammatory and pain-reducing effects, in ameliorating glial scars formed in the damaged spinal cord and promoting axon growth after SCI. Sh2 was applied at various concentrations to cultivate primary spinal cord neurons. Concentrations of 1 and 2 mg/mL effectively enhanced cell viability and axonal outgrowth in spinal cord neurons subjected to hydrogen peroxide or laceration injury. Sh2 helped reduce neuroinflammation by increasing anti-inflammatory M2 macrophages (arginase 1) and decreasing inflammatory cells, ultimately reducing lesion size. In scar formation, Sh2 inhibited the expression of β-catenin and nestin in reactive astrocytes in the injured spinal cord. Moreover, Sh2 suppressed the expression of chondroitin sulfate proteoglycans and SOX9, which are involved in scar formation. Furthermore, Sh2 promoted the sprouting of serotonergic axons and the growth of neurofibrillary tangles, enhancing motor function recovery in SCI. These findings highlight the potential of Sh2 as an SCI therapeutic intervention, offering hope for neural and functional restoration in individuals with this debilitating condition.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| |
Collapse
|
7
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
8
|
Zargari M, Meyer LJ, Riess ML, Li Z, Barajas MB. P188 Therapy in In Vitro Models of Traumatic Brain Injury. Int J Mol Sci 2023; 24:3334. [PMID: 36834743 PMCID: PMC9961452 DOI: 10.3390/ijms24043334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Varied mechanisms of injury contribute to the heterogeneity of this patient population as demonstrated by the multiple published grading scales and diverse required criteria leading to diagnoses from mild to severe. TBI pathophysiology is classically separated into a primary injury that is characterized by local tissue destruction as a result of the initial blow, followed by a secondary phase of injury constituted by a score of incompletely understood cellular processes including reperfusion injury, disruption to the blood-brain barrier, excitotoxicity, and metabolic dysregulation. There are currently no effective pharmacological treatments in the wide-spread use for TBI, in large part due to challenges associated with the development of clinically representative in vitro and in vivo models. Poloxamer 188 (P188), a Food and Drug Administration-approved amphiphilic triblock copolymer embeds itself into the plasma membrane of damaged cells. P188 has been shown to have neuroprotective properties on various cell types. The objective of this review is to provide a summary of the current literature on in vitro models of TBI treated with P188.
Collapse
Affiliation(s)
- Michael Zargari
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Matthias L. Riess
- TVHS VA Medical Center, Anesthesiology, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhu Li
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew B. Barajas
- TVHS VA Medical Center, Anesthesiology, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Modeling Central Nervous System Injury In Vitro: Current Status and Promising Future Strategies. Biomedicines 2022; 11:biomedicines11010094. [PMID: 36672601 PMCID: PMC9855387 DOI: 10.3390/biomedicines11010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The central nervous system (CNS) injury, which occurs because of mechanical trauma or ischemia/hypoxia, is one of the main causes of mortality and morbidity in the modern society. Until know, despite the fact that numerous preclinical and clinical studies have been undertaken, no significant neuroprotective strategies have been discovered that could be used in the brain trauma or ischemia treatment. Although there are many potential explanations for the failure of those studies, it is clear that there are questions regarding the use of experimental models, both in vivo and in vitro, when studying CNS injury and searching new therapeutics. Due to some ethical issues with the use of live animals in biomedical research, implementation of experimental strategies that prioritize the use of cells and tissues in the in vitro environment has been encouraged. In this review, we examined some of the most commonly used in vitro models and the most frequently utilized cellular platforms in the research of traumatic brain injury and cerebral ischemia. We also proposed some future strategies that could improve the usefulness of these studies for better bench-to-bedside translational outcomes.
Collapse
|
10
|
Streubel-Gallasch L, Zyśk M, Beretta C, Erlandsson A. Traumatic brain injury in the presence of Aβ pathology affects neuronal survival, glial activation and autophagy. Sci Rep 2021; 11:22982. [PMID: 34837024 PMCID: PMC8626479 DOI: 10.1038/s41598-021-02371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) presents a widespread health problem in the elderly population. In addition to the acute injury, epidemiological studies have observed an increased probability and earlier onset of dementias in the elderly following TBI. However, the underlying mechanisms of the connection between TBI and Alzheimer's disease in the aged brain and potential exacerbating factors is still evolving. The aim of this study was to investigate cellular injury-induced processes in the presence of amyloid β (Aβ) pathology. For this purpose, a co-culture system of cortical stem-cell derived astrocytes, neurons and oligodendrocytes were exposed to Aβ42 protofibrils prior to a mechanically induced scratch injury. Cellular responses, including neurodegeneration, glial activation and autophagy was assessed by immunoblotting, immunocytochemistry, ELISA and transmission electron microscopy. Our results demonstrate that the combined burden of Aβ exposure and experimental TBI causes a decline in the number of neurons, the differential expression of the key astrocytic markers glial fibrillary acidic protein and S100 calcium-binding protein beta, mitochondrial alterations and prevents the upregulation of autophagy. Our study provides valuable information about the impact of TBI sustained in the presence of Aβ deposits and helps to advance the understanding of geriatric TBI on the cellular level.
Collapse
Affiliation(s)
- Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Marlena Zyśk
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Chiara Beretta
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
11
|
Wu YH, Rosset S, Lee TR, Dragunow M, Park T, Shim V. In Vitro Models of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2021; 38:2336-2372. [PMID: 33563092 DOI: 10.1089/neu.2020.7402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health challenge that is also the third leading cause of death worldwide. It is also the leading cause of long-term disability in children and young adults worldwide. Despite a large body of research using predominantly in vivo and in vitro rodent models of brain injury, there is no medication that can reduce brain damage or promote brain repair mainly due to our lack of understanding in the mechanisms and pathophysiology of the TBI. The aim of this review is to examine in vitro TBI studies conducted from 2008-2018 to better understand the TBI in vitro model available in the literature. Specifically, our focus was to perform a detailed analysis of the in vitro experimental protocols used and their subsequent biological findings. Our review showed that the uniaxial stretch is the most frequently used way of load application, accounting for more than two-thirds of the studies reviewed. The rate and magnitude of the loading were varied significantly from study to study but can generally be categorized into mild, moderate, and severe injuries. The in vitro studies reviewed here examined key processes in TBI pathophysiology such as membrane disruptions leading to ionic dysregulation, inflammation, and the subsequent damages to the microtubules and axons, as well as cell death. Overall, the studies examined in this review contributed to the betterment of our understanding of TBI as a disease process. Yet, our review also revealed the areas where more work needs to be done such as: 1) diversification of load application methods that will include complex loading that mimics in vivo head impacts; 2) more widespread use of human brain cells, especially patient-matched human cells in the experimental set-up; and 3) need for building a more high-throughput system to be able to discover effective therapeutic targets for TBI.
Collapse
Affiliation(s)
- Yi-Han Wu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Korea
| | - Mike Dragunow
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Thomas Park
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Gilbert R, Pfister BJ. Brain organoids/brain tissue engineering — As disease models and for understanding. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|