1
|
Mahmoud A, Abo El-Ela FI, Mahmoud R, Shehata AZ, El-Raheem HA, Salama E, Allam AA, Alfassam HE, Zaher A. Eco-friendly moxifloxacin removal using date seed waste and Ni-Fe LDH: Adsorption efficiency and antimicrobial potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118256. [PMID: 40319707 DOI: 10.1016/j.ecoenv.2025.118256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND New pharmacological remediation techniques were needed due to their detrimental impacts on human health and aquatic ecosystems. Layer double hydroxide (LDH) can be made inexpensively and readily available using easy preparation techniques. Three nanomaterials date seed powder (DSP), Ni-Fe LDH, and Ni-Fe LDH/(DSP) composite are used to eliminate Moxifloxacin (MOX). OBJECTIVE Providing the date seed powder (DSP), Ni-Fe LDH, and Ni-Fe LDH/(DSP) composite multifunction as an ecofriendly adsorbents for antibiotic residues also its assessing antibacterial effectiveness in addition to other fungal organisms. METHODS The catalysts were synthesized via co-precipitation and characterized using HRTEM, FESEM, FT-IR, X-ray, PZC and BET analyses. Adsorption experiments were conducted to evaluate the effects of pH, adsorbent dose, and contact time, while kinetic and isotherm models were employed to elucidate the adsorption mechanisms. Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), Minimum Bactericidal Concentration (MBC), and Disc Diffusion assays for bacterial activity were applied for antifungal study. RESULTS The removal percent of the MOX was 35.37 % at pH 3, 44.91 % at pH 7, and 83.50 % at pH 5 for (DSP), Ni-Fe LDH and Ni-Fe LDH /(DSP) composite, respectively. The Langmuir- Freundlich model is the best suitable model for three nanomaterials (DSP), Ni-Fe LDH and Ni-Fe LDH /(DSP), R2 were (0.97,0.99 and 0.99, respectively) and qmax were (212.77, 206.7 and 251,6 respectively). CONCLUSION current research indicates that the Ni-Fe LDH/(DSP) composite is a promising nanomaterial for treating wastewater and has a greater antimicrobial efficacy than each alone against both bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Ahmed Mahmoud
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ayman Z Shehata
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hany Abd El-Raheem
- Centre of Excellence for Trace Analysis and Biosensor, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Environmental Engineering Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Esraa Salama
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Haifa E Alfassam
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia.
| | - Amal Zaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
2
|
Zhang D, Kukkar D, Bhatt P, Kim KH, Kaur K, Wang J. Novel nanomaterials-based combating strategies against drug-resistant bacteria. Colloids Surf B Biointerfaces 2025; 248:114478. [PMID: 39778220 DOI: 10.1016/j.colsurfb.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.g., penicillin and tetracycline), the unique physicochemical characteristics (e.g., size dependency) of NMs endow them with bacteriostatic and bactericidal potential. However, it is yet difficult to mechanistically predict or decipher the networks of molecular interaction (e.g., between NMs and the biological systems) and the subsequent immune responses. In light of such research gap, this review outlines various mechanisms accountable for the inception of drug tolerance in bacteria. It also delineates the primary factors governing the NMs-induced molecular mechanisms against microbes, specifically drug-resistant bacteria along with the various NM-based mechanisms of antibacterial activity. The review also explores future directions and prospects for NMs in combating drug-resistant bacteria, while addressing challenges to their commercial viability within the healthcare industry.
Collapse
Affiliation(s)
- Daohong Zhang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Kamalpreet Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab 140406, India
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Yang Y, Tong Y, Han Q, Feng L, Gao P, Zhang L. Effects of coexisting nanomaterials on the photodegradation behavior and ecotoxicity of antibiotics in the aqueous. CHEMOSPHERE 2024; 366:143509. [PMID: 39384139 DOI: 10.1016/j.chemosphere.2024.143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Nanomaterials (NPs) and antibiotics, as two emergent pollutants, forms a complex contamination through their interaction, potentially causing adverse effects on the organism. This study systematically examined the influence of two NPs (CuO NPs and carbon nanotubes, CNTs) on the photodegradation behavior of tetracycline (TC) and their combined toxic effects on Chlorella vulgaris. The results showed that CuO NPs significantly accelerated TC photodegradation compared to CNTs, increasing the TC photodegradation rate constant by187.6%. Electron spin resonance (ESR) indicated that under the coexistence of CuO NPs or CNTs, 1O2、O2•- and •OH were the main active species promoting TC photodegradation. Probe and quenching experiments confirmed the predominant role of O2•- and 1O2 in the presence of CuO NPs and CNTs. Additionally, three possible TC photodegradation pathways were proposed for the coexistence of CuO NPs and CNTs. In the Chlorella vulgaris growth inhibition experiment, the combined toxicity of CuO NPs or CNTs and TC was higher than that of individual substance, indicating significant synergistic effects, especially with the combination of CNTs and TC. This study provides a new perspective on accurately assessing the environmental behaviors and risks when NPs and antibiotics coexist.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yao Tong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Peng Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Matias LLR, Damasceno KSFDSC, Pereira AS, Passos TS, Morais AHDA. Innovative Biomedical and Technological Strategies for the Control of Bacterial Growth and Infections. Biomedicines 2024; 12:176. [PMID: 38255281 PMCID: PMC10813423 DOI: 10.3390/biomedicines12010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Antibiotics comprise one of the most successful groups of pharmaceutical products. Still, they have been associated with developing bacterial resistance, which has become one of the most severe problems threatening human health today. This context has prompted the development of new antibiotics or co-treatments using innovative tools to reverse the resistance context, combat infections, and offer promising antibacterial therapy. For the development of new alternatives, strategies, and/or antibiotics for controlling bacterial growth, it is necessary to know the target bacteria, their classification, morphological characteristics, the antibiotics currently used for therapies, and their respective mechanisms of action. In this regard, genomics, through the sequencing of bacterial genomes, has generated information on diverse genetic resources, aiding in the discovery of new molecules or antibiotic compounds. Nanotechnology has been applied to propose new antimicrobials, revitalize existing drug options, and use strategic encapsulating agents with their biochemical characteristics, making them more effective against various bacteria. Advanced knowledge in bacterial sequencing contributes to the construction of databases, resulting in advances in bioinformatics and the development of new antimicrobials. Moreover, it enables in silico antimicrobial susceptibility testing without the need to cultivate the pathogen, reducing costs and time. This review presents new antibiotics and biomedical and technological innovations studied in recent years to develop or improve natural or synthetic antimicrobial agents to reduce bacterial growth, promote well-being, and benefit users.
Collapse
Affiliation(s)
- Lídia Leonize Rodrigues Matias
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | | | - Annemberg Salvino Pereira
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (K.S.F.d.S.C.D.); (T.S.P.)
| | - Ana Heloneida de Araujo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (K.S.F.d.S.C.D.); (T.S.P.)
| |
Collapse
|
5
|
|
6
|
Zuo P, Metz J, Yu P, Alvarez PJJ. Biofilm-responsive encapsulated-phage coating for autonomous biofouling mitigation in water storage systems. WATER RESEARCH 2022; 224:119070. [PMID: 36096027 DOI: 10.1016/j.watres.2022.119070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biofilms in water storage systems may harbor pathogens that threaten public health. Chemical disinfectants are marginally effective in eradicating biofilms due to limited penetration, and often generate harmful disinfection byproducts. To enhance biofouling mitigation in household water storage tanks, we encapsulated bacteriophages (phages) in chitosan crosslinked with tri-polyphosphate and 3-glycidoxypropyltrimethoxysilane. Phages served as self-propagating green biocides that exclusively infect bacteria. This pH-responsive encapsulation (244 ± 11 nm) enabled autonomous release of phages in response to acidic pH associated with biofilms (corroborated by confocal microscopy with pH-indicator dye SNARF-4F), but otherwise remained stable in pH-neutral tap water for one month. Encapsulated phages instantly bind to plasma-treated plastic and fiberglass surfaces, providing a facile coating method that protects surfaces highly vulnerable to biofouling. Biofilm formation assays were conducted in tap water amended with 200 mg/L glucose to accelerate growth and attachment of Pseudomonas aeruginosa, an opportunistic pathogen commonly associated with biofilms in drinking water distribution and storage systems. Biofilms formation on plastic surfaces coated with encapsulated phages decreased to only 6.7 ± 0.2% (on a biomass basis) relative to the uncoated controls. Likewise, biofilm surface area coverage (4.8 ± 0.2 log CFU/mm2) and live/dead fluorescence ratio (1.80) were also lower than the controls (6.6 ± 0.2 log CFU/mm2 and live/dead ratio of 11.05). Overall, this study offers proof-of-concept of a chemical-free, easily implementable approach to control problematic biofilm-dwelling bacteria and highlights benefits of this bottom-up biofouling control approach that obviates the challenge of poor biofilm penetration by biocides.
Collapse
Affiliation(s)
- Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Jordin Metz
- Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA.
| |
Collapse
|
7
|
Antibiofilm Synergistic Activity of Streptomycin in Combination with Thymol-Loaded Poly (Lactic-co-glycolic Acid) Nanoparticles against Klebsiella pneumoniae Isolates. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1936165. [PMID: 35911151 PMCID: PMC9334066 DOI: 10.1155/2022/1936165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Background. Thymol is an important component of essential oils found in the oil of thyme, is extracted mainly from Thymus vulgaris, and was shown to act synergistically with streptomycin against Klebsiella pneumoniae biofilms. Additionally, thymol could be encapsulated into poly (lactic-co-glycolic acid) (PLGA) nanoparticles to overcome issues related to its low water solubility and high volatility. The present study aimed to investigate the antibiofilm activity of thymol-loaded PLGA nanoparticles (Thy-NPs) alone and in combination with streptomycin against biofilms of K. pneumoniae isolates. Methods. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibiofilm activities were determined by the safranin dye assay. The synergistic effect of Thy-NPs with streptomycin was assessed by the checkerboard method. The kinetic study of the biofilm biomass and time-kill assay were further performed. Results. Thy-NPs exhibited the highest antibacterial activity against K. pneumoniae isolates, with MIC values ranging from 1 to 8 µg/mL. Additionally, Thy-NPs showed the highest antibiofilm activity against K. pneumoniae isolates with minimal biofilm inhibitory concentration (MBIC) and minimal biofilm eradication concentration (MBEC) values ranging from 16 to 64 µg/mL and from 32 to 128 µg/Ml, respectively. The combination treatment combining Thy-NPs with streptomycin showed a synergistic effect against the inhibition of biofilm formation and eradication of biofilms of K. pneumoniae isolates with fractional inhibitory concentration index values ranging from 0.13 to 0.28. In addition, the MBIC and MBEC values of streptomycin against K. pneumoniae isolates were dramatically reduced (up to 128-fold) in combination with Thy-NPs, suggesting that Thy-NPs would enhance the antibiofilm activity of streptomycin. The biomass and time-kill kinetics analysis confirmed the observed synergistic interactions and showed the bactericidal activity of streptomycin in combination with Thy-NPs. Conclusions. Our results indicate that the synergistic bactericidal effect between streptomycin and Thy-NPs could be a promising approach in the control of biofilm-associated infections caused by K. pneumoniae.
Collapse
|