1
|
Kıstı M, Hüner B, Albadwi A, Özdoğan E, Uzgören İN, Uysal S, Conağası M, Süzen YO, Demir N, Kaya MF. Recent Advances in Polymer Electrolyte Membrane Water Electrolyzer Stack Development Studies: A Review. ACS OMEGA 2025; 10:9824-9853. [PMID: 40124006 PMCID: PMC11923666 DOI: 10.1021/acsomega.4c10147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 03/25/2025]
Abstract
Polymer electrolyte membrane water electrolyzers have significant advantages over other electrolyzers, such as compact design, high efficiency, low gas permeability, fast response, high-pressure operation (up to 200 bar), low operating temperature (20-80 °C), lower power consumption, and high current density. Moreover, polymer electrolyte membrane water electrolyzers are a promising technology for sustainable hydrogen production due to their easy adaptability to renewable energy sources. However, the cost of expensive electrocatalysts and other construction equipment must be reduced for the widespread usage of polymer electrolyte membrane water electrolyzer technology. In this review, recent improvements made in developing the polymer electrolyte membrane water electrolyzer stack are summarized. First, we present a brief overview of the working principle of polymer electrolyte membrane water electrolyzers. Then, we discuss the components of polymer electrolyte membrane water electrolyzers (base materials such as membranes, gas diffusion layers, electrocatalysts, and bipolar plates) and their particular functions. We also provide an overview of polymer electrolyte membrane water electrolyzer's material technology, production technology, and commercialization issues. We finally present recent advancements of polymer electrolyte membrane water electrolyzer stack developments and their recent developments under different operating conditions.
Collapse
Affiliation(s)
- Murat Kıstı
- Erciyes
University, Energy Systems
Engineering Department, Heat Engineering Division, 38039 Kayseri, Türkiye
- Erciyes
University, Graduate School
of Natural and Applied Sciences, Energy Systems Engineering Department, 38039 Kayseri, Türkiye
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
| | - Bulut Hüner
- Osmaniye
Korkut Ata University, Directorate of
Research and Innovation, 80000 Osmaniye, Türkiye
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
| | - Abdelmola Albadwi
- Erciyes
University, Energy Systems
Engineering Department, Heat Engineering Division, 38039 Kayseri, Türkiye
- Erciyes
University, Graduate School
of Natural and Applied Sciences, Energy Systems Engineering Department, 38039 Kayseri, Türkiye
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
| | - Emre Özdoğan
- Erciyes
University, Energy Systems
Engineering Department, Heat Engineering Division, 38039 Kayseri, Türkiye
- Erciyes
University, Electrical and
Electronics Engineering Department, 38039 Kayseri, Türkiye
- Erciyes
University, Graduate School
of Natural and Applied Sciences, Energy Systems Engineering Department, 38039 Kayseri, Türkiye
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
- Bataryasan
Enerji San. ve Tic. A.Ş., Erciyes Teknopark, Yıldırım Beyazıt Mah.,
Aşık Veysel Bul., No: 63/B, 38039 Melikgazi/Kayseri, Türkiye
| | - İlayda Nur Uzgören
- Erciyes
University, Energy Systems
Engineering Department, Heat Engineering Division, 38039 Kayseri, Türkiye
- Erciyes
University, Graduate School
of Natural and Applied Sciences, Energy Systems Engineering Department, 38039 Kayseri, Türkiye
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
| | - Süleyman Uysal
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
- Bataryasan
Enerji San. ve Tic. A.Ş., Erciyes Teknopark, Yıldırım Beyazıt Mah.,
Aşık Veysel Bul., No: 63/B, 38039 Melikgazi/Kayseri, Türkiye
| | - Marise Conağası
- Erciyes
University, Energy Systems
Engineering Department, Heat Engineering Division, 38039 Kayseri, Türkiye
- Erciyes
University, Graduate School
of Natural and Applied Sciences, Energy Systems Engineering Department, 38039 Kayseri, Türkiye
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
- Bataryasan
Enerji San. ve Tic. A.Ş., Erciyes Teknopark, Yıldırım Beyazıt Mah.,
Aşık Veysel Bul., No: 63/B, 38039 Melikgazi/Kayseri, Türkiye
| | - Yakup Ogün Süzen
- Erciyes
University, Mechanical Engineering
Department, 38039 Kayseri, Türkiye
- Erciyes
University, Graduate School
of Natural and Applied Sciences, Energy Systems Engineering Department, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
| | - Nesrin Demir
- Erciyes
University, Energy Systems
Engineering Department, Heat Engineering Division, 38039 Kayseri, Türkiye
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
| | - Mehmet Fatih Kaya
- Erciyes
University, Energy Systems
Engineering Department, Heat Engineering Division, 38039 Kayseri, Türkiye
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Türkiye
- Erciyes
University, ArGePark Research Building, 38039 Kayseri, Türkiye
- Bataryasan
Enerji San. ve Tic. A.Ş., Erciyes Teknopark, Yıldırım Beyazıt Mah.,
Aşık Veysel Bul., No: 63/B, 38039 Melikgazi/Kayseri, Türkiye
| |
Collapse
|
2
|
Han J, Liu Q, Yang Y, Wu HB. Noble-metal-free catalysts for the oxygen evolution reaction in acids. Chem Sci 2025; 16:3788-3809. [PMID: 39950065 PMCID: PMC11815483 DOI: 10.1039/d4sc08400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Oxygen evolution catalysts are critical components of proton exchange membrane water electrolysers (PEMWEs), playing a decisive role in determining both the performance and cost of these devices. Non-noble metal-based oxygen evolution catalysts have recently drawn significant attention as potential alternatives to expensive noble metal catalysts. This review systematically summarizes the mechanism of non-noble metal catalysts for the oxygen evolution reaction in acids with respect to their activity and stability, incorporating theoretical calculations and the Pourbaix diagram. Advanced in situ techniques are highlighted as powerful tools for probing intermediate evolution and valence changes and further elucidating the catalytic mechanism. Furthermore, key strategies for enhancing catalytic activity and durability, such as elemental doping, the support effect, surface protection and novel phase design, are discussed. Finally, this review provides insights into the remaining challenges and emerging opportunities for advancing practical oxygen evolution catalysts in PEMWEs.
Collapse
Affiliation(s)
- Junwei Han
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Qian Liu
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yue Yang
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Hao Bin Wu
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
3
|
Wang C, Stansberry JM, Mukundan R, Chang HMJ, Kulkarni D, Park AM, Plymill AB, Firas NM, Liu CP, Lang JT, Lee JK, Tolouei NE, Morimoto Y, Wang CH, Zhu G, Brouwer J, Atanassov P, Capuano CB, Mittelsteadt C, Peng X, Zenyuk IV. Proton Exchange Membrane (PEM) Water Electrolysis: Cell-Level Considerations for Gigawatt-Scale Deployment. Chem Rev 2025; 125:1257-1302. [PMID: 39899322 PMCID: PMC11996138 DOI: 10.1021/acs.chemrev.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 02/04/2025]
Abstract
Hydrogen produced with no greenhouse gas emissions is termed "green hydrogen" and will be essential to reaching decarbonization targets set forth by nearly every country as per the Paris Agreement. Proton exchange membrane water electrolyzers (PEMWEs) are expected to contribute substantially to the green hydrogen market. However, PEMWE market penetration is insignificant, accounting for less than a gigawatt of global capacity. Achieving substantive decarbonization via green hydrogen will require PEMWEs to reach capacities of hundreds of gigawatts by 2030. This paper serves as an overarching roadmap for cell-level improvements necessary for gigawatt-scale PEMWE deployment, with insights from three well-established hydrogen technology companies included. Analyses will be presented for economies of scale, renewable energy prices, government policies, accelerated stress tests, and component-specific improvements.
Collapse
Affiliation(s)
- Cliffton
Ray Wang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - John M. Stansberry
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Rangachary Mukundan
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hung-Ming Joseph Chang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | | | - Andrew M. Park
- The
Chemours Company, Newark, Delaware 19713, United States
| | | | - Nausir Mahmoud Firas
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Christopher Pantayatiwong Liu
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Jack T. Lang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Jason Keonhag Lee
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Mechanical Engineering, University of
Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nadia E. Tolouei
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Yu Morimoto
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - CH Wang
- TreadStone
Technologies, Inc., Princeton, New Jersey 08540, United States
| | - Gaohua Zhu
- Toyota
Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Jack Brouwer
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Plamen Atanassov
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92617, United States
| | | | | | - Xiong Peng
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Iryna V. Zenyuk
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92617, United States
| |
Collapse
|
4
|
Seumo Tchekwagep PM, Banks CE, Crapnell RD, Farsak M, Kardaş G. Electrochemical synthesis of NiCo layered double hydroxides on nickel-coated graphite for water splitting: understanding the electrochemical experimental parameters. RSC Adv 2025; 15:3969-3978. [PMID: 39917043 PMCID: PMC11799880 DOI: 10.1039/d4ra08053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
The electrochemical synthesis of nickel-cobalt (Ni-Co) layered double hydroxides (LDHs) on a nickel-coated graphite support for water splitting applications was investigated. Three different electrochemical approaches, namely, cyclic voltammetry (CV), chronoamperometry (CA), and chronopotentiometry (CP), were employed for evaluating the electrodeposition of Ni-Co LDHs. The graphite support was initially coated with a thin layer of Ni by applying 50 mA cm-2 constant current density for 120 s. Raman spectroscopy results confirmed the intercalation of nitrates, evidenced by the characteristic Raman bands at 1033 cm-1 (ν 1) and 1329 cm-1 (ν 3). These characteristic bands were indicative of nitrate intercalation, a key feature of LDHs, further supporting the classification of the synthesized material as NiCo LDHs on a nickel-coated graphite support. It was observed that the electrochemical routes used for the synthesis influenced the morphology, composition, and electrochemical behavior of the obtained Ni-Co LDHs. Moreover, atomic force microscopy (AFM) measurements revealed distinct nanoscale surface characteristics associated with the synthesis methods, with the Ni-Co LDH synthesized via the CV route exhibiting higher surface heterogeneity than that synthesized via the constant potential method (CA), resulting in a more textured surface. These findings were further supported by roughness average (Ra) values, where CV-synthesized Ni-Co LDH displayed the highest R a of 221 nm, indicating a more extensive active surface area. The electrochemical performance, both for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), were correlated with these surface variations. This study provides valuable insights into the electrochemical experimental parameters for the synthesis of Ni-Co LDHs and their potential application in water splitting processes.
Collapse
Affiliation(s)
- Patrick Marcel Seumo Tchekwagep
- Chemistry Department, Faculty of Arts and Sciences, Çukurova University 01330 Balcalı Adana Turkiye
- Applied Chemistry and Biosciences Laboratory, Department of Chemistry-Biology, Faculty of Science, University of Bertoua Bertoua 416 Cameroon
- Analytical Chemistry Laboratory, Faculty of Science, University of Yaoundé 1 Yaoundé 812 Cameroon
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Dalton building, Chester Street M1 5GD UK
| | - Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University Dalton building, Chester Street M1 5GD UK
| | - Murat Farsak
- Department of Battery Systems and Hydrogen Technologies, Osmaniye Korkut Ata University, Institute of Natural and Applied Science Turkiye
| | - Gülfeza Kardaş
- Chemistry Department, Faculty of Arts and Sciences, Çukurova University 01330 Balcalı Adana Turkiye
| |
Collapse
|
5
|
Utsch N, Berg F, Scheepers F, Holtwerth S, Shviro M, Lehnert W, Mechler AK. Innovative Method for Reliable Measurement of PEM Water Electrolyzer Component Resistances. SMALL METHODS 2025:e2401842. [PMID: 39854141 DOI: 10.1002/smtd.202401842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology. This probe measures resistance across ten distances, ranging from 250 µm to 2500 µm, enabling local mapping of resistance. The study focuses on the sheet resistance of key components in PEM water electrolyzers, including the gas diffusion layer (GDL), porous transport layer (PTL), and catalyst layers deposited on a membrane. Additionally, an image-processing-based method is presented to obtain the thickness distribution of the studied catalyst layers, facilitating a detailed analysis of the electrical in-plane resistivity with thickness variations. Overall, this methodology has the potential to expedite material integration and bridge the gap between electrode engineering and single-cell testing, thereby advancing the development of PEM water electrolyzers.
Collapse
Affiliation(s)
- Nikolai Utsch
- Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany
- RWTH Aachen University, Faculty of Mechanical Engineering, 52056, Aachen, Germany
| | - Florian Berg
- Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany
| | - Fabian Scheepers
- Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany
| | - Sebastian Holtwerth
- Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany
| | - Meital Shviro
- Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, CO, 80401, USA
| | - Werner Lehnert
- Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany
- RWTH Aachen University, Faculty of Mechanical Engineering, Modeling in Electrochemical Process Engineering, 52056, Aachen, Germany
| | - Anna K Mechler
- Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany
- RWTH Aachen University, Electrochemical Reaction Engineering (AVT.ERT), Forckenbeckstr. 51, 52074, Aachen, Germany
- Jülich Aachen Research Alliance, JARA-Energy, 52066, Aachen, Germany
| |
Collapse
|
6
|
Ferner KJ, Litster S. Composite Anode for PEM Water Electrolyzers: Lowering Iridium Loadings and Reducing Material Costs with a Conductive Additive. ACS APPLIED ENERGY MATERIALS 2024; 7:8124-8135. [PMID: 39328828 PMCID: PMC11423428 DOI: 10.1021/acsaem.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
To enable the greater installed capacity of proton exchange membrane water electrolysis (PEMWE) for clean hydrogen production, associated costs must be lowered while achieving high current density performance and durability. Scarce and expensive iridium (Ir) required for the oxygen evolution reaction (OER) is a large contributor to the overall cost, yet high loadings of Ir (1-2 mgIr cm-2) are currently needed in commercial systems to maintain sufficient activity, conductivity, and durability. To meet the aggressive targets for low Ir loadings, we introduce a composite anode approach using a conductive additive that is less expensive than Ir to facilitate robust, high-performance operation with low Ir loading by retaining electrode thickness and in-plane electrical conductivity. In this demonstration, we use platinum (Pt) black as the conductive additive given its high electrical conductivity, acid stability, and current price one-fifth that of Ir. Using a high-activity commercial Ir oxide (IrO x ) catalyst, we present a 95% Ir loading reduction and 80% cost reduction of the anode catalyst materials while maintaining equal current density performance at a cell voltage of 1.8 V. Furthermore, we show enhanced stability of a composite anode compared to an IrO x anode with loadings of 0.10 mgIr cm-2 via accelerated stress test (AST) and postmortem imaging. With this approach, we show promising results toward lowering Ir loadings and material costs, addressing a significant barrier to the widespread adoption of PEMWE for clean hydrogen production.
Collapse
Affiliation(s)
- Kara J. Ferner
- Department of Mechanical
Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Shawn Litster
- Department of Mechanical
Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Belsa B, Xia L, García de Arquer FP. CO 2 Electrolysis Technologies: Bridging the Gap toward Scale-up and Commercialization. ACS ENERGY LETTERS 2024; 9:4293-4305. [PMID: 39296967 PMCID: PMC11406523 DOI: 10.1021/acsenergylett.4c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 09/21/2024]
Abstract
CO2 electroreduction (CO2E) converts CO2 into carbon-based fuels and chemical feedstocks that can be integrated into existing chemical processes. After decades of research, CO2E is approaching commercialization with several startups, pilot plants, and large initiatives targeting different products. Here, we analyze the global efforts in scaling up CO2E, addressing implementation challenges and proposing methods for acceleration. We present a comparative analysis of key performance indicators (KPIs) between laboratory and industrial settings and suggest a stepwise technoeconomic analysis (TEA) framework, supported by industrial data, exploiting interactions within the academic and industrial communities. We identify the lack of systems-oriented standardization and durability as the main bottlenecks slowing down progress in the lab-to-prototype-to-market pathway of CO2E technologies. Inspired by electrolysis and fuel cell technologies, we outline protocols to advance fundamental research and aid catalyst development progress in performance, upscaling, and technology readiness level of CO2E.
Collapse
Affiliation(s)
- Blanca Belsa
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| | - Lu Xia
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| | - F Pelayo García de Arquer
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
8
|
Huang P, Xu X, Hao Y, Zhao H, Liang X, Yang Z, Yun J, Zhang J. Preparation of Ir/TiO 2 Composite Oxygen Evolution Catalyst and Load Analysis as Anode Catalyst Layer of Proton Exchange Membrane Water Electrolyzer. ACS OMEGA 2024; 9:34482-34492. [PMID: 39157124 PMCID: PMC11325496 DOI: 10.1021/acsomega.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Electrochemical water splitting is regarded as an emerging green and sustainable hydrogen production technology because of its zero-carbon process. However, the overall cost of anode materials in a proton exchange membrane water electrolyzer (PEMWE) is high due to the use of noble metal Ir. It has been proved that introducing carrier materials to reduce the content of Ir element is a feasible cost-reduction program. Here, the Ir/TiO2 composite material was prepared by the polyol method and used to catalyze the oxygen evolution reaction, which could effectively reduce the load amount of Ir in the membrane electrode assembly (MEA). In addition, the theoretical load of Ir was obtained by model calculation and the polarization curve test and electrochemical impedance spectroscopy (EIS) were used to discuss the relationship between Ir load in MEA and voltage loss and conductivity. The results show that MEA has lower voltage loss and better conductivity as the Ir load is in the range of 0.204-0.304 mgIr/cm2. Altogether, an effective method to reduce the Ir load of PEMWE anode was proposed under the premise comprehensive consideration of both catalyst design and MEA preparation in this work.
Collapse
Affiliation(s)
- Peng Huang
- China
Coal Research Institute, Beijing 100013, China
| | - Xiao Xu
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Yashi Hao
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Xin Liang
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Zuobo Yang
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Jimmy Yun
- Qingdao
Chuangqi New Energy Catalysis Technology Co., Ltd., Qingdao 266199, China
- School
of Chemical Engineering, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Jie Zhang
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
- Qingdao
Chuangqi New Energy Catalysis Technology Co., Ltd., Qingdao 266199, China
| |
Collapse
|
9
|
Liu H, Wang X, Lao K, Wen L, Huang M, Liu J, Hu T, Hu B, Xie S, Li S, Fang X, Zheng N, Tao HB. Optimizing Ionomer Distribution in Anode Catalyst Layer for Stable Proton Exchange Membrane Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402780. [PMID: 38661112 DOI: 10.1002/adma.202402780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The high cost of proton exchange membrane water electrolysis (PEMWE) originates from the usage of precious materials, insufficient efficiency, and lifetime. In this work, an important degradation mechanism of PEMWE caused by dynamics of ionomers over time in anode catalyst layer (ACL), which is a purely mechanical degradation of microstructure, is identified. Contrary to conventional understanding that the microstructure of ACL is static, the micropores are inclined to be occupied by ionomers due to the localized swelling/creep/migration, especially near the ACL/PTL (porous transport layer) interface, where they form transport channels of reactant/product couples. Consequently, the ACL with increased ionomers at PTL/ACL interface exhibit rapid and continuous degradation. In addition, a close correlation between the microstructure of ACL and the catalyst ink is discovered. Specifically, if more ionomers migrate to the top layer of the ink, more ionomers accumulate at the ACL/PEM interface, leaving fewer ionomers at the ACL/PTL interface. Therefore, the ionomer distribution in ACL is successfully optimized, which exhibits reduced ionomers at the ACL/PTL interface and enriches ionomers at the ACL/PEM interface, reducing the decay rate by a factor of three when operated at 2.0 A cm-2 and 80 °C. The findings provide a general way to achieve low-cost hydrogen production.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xinhui Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Kejie Lao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Linrui Wen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Meiquan Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Jiawei Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Tian Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Bo Hu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Shunji Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Shuirong Li
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Xiaoliang Fang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
10
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
11
|
Liu Y, Zhang M, Zhang C, Zhang H, Wang H. An IrRuO x catalyst supported by oxygen-vacant Ta oxide for the oxygen evolution reaction and proton exchange membrane water electrolysis. NANOSCALE 2024. [PMID: 38682643 DOI: 10.1039/d3nr06211b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The sustainable development of proton exchange membrane water electrolysis (PEMWE) requires a dramatic reduction in Ir while maintaining good catalytic activity and stability for the oxygen evolution reaction (OER). Herein, high-surface-area Ta2O5 with abundant oxygen vacancies is synthesized via a facile process, followed by anchoring IrRuOx onto a Ta2O5 support (IrRuOx/Ta2O5). IrRuOx and Ta2O5 work synergistically to afford excellent catalytic performance for the acidic OER. At 0.3 mgIr cm-2, IrRuOx/Ta2O5 only needed an overpotential of 235 mV to deliver 10 mA cm-2 in an acidic half cell and needed a cell potential of 1.91 V to deliver 2 A cm-2 in a PEM water electrolyzer. The characterization results show that doping Ir into RuOx significantly improves the stability and the electrochemically active surface area of RuOx. In IrRuOx/Ta2O5, IrRuOx interacts with Ta2O5 through more electron-rich Ir, indicating strong synergy between the catalyst and the support. The use of a metal oxide support improves the catalyst dispersion, optimizes electronic structures, facilitates mass transport, and stabilizes active sites. This work demonstrates that compositing Ir with less expensive Ru and anchoring catalyst nanoparticles on platinum-group metal (PGM)-free metal oxide supports represents one of the most promising strategies to reduce Ir loading and achieve an activity-stability trade-off. Such a strategy can benefit future catalyst design for other energy storage and conventional processes.
Collapse
Affiliation(s)
- Yanrong Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Meiqi Zhang
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Cong Zhang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Honghua Zhang
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Hao Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| |
Collapse
|
12
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
13
|
Kang SH, Jeong HY, Yoon SJ, So S, Choi J, Kim TH, Yu DM. Hydrocarbon-Based Composite Membrane Using LCP-Nonwoven Fabrics for Durable Proton Exchange Membrane Water Electrolysis. Polymers (Basel) 2023; 15:polym15092109. [PMID: 37177255 PMCID: PMC10181224 DOI: 10.3390/polym15092109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
A new hydrocarbon-based (HC) composite membrane was developed using liquid crystal polymer (LCP)-nonwoven fabrics for application in proton exchange membrane water electrolysis (PEMWE). A copolymer of sulfonated poly(arylene ether sulfone) with a sulfonation degree of 50 mol% (SPAES50) was utilized as an ionomer for the HC membranes and impregnated into the LCP-nonwoven fabrics without any surface treatment of the LCP. The physical interlocking structure between the SPAES50 and LCP-nonwoven fabrics was investigated, validating the outstanding mechanical properties and dimensional stability of the composite membrane in comparison to the pristine membrane. In addition, the through-plane proton conductivity of the composite membrane at 80 °C was only 15% lower than that of the pristine membrane because of the defect-free impregnation state, minimizing the decrease in the proton conductivity caused by the non-proton conductive LCP. During the electrochemical evaluation, the superior cell performance of the composite membrane was evident, with a current density of 5.41 A/cm2 at 1.9 V, compared to 4.65 A/cm2 for the pristine membrane, which can be attributed to the smaller membrane resistance of the composite membrane. From the results of the degradation rates, the prepared composite membrane also showed enhanced cell efficiency and durability during the PEMWE operations.
Collapse
Affiliation(s)
- Seok Hyeon Kang
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Hwan Yeop Jeong
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Sang Jun Yoon
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Soonyong So
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jaewon Choi
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tae-Ho Kim
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Duk Man Yu
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
14
|
Wang Y, Wang X, Wei H, Huang J, Yin L, Zhu W, Zhuang Z. Unveiling the Metal Incorporation Effect of Steady-Active FeP Hydrogen Evolution Nanocatalysts for Water Electrolyzer. Chemistry 2023; 29:e202202858. [PMID: 36331543 DOI: 10.1002/chem.202202858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Metal phosphides are promising noble metal-free electrocatalysts for hydrogen evolution reaction (HER), but they usually suffer from inferior stability and thus are far from the device applications. We reported a facile and controllable synthetic method to prepare metal-incorporated M-FeP nanoparticles (M=Cr, Mn, Co, Fe, Ni, Cu, and Mo) with the guide of the density functional theory (DFT). The evaluated HER activity sequence was consistent with the DFT predictions, and cobalt was revealed to be the appropriate dopant. With the optimization of the Co/Fe ratio, the Fe0.67 Co0.33 P/C only required overpotentials of 67 mV and 129 mV to obtain the cathodic current density of 10 and 100 mA cm-2, respectively. It maintained the initial activity in the 10 h stability test, surpassing the other Co-FeP/C catalysts. Ex situ experiments demonstrated that the decreased element leaching and the increased surface phosphide content contributed to the high stability of the Fe0.67 Co0.33 P/C. A proton exchange membrane water electrolyzer was assembled using the Fe0.67 Co0.33 P/C as the cathodic catalyst. It showed a current density of 0.8 A cm-2 at the applied voltage of 2.0 V and retained the initial activity in the 1000 cycles' stability test, suggesting the potential application of the catalysts.
Collapse
Affiliation(s)
- Yongsheng Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China.,State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyu Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China.,International Clean Energy Research Office, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Hailong Wei
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junling Huang
- International Clean Energy Research Office, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Likun Yin
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
15
|
Muroyama AP, Gubler L. Carbonate Regeneration Using a Membrane Electrochemical Cell for Efficient CO 2 Capture. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:16113-16117. [PMID: 36533100 PMCID: PMC9749021 DOI: 10.1021/acssuschemeng.2c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Indexed: 06/17/2023]
Abstract
The use of atmospheric CO2 as a chemical feedstock is a promising way to decarbonize the chemical and transportation sectors, which currently rely heavily on fossil fuels. This transition demands new technologies to reduce the energy required to capture and separate CO2. Here, we develop and demonstrate an alternative method of carbonate solution regeneration using an anion exchange membrane electrochemical cell. This process simultaneously regenerates the CO2 capture solution on the feed side, while enriching a stream of H2 with CO2 on the permeate side of the cell. Preliminary results show a CO2 transport faradaic efficiency of 50% (100% CO3 2- transport) when supplying a pure K2CO3 solution at current densities up to 60 mA·cm-2. A small cathode gap benefited cell operation by preventing membrane transport of OH-, although with an increased ohmic resistance. This represents a step forward in the application of electrochemistry to drive processes that are critical to CO2 valorization.
Collapse
Affiliation(s)
| | - Lorenz Gubler
- Electrochemistry
Laboratory, Paul Scherrer Institut, 5232Villigen PSI, Switzerland
| |
Collapse
|
16
|
Devadas B, Prokop M, Duraisamy S, Bouzek K. Poly(amidoamine) dendrimer-protected Pt nanoparticles as a catalyst with ultra-low Pt loading for PEM water electrolysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Recent Trends in Electrochemical Catalyst Design for Hydrogen Evolution, Oxygen Evolution, and Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Zappia MI, Bellani S, Zuo Y, Ferri M, Drago F, Manna L, Bonaccorso F. High-current density alkaline electrolyzers: The role of Nafion binder content in the catalyst coatings and techno-economic analysis. Front Chem 2022; 10:1045212. [PMID: 36385988 PMCID: PMC9649444 DOI: 10.3389/fchem.2022.1045212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 08/06/2023] Open
Abstract
We report high-current density operating alkaline (water) electrolyzers (AELs) based on platinum on Vulcan (Pt/C) cathodes and stainless-steel anodes. By optimizing the binder (Nafion ionomer) and Pt mass loading (mPt) content in the catalysts coating at the cathode side, the AEL can operate at the following (current density, voltage, energy efficiency -based on the hydrogen higher heating value-) conditions (1.0 A cm-2, 1.68 V, 87.8%) (2.0 A cm-2, 1.85 V, 79.9%) (7.0 A cm-2, 2.38 V, 62.3%). The optimal amount of binder content (25 wt%) also ensures stable AEL performances, as proved through dedicated intermittent (ON-OFF) accelerated stress tests and continuous operation at 1 A cm-2, for which a nearly zero average voltage increase rate was measured over 335 h. The designed AELs can therefore reach proton-exchange membrane electrolyzer-like performance, without relying on the use of scarce anode catalysts, namely, iridium. Contrary to common opinions, our preliminary techno-economic analysis shows that the Pt/C cathode-enabled high-current density operation of single cell AELs can also reduce substantially the impact of capital expenditures (CAPEX) on the overall cost of the green hydrogen, leading CAPEX to operating expenses (OPEX) cost ratio <10% for single cell current densities ≥0.8 A cm-2. Thus, we estimate a hydrogen production cost as low as $2.06 kgH2 -1 for a 30 years-lifetime 1 MW-scale AEL plant using Pt/C cathodes with mPt of 150 μg cm-2 and operating at single cell current densities of 0.6-0.8 A cm-2. Thus, Pt/C cathodes enable the realization of AELs that can efficiently operate at high current densities, leading to low OPEX while even benefiting the CAPEX due to their superior plant compactness compared to traditional AELs.
Collapse
Affiliation(s)
| | | | - Yong Zuo
- Nanochemistry Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Michele Ferri
- Nanochemistry Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Filippo Drago
- Nanochemistry Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Genova, Italy
| | | |
Collapse
|
19
|
Kang Z, Fan Z, Zhang F, Zhang Z, Tian C, Wang W, Li J, Shen Y, Tian X. Studying Performance and Kinetic Differences between Various Anode Electrodes in Proton Exchange Membrane Water Electrolysis Cell. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7209. [PMID: 36295277 PMCID: PMC9607557 DOI: 10.3390/ma15207209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The electrode, as one of the most critical components in a proton exchange membrane water electrolysis (PEMWE) cell for hydrogen production, has a significant impact on cell performance. Electrodes that are fabricated via various techniques may exhibit different morphologies or properties, which might change the kinetics and resistances of the PEMWE. In this study, we have successfully fabricated several electrodes by different techniques, and the effects of electrode coating methods (ultrasonic spray, blade coating, and rod coating), hot press, and decal transfer processes are comprehensively investigated. The performance differences between various electrodes are due to kinetic or high frequency resistance changes, while the influences are not significant, with the biggest deviation of about 26 mV at 2.0 A cm-2. In addition, the effects of catalyst ink compositions, including ionomer to catalyst ratio (0.1 to 0.3), water to alcohol ratio (1:1 to 3:1), and catalyst weight percentage (10% to 30%), are also studied, and the electrodes' performance variations are less than 10 mV at 2.0 A cm-2. The results show that the PEMWE electrode has superior compatibility and redundancy, which demonstrates the high flexibility of the electrode and its applicability for large-scale manufacturing.
Collapse
Affiliation(s)
- Zhenye Kang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Zihao Fan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Fan Zhang
- Hainan New Energy Investment Co., Ltd., State Power Investment Corporation, Limited (Hainan), Haikou 570100, China
| | - Zhenyu Zhang
- Hainan New Energy Investment Co., Ltd., State Power Investment Corporation, Limited (Hainan), Haikou 570100, China
| | - Chao Tian
- Hainan New Energy Investment Co., Ltd., State Power Investment Corporation, Limited (Hainan), Haikou 570100, China
| | - Weina Wang
- Hainan New Energy Investment Co., Ltd., State Power Investment Corporation, Limited (Hainan), Haikou 570100, China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
20
|
Huang B, Xu H, Jiang N, Wang M, Huang J, Guan L. Tensile-Strained RuO 2 Loaded on Antimony-Tin Oxide by Fast Quenching for Proton-Exchange Membrane Water Electrolyzer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201654. [PMID: 35717677 PMCID: PMC9376819 DOI: 10.1002/advs.202201654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/22/2022] [Indexed: 05/19/2023]
Abstract
Future energy demands for green hydrogen have fueled intensive research on proton-exchange membrane water electrolyzers (PEMWE). However, the sluggish oxygen evolution reaction (OER) and highly corrosive environment on the anode side narrow the catalysts to be expensive Ir-based materials. It is very challenging to develop cheap and effective OER catalysts. Herein, Co-hexamethylenetetramine metal-organic framework (Co-HMT) as the precursor and a fast-quenching method is employed to synthesize RuO2 nanorods loaded on antimony-tin oxide (ATO). Physical characterizations and theoretical calculations indicate that the ATO can increase the electrochemical surface areas of the catalysts, while the tensile strains incorporated by quenching can alter the electronic state of RuO2 . The optimized catalyst exhibits a small overpotential of 198 mV at 10 mA cm-2 for OER, and keeps almost unchanged after 150 h chronopotentiometry. When applied in a real PEMWE assembly, only 1.51 V is needed for the catalyst to reach a current density of 1 A cm-2 .
Collapse
Affiliation(s)
- Bing Huang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000China
- Collage of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health EngineeringTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Nannan Jiang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000China
- Collage of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Minghao Wang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000China
| | - Jianren Huang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000China
| |
Collapse
|
21
|
Li D, Chu X, Liu L. 绿氢领域电解水制氢聚合物膜材料研究进展及发展建议. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Review of the Current Status of Ammonia-Blended Hydrogen Fuel Engine Development. ENERGIES 2022. [DOI: 10.3390/en15031023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As fossil fuels continue to be extracted and used, issues such as environmental pollution and energy scarcity are surfacing. For the transportation industry, the best way to achieve the goal of “carbon neutrality” is to research efficient power systems and develop new alternative fuels. As the world’s largest product of chemicals, ammonia is a new renewable fuel with good combustion energy. It can be used as an alternative fuel to reduce carbon emissions because of its proven production process, low production and transportation costs, safe storage, the absence of carbon-containing compounds in its emissions, and its future recyclability. This paper firstly introduces the characteristics of ammonia fuel engine and its problems; then it summarizes the effects of various ammonia-blended fuels on the combustion and emission characteristics of the engine from the combustion problem of ammonia-blended engine; then the fuel storage of ammonia-blended hydrogen is discussed, the feasibility of hydrogen production instead of hydrogen storage is introduced.
Collapse
|