1
|
Wu W, Bao L, Chen X, Gong X, Wu M. Facile Fabrication of Photothermal Superhydrophobic Copper Foam Using the Ultrafast Electroplating Approach. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12973-12983. [PMID: 39961708 DOI: 10.1021/acsami.5c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Photothermal superhydrophobic coatings are ideal materials for high-viscosity crude oil adsorption or treatment. However, how to quickly prepare large-scale photothermal superhydrophobic coatings for real application is still a challenge. Here, we report that photothermal superhydrophobic copper foam with a water contact angle of 159.9° can be quickly prepared using a low-cost and easy-to-manipulate electroplating method within only 5 min, presenting a facile and fast approach to fabricate large-scale photothermal superhydrophobic materials. The prepared superhydrophobic copper foam showed good physical and chemical stability. Importantly, the superhydrophobic copper foam had good oil spill adsorption characteristics, and the adsorption capacity and efficiency for n-hexane (<ρwater) reached 6.48 g/g and 99%, respectively. The adsorption capacity and efficiency for dichloromethane (>ρwater) reached 9.42 g/g and 99.3%, respectively. In addition, the superhydrophobic copper foam possessed a good photothermal property, enabling it with the ability of crude oil adsorption, and each gram of copper foam could adsorb 11.326 g of crude oil. The excellent performance of this photothermal superhydrophobic copper foam prepared by the ultrafast electroplating approach should play a great role in the treatment of marine crude oil leakage pollution.
Collapse
Affiliation(s)
- Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Li Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuefeng Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Wang Z, Qu G, Ren Y, Chen X, Wang J, Lu P. Study on Intelligent Bionic Superhydrophobic Material and its Oil-Water Separation Mechanism. Chemistry 2025; 31:e202402673. [PMID: 39575890 DOI: 10.1002/chem.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Indexed: 11/30/2024]
Abstract
Marine oil spills and improper disposal of daily oil usage have posed significant threat to ecological environments and human health due to rapid industrial development. In this study, an environmentally friendly, simple process and high-performance Fe3O4@SiO2@Polymethyl methacrylate (PMMA)-based smart bionic superhydrophobic oil-absorbing material was developed for effectively collecting and removing oil pollutants from water. By studying the effects of Fe3O4 particle size, polydimethylsiloxane (PDMS) concentration, and heating time on the superhydrophobicity of the materials, the directional regulation of superhydrophobicity and oil-water separation performance of Fe3O4@SiO2@PMMA@PDMS materials was realized. The results showed that the material exhibited optimal performance when the Fe3O4 particle size combination was 20/500 nm/1 μm, the mass ratio of PDMS to Fe3O4@SiO2@PMMA was 7 : 1, and it was heated at 350°C for 1 minute. The coating achieved an apparent contact angle (APCA) of 158.7° and a rolling angle as low as 4.9°. This coating not only remained superhydrophobic after a 21 m abrasion test and 288 h immersion in acid, alkali, salt, and high-temperature solutions, but also efficiently separated oil-water mixtures and water-in-oil emulsions, and the separation efficiency for oil-water mixtures of trichloromethane, dichloromethane and bromomethane was over 99.78 %, and that for water-in-oil emulsions was over 98.34 %. Furthermore, the superhydrophobic magnetic polyurethane (SFPU) sponge prepared using Fe3O4@SiO2@PMMA not only exhibited excellent oil-absorbing capacity (11-28 g/g), but also realized precise oil absorption at multiple sites by magnetic conduction. In the actual oily wastewater test, the oil-water separation efficiency of the sponge reached 90.58 % and the oil absorption capacity reached 17.03 g/g. This efficient oil-water separation performance as well as oil adsorption capacity comes from the fact that the nonpolar molecules (e. g., -CH3) generated by the hydrolysis of PDMS can produce van der Waals adsorption with oil substances, while the excellent micro-nanostructure of the coating surface greatly increases the contact area between oil droplets and the coating, which can make them adsorb or pass through quickly. This multifunctional coating and sponge had immense application potential in fields like offshore oil spill treatment, organic pollution control in water bodies.
Collapse
Affiliation(s)
- Zuoliang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, People's Republic of China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, People's Republic of China
| | - Yuanchuan Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, People's Republic of China
| | - Xiuping Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, People's Republic of China
| | - Jun Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, People's Republic of China
| | - Ping Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, People's Republic of China
| |
Collapse
|
3
|
Fraissinet S, Mancini E, Funiati C, Martino C, De Benedetto GE, Girelli CR, Fanizzi FP, Belmonte G, Piraino S. New Plastitar Record for the Mediterranean Sea: Characterization of Plastics and Tar from the Salento Peninsula (Ionian Sea). TOXICS 2024; 13:13. [PMID: 39853013 PMCID: PMC11768737 DOI: 10.3390/toxics13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
The various forms of anthropogenic pollution are regarded as a serious threat to marine coastal areas. The overproduction and mismanagement of petroleum derivatives, such as tar and plastics, have resulted in a significant correlation between these two pollutants. The aggregation of tar, microplastics (MPs), and natural materials can create plastitar blocks, which are common in coastal areas. These raise concern about the undeniable negative impact on the marine ecosystem and the associated biota, and serve as a recognizable and understandable indication of environmental decline. Here, the composition of the 11 plastitar blocks collected on the Ionian side of the Apulia region (Italy) was characterized both in tar and plastics using nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy, respectively. Of the 250 particles extracted from the tar, 208 were identified as plastics, predominantly Polyethylene. The majority of these were in the form of pellets (90%), with fragments accounting for 5% and films and filaments representing the remaining 5%. This study provides new data that can be used to enhance the understanding of the distribution and baseline information about this novel form of pollution in Italian waters.
Collapse
Affiliation(s)
- Silvia Fraissinet
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (S.F.); (C.R.G.); (F.P.F.); (G.B.); (S.P.)
| | - Emanuele Mancini
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (S.F.); (C.R.G.); (F.P.F.); (G.B.); (S.P.)
- National Biodiversity Future Center (NBFC), 90100 Palermo, Italy
| | - Chiara Funiati
- Academy of Fine Arts, Via Libertini, 3, 73100 Lecce, Italy;
| | - Caterina Martino
- Department of Earth and Sea Sciences (DiSTeM), University of Palermo, 90100 Palermo, Italy;
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, 73100 Lecce, Italy;
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (S.F.); (C.R.G.); (F.P.F.); (G.B.); (S.P.)
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (S.F.); (C.R.G.); (F.P.F.); (G.B.); (S.P.)
| | - Genuario Belmonte
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (S.F.); (C.R.G.); (F.P.F.); (G.B.); (S.P.)
| | - Stefano Piraino
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (S.F.); (C.R.G.); (F.P.F.); (G.B.); (S.P.)
- National Biodiversity Future Center (NBFC), 90100 Palermo, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196 Rome, Italy
| |
Collapse
|
4
|
Wu W, Miao S, Gong X. Stable and Durable Superhydrophobic Cotton Fabrics Prepared via a Simple 1,4-Conjugate Addition Reaction for Ultrahigh Efficient Oil-Water Separation. Macromol Rapid Commun 2024; 45:e2400292. [PMID: 38837517 DOI: 10.1002/marc.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Superhydrophobic materials used for oil-water separation have received wide attention. However, the simple and low-cost strategy for making durable superhydrophobic materials remains a major challenge. Here, this work reports that stable and durable superhydrophobic cotton fabrics can be prepared using a simple two-step impregnation process. Silica nanoparticles are surface modified by hydrolysis condensation of 3-aminopropyltrimethoxysilane (APTMS). 1,4-conjugate addition reaction between the acrylic group of cross-linking agent pentaerythritol triacrylate (PETA) and the amino group of octadecylamine (ODA) forms a covalent cross-linked rough network structure. The long hydrophobic chain of ODA makes the cotton fabric exhibit excellent superhydrophobic properties, and the water contact angle (WCA) of the fabric surface reaches 158°. The modified cotton fabric has good physical and chemical stability, self-cleaning, and anti-fouling. At the same time, the modified fabric shows excellent oil/water separation efficiency (98.16% after 20 cycles) and ultrahigh separation flux (15413.63 L m-2 h-1) due to its superhydrophobicity, superoleophilicity, and inherent porous structure. The method provides a broad prospect in the future diversification applications of oil/water separation and oil spill cleaning.
Collapse
Affiliation(s)
- Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shiwei Miao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
- Hepu Research Center for Silicate Materials Industry Technology, 27 Huanzhu Avenue, Hepu county, Beihai, 536100, China
| |
Collapse
|
5
|
Wang Y, Sun S, Liu Q, Su Y, Zhang H, Zhu M, Tang F, Gu Y, Zhao C. Characteristic microbiome and synergistic mechanism by engineering agent MAB-1 to evaluate oil-contaminated soil biodegradation in different layer soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10802-10817. [PMID: 38212565 DOI: 10.1007/s11356-024-31891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Bioremediation is a sustainable and pollution-free technology for crude oil-contaminated soil. However, most studies are limited to the remediation of shallow crude oil-contaminated soil, while ignoring the deeper soil. Here, a high-efficiency composite microbial agent MAB-1 was provided containing Bacillus (naphthalene and pyrene), Acinetobacter (cyclohexane), and Microbacterium (xylene) to be synergism degradation of crude oil components combined with other treatments. According to the crude oil degradation rate, the up-layer (63.64%), middle-layer (50.84%), and underlying-layer (54.21%) crude oil-contaminated soil are suitable for bioaugmentation (BA), biostimulation (BS), and biostimulation+bioventing (BS+BV), respectively. Combined with GC-MS and carbon number distribution analysis, under the optimal biotreatment, the degradation rates of 2-ring and 3-ring PAHs in layers soil were about 70% and 45%, respectively, and the medium and long-chain alkanes were reduced during the remediation. More importantly, the relative abundance of bacteria associated with crude oil degradation increased in each layer after the optimal treatment, such as Microbacterium (2.10-14%), Bacillus (2.56-12.1%), and Acinetobacter (0.95-12.15%) in the up-layer soil; Rhodococcus (1.5-6.9%) in the middle-layer soil; and Pseudomonas (3-5.4%) and Rhodococcus (1.3-13.2%) in the underlying-layer soil. Our evaluation results demonstrated that crude oil removal can be accelerated by adopting appropriate bioremediation approach for different depths of soil, providing a new perspective for the remediation of actual crude oil-contaminated sites.
Collapse
Affiliation(s)
- Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China.
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| |
Collapse
|
6
|
Wu Y, Lu G, Xu P, Zhang TC, He H, Yuan S. Hierarchical Ni-Mn LDHs@CuC 2O 4 Nanosheet Arrays-Modified Copper Mesh: A Dual-Functional Material for Enhancing Oil/Water Separation and Supercapacitors. Int J Mol Sci 2023; 24:14085. [PMID: 37762387 PMCID: PMC10531716 DOI: 10.3390/ijms241814085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The pursuit of superhydrophilic materials with hierarchical structures has garnered significant attention across diverse application domains. In this study, we have successfully crafted Ni-Mn LDHs@CuC2O4 nanosheet arrays on a copper mesh (CM) through a synergistic process involving chemical oxidation and hydrothermal deposition. Initially, CuC2O4 nanosheets were synthesized on the copper mesh, closely followed by the growth of Ni-Mn LDHs nanosheets, culminating in the establishment of a multi-tiered surface architecture with exceptional superhydrophilicity and remarkable underwater superoleophobicity. The resultant Ni-Mn LDHs@CuC2O4 CM membrane showcased an unparalleled amalgamation of traits, including superhydrophilicity, underwater superoleophobicity, and the ability to harness photocatalytic forces for self-cleaning actions, making it an advanced oil-water separation membrane. The membrane's performance was impressive, manifesting in a remarkable water flux range (70 kL·m-2·h-1) and an efficient oil separation capability for both oil/water mixture and surfactant-stabilized emulsions (below 60 ppm). Moreover, the innate superhydrophilic characteristics of the membrane rendered it a prime candidate for deployment as a supercapacitor cathode material. Evidenced by a capacitance of 5080 mF·cm-2 at a current density of 6 mA cm-2 in a 6 M KOH electrolyte, the membrane's potential extended beyond oil-water separation. This work not only introduces a cutting-edge oil-water separation membrane and supercapacitor electrode but also offers a promising blueprint for the deliberate engineering of hierarchical structure arrays to cater to a spectrum of related applications.
Collapse
Affiliation(s)
- Yue Wu
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| | - Guangyuan Lu
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| | - Ping Xu
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| | - Tian C. Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA;
| | - Huaqiang He
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| |
Collapse
|
7
|
Durand M, Touchette D, Chen YJ, Magnuson E, Wasserscheid J, Greer CW, Whyte LG, Altshuler I. Effects of marine diesel on microbial diversity and activity in high Arctic beach sediments. MARINE POLLUTION BULLETIN 2023; 194:115226. [PMID: 37442053 DOI: 10.1016/j.marpolbul.2023.115226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Global warming induced sea ice loss increases Arctic maritime traffic, enhancing the risk of ecosystem contamination from fuel spills and nutrient loading. The impact of marine diesel on bacterial metabolic activity and diversity, assessed by colorimetric assay, 16S rRNA and metagenomic sequencing, of Northwest Passage (Arctic Ocean) beach sediments was assessed with nutrient amendment at environmentally relevant temperatures (5 and 15 °C). Higher temperature and nutrients stimulated microbial activity, while diesel reduced it, with metabolism inhibited at and above 0.01 % (without nutrients) and at 1 % (with nutrients) diesel inclusions. Diesel exposure significantly decreased microbial diversity and selected for Psychrobacter genus. Microbial hydrocarbon degradation, organic compound metabolism, and exopolysaccharide production gene abundances increased under higher diesel concentrations. Metagenomic binning recovered nine MAGs/bins with hydrocarbon degradation genes. We demonstrate a nutrients' rescue-type effect in diesel contaminated microbial communities via enrichment of microorganisms with stress response, aromatic compound, and ammonia assimilation metabolisms.
Collapse
Affiliation(s)
- Margaux Durand
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada; Université Paris-Saclay, INRAE, AgroParisTech, Paris-Saclay Applied Economics, 91120 Palaiseau, France
| | - David Touchette
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; River Ecosystems Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ya-Jou Chen
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Elisse Magnuson
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Jessica Wasserscheid
- Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada
| | - Charles W Greer
- Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada
| | - Lyle G Whyte
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Ianina Altshuler
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada; MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Duke BM, Emery KA, Dugan JE, Hubbard DM, Joab BM. Uptake of polycyclic aromatic hydrocarbons via high-energy water accommodated fraction (HEWAF) by beach hoppers (Amphipoda, Talitridae) using different sandy beach exposure pathways. MARINE POLLUTION BULLETIN 2023; 190:114835. [PMID: 37023547 DOI: 10.1016/j.marpolbul.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Sandy beach ecosystems are highly dynamic coastal environments subject to a variety of anthropogenic pressures and impacts. Pollution from oil spills can damage beach ecosystems through the toxic effects of hydrocarbons on organisms and the disruptive nature of large-scale clean-up practices. On temperate sandy beaches, intertidal talitrid amphipods are primary consumers of macrophyte wrack subsidies and serve as prey for higher trophic level consumers, such as birds and fish. These integral organisms of the beach food web can be exposed to hydrocarbons by direct contact with oiled sand through burrowing and by the consumption of oiled wrack. We experimentally evaluated the primary polycyclic aromatic hydrocarbon (PAH) exposure pathway via high-energy water accommodated fraction (HEWAF) for a species of talitrid amphipod (Megalorchestia pugettensis). Our results indicated that tissue PAH concentrations in talitrids were six-fold higher in treatments that included oiled sand compared to those with only oiled kelp and the controls.
Collapse
Affiliation(s)
- Bryand M Duke
- National Oceanic and Atmospheric Administration, St. Petersburg, FL 33701, United States of America.
| | - Kyle A Emery
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America; Department of Geography, UC Los Angeles, Los Angeles, CA 90095, United States of America
| | - Jenifer E Dugan
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - David M Hubbard
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Bruce M Joab
- Office of Spill Prevention and Response (OSPR), California Department of Fish and Wildlife, 95605, United States of America
| |
Collapse
|
9
|
Editorial overview: Hydrocarbon spills in coastal systems. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Luo Q, Peng J, Chen X, Zhang H, Deng X, Jin S, Zhu H. Recent Advances in Multifunctional Mechanical-Chemical Superhydrophobic Materials. Front Bioeng Biotechnol 2022; 10:947327. [PMID: 35910015 PMCID: PMC9326238 DOI: 10.3389/fbioe.2022.947327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, biology-inspired superhydrophobic technology has attracted extensive attention and has been widely used in self-cleaning, anti-icing, oil-water separation, and other fields. However, the poor durability restricts its application in practice; thus, it is urgent to systematically summarize it so that scientists can guide the future development of this field. Here, in this review, we first elucidated five kinds of typical superhydrophobic models, namely, Young's equation, Wenzel, Cassie-Baxter, Wenzel-Cassie, "Lotus," and "Gecko" models. Then, we summarized the improvement in mechanical stability and chemical stability of superhydrophobic surface. Later, the durability test methods such as mechanical test methods and chemical test methods are discussed. Afterwards, we displayed the applications of multifunctional mechanical-chemical superhydrophobic materials, namely, anti-fogging, self-cleaning, oil-water separation, antibacterial, membrane distillation, battery, and anti-icing. Finally, the outlook and challenge of mechanical-chemical superhydrophobic materials are highlighted.
Collapse
Affiliation(s)
- Qinghua Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Jiao Peng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Xiaoyu Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Hui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Xia Deng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Hai Zhu
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| |
Collapse
|