1
|
Chanthon N, Ngaosuwan K, Kiatkittipong W, Wongsawaeng D, Mens W, Weeranoppanant N, Soottitantawat A, Charoensuppanimit P, Rokhum SL, Assabumrungrat S. Intensified modified fruit blender reactor for emulsifier synthesis via glycerol esterification of free fatty acids at mild conditions. BIORESOURCE TECHNOLOGY 2025; 429:132510. [PMID: 40216165 DOI: 10.1016/j.biortech.2025.132510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
A modified fruit blender reactor (M-FBR) was applied to synthesize monoacylglycerols (MAGs) and diacylglycerols (DAGs) through biphasic esterification of glycerol (Gly) with oleic acid (OA). The high stirring speed in the M-FBR provided a high mixing efficiency to generate significantly small droplets and cavitation compared to those in conventional processes. The increased interfacial surface area and distribution of dispersed phases into continuous phases promote momentum, heat, and mass transfer to improve mixing efficiency and high glycerol esterification rate. The reaction time and methanesulfonic acid (MSA) concentration were the most significant factors, affecting both OA conversion and MAG-DAG yields, while the Gly/OA molar ratio exhibited a less significant effect. The highest yields for MAG-DAG in 60 min using the M-FBR were 80.4 and 82.9% at 110 and 130 °C, respectively. The values of yield efficiency of M-FBR were 67.3 x 10-4 g/J at 110 °C and 69.8 x 10-4 g/J at 130 °C, which were up to 25-fold higher than that of the mechanical stirred reactor. The M-FBR generated small glycerol droplet (46-56 µm) to enhance the glycerol solubility in the OA phase, allowing the MAG and DAG synthesis to be conducted at a lower Gly/OA molar ratio. This offered higher selectivities of MAG and DAG and prevent undesirable TAG. Additionally, the simplified evolution of MAG-DAG formation during the glycerol esterification of OA was elucidated by ATR-FTIR spectroscopy.
Collapse
Affiliation(s)
- Narita Chanthon
- Center of Excellence on Catalysis and Catalytic Reaction, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanokwan Ngaosuwan
- Chemical Engineering Division, Faculty of Engineering, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Doonyapong Wongsawaeng
- Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Weerinda Mens
- Department of Chemical and Materials Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | - Nopphon Weeranoppanant
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Longhard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Apinan Soottitantawat
- Center of Excellence in Particle and Materials Processing Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongtorn Charoensuppanimit
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Control and Systems Engineering Research Laboratory, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Suttichai Assabumrungrat
- Center of Excellence on Catalysis and Catalytic Reaction, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Virk MS, Virk MA, Liang Q, Sun Y, Zhong M, Tufail T, Rashid A, Qayum A, Rehman A, Ekumah JN, Wang J, Zhao Y, Ren X. Enhancing storage and gastroprotective viability of Lactiplantibacillus plantarum encapsulated by sodium caseinate-inulin-soy protein isolates composites carried within carboxymethyl cellulose hydrogel. Food Res Int 2024; 187:114432. [PMID: 38763680 DOI: 10.1016/j.foodres.2024.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Probiotics are subjected to various edible coatings, especially proteins and polysaccharides, which serve as the predominant wall materials, with ultrasound, a sustainable green technology. Herein, sodium caseinate, inulin, and soy protein isolate composites were produced using multi-frequency ultrasound and utilized to encapsulateLactiplantibacillus plantarumto enhance its storage, thermal, and gastrointestinal viability. The physicochemical analyses revealed that the composites with 5 % soy protein isolate treated with ultrasound at 50 kHz exhibited enough repulsion forces to maintain stability, pH resistance, and the ability to encapsulate larger particles and possessed the highest encapsulation efficiency (95.95 %). The structural analyses showed changes in the composite structure at CC, CH, CO, and amino acid residual levels. Rheology, texture, and water-holding capacity demonstrated the production of soft hydrogels with mild chewing and gummy properties, carried the microcapsules without coagulation or sedimentation. Moreover, the viability attributes ofL. plantarumevinced superior encapsulation, protecting them for at least eight weeks and against heat (63 °C), reactive oxidative species (H2O2), and GI conditions.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | | | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; University Institute of Diet and Nutritional Sciences, The University of Lahore, 54000, Pakistan
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yongjun Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
3
|
Kapoor R, Karabulut G, Mundada V, Feng H. Non-thermal ultrasonic contact drying of pea protein isolate suspensions: Effects on physicochemical and functional properties. Int J Biol Macromol 2023; 253:126816. [PMID: 37690656 DOI: 10.1016/j.ijbiomac.2023.126816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Pea protein isolate (PPI) is a popular plant-based ingredient, typically produced through alkaline-isoelectric precipitation and thermal drying. However, high temperatures and long drying times encountered in thermal drying can denature PPI and cause loss of functionality. This study investigated the use of an innovative ultrasonic dryer (US-D) at 30 °C for drying PPI suspensions, compared to conventional hot air drying (HA-D) at 60 °C. US-D led to an increase in the drying rate and correspondingly reduced the drying time by 55 %, when compared to HA-D. The average effective moisture diffusivity in the US-D process was 325 % higher than that in the HA-D process. The resulting PPI exhibited higher solubility, emulsification, and foaming properties than HA-D PPI, with a unique surface morphology and higher surface area. This study demonstrated that drying with acoustic energy is a promising approach for producing dried plant protein ingredients with improved functional properties, reduced processing time, and increased production efficiency.
Collapse
Affiliation(s)
- Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Gulsah Karabulut
- Sakarya University, Faculty of Engineering, Department of Food Engineering, 54187, Sakarya, Turkiye
| | - Vedant Mundada
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
4
|
Valinezhad N, Talebi AF, Alamdari S. Biosynthesize, physicochemical characterization and biological investigations of chitosan-Ferula gummosa essential oil (CS-FEO) nanocomposite. Int J Biol Macromol 2023; 241:124503. [PMID: 37085080 DOI: 10.1016/j.ijbiomac.2023.124503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
The bioavailability, solubility, stability, and evaporation rate of essential oils can all be improved by using appropriate nanocarriers. This study describes the simple biosynthesize, physicochemical, optical, and biological activity of Chitosan-Ferula gummosa essential oil (CS-FEO) nanocomposite. The prepared nanocomposite was evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) mapping, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV-vis and photoluminescence (PL) techniques. The XRD investigation showed that crystallinity indexes of CS-FEO nanocomposite were lower than that of the pure CS and higher than nano-CS. According to SEM/TEM images, a spherical shape with a particle size distribution of around 50-250 nm for nanocomposite was obtained. PL measurement exhibited the addition of FEO caused a strong red emission. GC-MS analysis showed 40 various components in FEO. The antibacterial activity was studied using broth micro-dilution, disc diffusion, colony counts, and well agar diffusion methods against Gram-positive and Gram-negative bacteria. The results revealed that CS-FEO has stronger antibacterial activities than pure CS. It was also observed that the combined use of CS with FEO resulted in synergistic effects against studied bacteria. Obtained results imply that the CS-FEO may provide a new outlook in biomedical applications.
Collapse
Affiliation(s)
- Negin Valinezhad
- Department of Microbial Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Ahmad Farhad Talebi
- Department of Microbial Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| | - Sanaz Alamdari
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| |
Collapse
|
5
|
Hebishy E, Collette L, Iheozor‐Ejiofor P, Onarinde B. Stability and antimicrobial activity of lemongrass essential oil in nanoemulsions produced by high‐intensity ultrasounds and stabilized by soy lecithin, hydrolysed whey proteins, gum Arabic or their ternary admixture. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Essam Hebishy
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Laurine Collette
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
- IUT‐Dijon‐Auxerre, Department of BioEngineering Dijon Cedex France
| | - Pamela Iheozor‐Ejiofor
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Bukola Onarinde
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| |
Collapse
|
6
|
Bocker R, Silva EK. Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2021.100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
7
|
Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, José de Andrade C, Ayala Valencia G, Rodrigues Monteiro A. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int 2022; 153:110929. [DOI: 10.1016/j.foodres.2021.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022]
|
8
|
Advances and innovations associated with the use of acoustic energy in food processing: An updated review. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Mixing Oil-Based Microencapsulation of Garlic Essential Oil: Impact of Incorporating Three Commercial Vegetable Oils on the Stability of Emulsions. Foods 2021; 10:foods10071637. [PMID: 34359508 PMCID: PMC8305996 DOI: 10.3390/foods10071637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
The active components in garlic essential oil are easily degradable, which limits its application in the food industry. Vegetable oils (VOs) were used to improve the stability of garlic essential oil (GEO) emulsion. The volatile compounds of GEO and its mixtures with vegetable oils (VOs), including corn oil (CO), soybean oil (SO), and olive oil (OO) indicated that GEO-VO mixtures had a higher percentage of Diallyl disulfide and Diallyl trisulfide than pure GEO. Adding an appropriate amount of VOs promoted the GEO emulsion (whey protein concentrate and inulin as the wall materials) stability in order of CO > SO > OO. Evaluation of the encapsulation efficiency, controlled release, and antimicrobial activity of GEO-VO microcapsules showed that the GEO was successfully entrapped and slowly released with active antibacterial activities on both E. coli and S. aureus. Collectively, these results implied that VOs, especially for 20% CO, improved the stability of GEO emulsions and the encapsulation efficiency of GEO microcapsules. The mechanism might be related to (1) the regulating effect of density difference between oil and water phases on prevention to gravitational separation, (2) the promotion to the compatibility of GEO and VOs to inhibit the phase separation caused by Ostwald ripening.
Collapse
|
10
|
Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res 2021; 11:1323-1339. [PMID: 33761101 PMCID: PMC7989687 DOI: 10.1007/s13346-021-00963-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Ultrasound-responsive polymeric materials have received a tremendous amount of attention from scientists for several decades. Compared to other stimuli-responsive materials (such as UV-, thermal-, and pH-responsive materials), these smart materials are more applicable since they allow more efficient drug delivery and targeted treatment by fairly non-invasive means. This review describes the recent advances of such ultrasound-responsive polymer-based drug delivery systems and illustrates various applications. More specifically, the mechanism of ultrasound-induced drug delivery, typical formulations, and biomedical applications (tumor therapy, disruption of blood-brain barrier, fighting infectious diseases, transdermal drug delivery, and enhanced thrombolysis) are summarized. Finally, a perspective on the future research directions for the development of ultrasound-responsive polymeric materials to facilitate a clinical translation is given.
Collapse
Affiliation(s)
- Ping Wei
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804, China. .,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
11
|
A techno-economic evaluation for the genipin recovery from Genipa americana L. employing non-thermal and thermal high-intensity ultrasound treatments. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Belgheisi S, Motamedzadegan A, Milani JM, Rashidi L, Rafe A. Impact of ultrasound processing parameters on physical characteristics of lycopene emulsion. Journal of Food Science and Technology 2021; 58:484-493. [PMID: 33568842 DOI: 10.1007/s13197-020-04557-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022]
Abstract
Using ultrasound technology for obtaining O/W lycopene emulsions needs analyzing the parameters for the enhanced application. To this end, O/W lycopene emulsions (30:70) were processed using ultrasound with powers of 240 W and 360 W in 5, 10, and 15 min. Afterward, the poly dispersity index, droplet size, ζ-potential, turbidity, phase separation, lycopene concentration, rheological behavior, surface tension, and morphology of emulsions was investigated. The experimental results showed good emulsifying characteristics with respect to droplet size and ζ-potential. If the mean values of the droplet size were significantly reduced and the ζ-potential increased. The ultrasound application had a significant impact on emulsion stability with no phase separation and significantly high lycopene retention. Ultrasound reduced the apparent viscosity by reducing the particle size due to the energy supplied to the system. The final emulsion that was treated at 360 W, and 2160 J/cm3 in 10 min, presented enhanced technological properties appropriate for food products.
Collapse
Affiliation(s)
- Saba Belgheisi
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Ali Motamedzadegan
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
| | - Jafar M Milani
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
| | - Ladan Rashidi
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Ali Rafe
- Department of Food Science and Technology, Research Institute of Food Science and Technology, Mashhad, Iran
| |
Collapse
|
13
|
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021; 10:279. [PMID: 33573135 PMCID: PMC7911848 DOI: 10.3390/foods10020279] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The by-products generated from the processing of fruits and vegetables (F&V) largely are underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin, rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The recovery of bioactive compounds from agro-waste by recycling them to generate functional food products is of increasing interest. However, the sensitivity of these compounds to external factors restricts their utility and bioavailability. In this regard, the current review analyses various emerging technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric field extraction. It provides insights into the strengths of microencapsulation techniques adopted for protecting sensitive compounds. Additionally, it outlines the possible functional food products that could be developed by utilizing components of agricultural by-products. The valorization of wastes can be an effective driver for accomplishing food security goals.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Gregory J. O. Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | | |
Collapse
|
14
|
Costa JM, Almeida Neto AFD. Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: A review. ULTRASONICS SONOCHEMISTRY 2020; 68:105193. [PMID: 32505102 DOI: 10.1016/j.ultsonch.2020.105193] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 05/10/2023]
Abstract
The development of electrodeposited materials with improved technological properties has been attracting the attention of researchers and companies from different industrial sectors. Many studies have demonstrated that the electrodeposition and synthesis of alloys and composite materials assisted by ultrasound may promote the de-agglomeration of particles in the electrolytic solution due to microturbulence, microjets, shock waves, and breaking of Van der Waals forces. The sonoelectrochemical technique, in which the ultrasound probe acts as a working electrode, also has been used for the formation of nanostructures in greater quantity, in addition to accelerating the electrolysis process and eliminating the reaction products on the electrode surface. Regarding the morphological aspects, the acoustic cavitation promotes the formation of smooth and uniform surfaces with incorporated particles homogeneously distributed. These changes have a direct impact on the composition and physical properties of the material, such as corrosion resistance, magnetization, wear, and microhardness. Despite the widespread use of acoustic cavitation in the synthesis of nanostructured materials, the discussion of how process variables such as acoustic power, frequency, and type of ultrasound device, as well as their effects still are scarce. In this sense, this review discusses the influence of ultrasound technology on obtaining electrodeposited coatings. The trends and challenges in this research field were reviewed from 2014 to 2019. Moreover, the effects of process variables in electrodeposition and how these ones change the technological properties of these materials were evaluated.
Collapse
Affiliation(s)
- Josiel Martins Costa
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical Engineering, University of Campinas, Avenida Albert Einstein, 500, Campinas 13083-852, SP, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical Engineering, University of Campinas, Avenida Albert Einstein, 500, Campinas 13083-852, SP, Brazil
| |
Collapse
|
15
|
Ramos-Bell S, Calderón-Santoyo M, Barros-Castillo JC, Ragazzo-Sánchez JA. Characterization of submicron emulsion processed by ultrasound homogenization to protect a bioactive extract from sea grape ( Coccoloba uvifera L.). Food Sci Biotechnol 2020; 29:1365-1372. [PMID: 32999743 DOI: 10.1007/s10068-020-00780-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
In this study, the stability of a submicron emulsion to protect an extract obtained from sea grape fruit (Coccoloba uvifera L.) was evaluated. Extract characterization by MS-HPLC revealed the presence of 3 anthocyanins (cyanidin 3-glucoside, malvidin 3-glucoside, and delphinidin 3-glucoside), the content of total phenols was 263.86 ± 1.86 mg gallic acid equivalent/100 g, with an antioxidant capacity determined by ABTS and DPPH of 128.95 ± 1.00 and 26.18 ± 0.60 μg Trolox equivalents/mL, respectively. A submicron emulsion (0.424 μm) by Ultrasound with monomodal distribution, stable over time and low viscosity (1.94 mPa s) classified as a shear-thinning fluid was obtained. The thermogravimetric analysis (TGA) demonstrated the stability of the C. uvifera extract in the emulsion, which is thermostable (212 °C). These emulsions can be added into a beverage as a nutraceutical, dried for later use as pills or incorporated in foods.
Collapse
Affiliation(s)
- Surelys Ramos-Bell
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico #2595, Col. Lagos del Country, 63175 Tepic, Nayarit Mexico
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico #2595, Col. Lagos del Country, 63175 Tepic, Nayarit Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico #2595, Col. Lagos del Country, 63175 Tepic, Nayarit Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico #2595, Col. Lagos del Country, 63175 Tepic, Nayarit Mexico
| |
Collapse
|
16
|
Scudino H, Silva EK, Gomes A, Guimarães JT, Cunha RL, Sant'Ana AS, Meireles MAA, Cruz AG. Ultrasound stabilization of raw milk: Microbial and enzymatic inactivation, physicochemical properties and kinetic stability. ULTRASONICS SONOCHEMISTRY 2020; 67:105185. [PMID: 32474185 DOI: 10.1016/j.ultsonch.2020.105185] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate the effects of non-thermal and thermal high-intensity ultrasound (HIUS) treatment on the microbial and enzymatic inactivation, physicochemical properties, and kinetic stability of the raw milk by applying different energy densities (1, 3, 5, and 7 kJ/mL). Two HIUS treatments were evaluated based on different nominal powers, named HIUS-A and HIUS-B, using 100 W and 475 W, respectively. HIUS-A treatment was non-thermal processing while HIUS-B was a thermal treatment only for the energy densities of 5 and 7 kJ/mL since the final temperature was above 70 °C. The HIUS-B treatment showed to be more efficient. Log reductions up to 3.9 cycles of aerobic mesophilic heterotrophic bacteria (AMHB) were achieved. Significant reductions of the fat globule size, with diameters lower than 1 µm, better color parameters, and kinetic stability during the storage were observed. Also, HIUS-B treatment inactivated the alkaline phosphatase and lactoperoxidase. The HIUS-B treatment at 3 kJ/mL worked below 57 °C being considered a border temperature since it did not cause unwanted physicochemical effects. Furthermore, a microbial inactivation of 1.8 ± 0.1 log cycles of AMHB was observed. A proper inactivation of only the Alkaline phosphatase and a significant reduction of the fat globules sizes, which kept the milk kinetically stable during storage was achieved.
Collapse
Affiliation(s)
- Hugo Scudino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Eric Keven Silva
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Rosiane L Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - M Angela A Meireles
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Prado JM, Veggi PC, Náthia-Neves G, Meireles MAA. Extraction Methods for Obtaining Natural Blue Colorants. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666181115125740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background:
Blue is a color not often present in food. Even so, it is especially attractive
to children. Today, most blue coloring agents used by the food industry are synthetic. With increasing
health issues concern by the scientific community and the general population, there is a trend to look
for natural alternatives to most synthetic products. There only exist few natural blue colorants, which
are presented in a literature survey, along with the methods currently used for their recovery from
natural sources. The best extraction methods and process parameters for the extraction of blue anthocyanins,
iridoids and phycocyanin are discussed.
Methods:
A literature survey was conducted to detect the main sources of blue colorants found in nature.
The focus was on the extraction methods used to recover such molecules, with the objective of
finding efficient and environmentally safe techniques for application at industrial level, and, thus, allowing
the production of natural blue colorants at scale high enough for food industry consumption.
Results:
The main natural blue colorants found in literature are anthocyanins, phycocyanin, and genipin.
While anthocyanins can be recovered from a variety of plants, the source of phycocyanin are
algae, and genipin can be obtained specifically from Gardenia jasminoides Ellis and Genipa americana
L. Several extraction techniques have been applied to recover blue colorants from such sources,
from classical methods using organic solvents, to more sophisticated technologies as ultrasoundassisted
extraction, supercritical fluid extraction, pressurized liquid extraction, high-pressure extraction,
and enzyme-assisted extraction.
Conclusion:
There is great potential for anthocyanins, phycocyanin and genipin use as natural food
additives with health benefits, besides imparting color. However, the technologies for the colorants
recovery and application are not mature enough. Therefore, this area is still developing, and it is necessary
to evaluate the economic feasibility of the proposed extraction processes, along with the safety
and acceptance of colored food using these additives.
Collapse
Affiliation(s)
- Juliana M. Prado
- Engineering, Modeling and Applied Social Sciences Center (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, 09210-580, Santo Andre, SP, Brazil
| | - Priscilla C. Veggi
- Federal University of Sao Paulo (UNIFESP), School of Chemical Engineering, 210 Sao Nicolau Street, 09913-030, Diadema, SP, Brazil
| | - Grazielle Náthia-Neves
- LASEFI/DEA/FEA (College of Food Engineering)/ UNICAMP (University of Campinas), Rua Monteiro Lobato, 80; 13083-862, Campinas, SP, Brazil
| | - M. Angela A. Meireles
- LASEFI/DEA/FEA (College of Food Engineering)/ UNICAMP (University of Campinas), Rua Monteiro Lobato, 80; 13083-862, Campinas, SP, Brazil
| |
Collapse
|
18
|
Li D, Zhu M, Liu X, Wang Y, Cheng J. Insight into the effect of microcapsule technology on the processing stability of mulberry polyphenols. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
The stabilizing effect of cellulose crystals in O/W emulsions obtained by ultrasound process. Food Res Int 2020; 128:108746. [DOI: 10.1016/j.foodres.2019.108746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
|
20
|
Shahidi Noghabi M, Molaveisi M. Microencapsulation optimization of cinnamon essential oil in the matrices of gum Arabic, maltodextrin, and inulin by spray‐drying using mixture design. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mostafa Shahidi Noghabi
- Department of Food Chemistry Research Institute of Food Science and Technology (RIFST) Mashhad Iran
| | - Mohammad Molaveisi
- Department of Food Chemistry Research Institute of Food Science and Technology (RIFST) Mashhad Iran
| |
Collapse
|
21
|
Salve AR, Pegu K, Arya SS. Comparative assessment of high-intensity ultrasound and hydrodynamic cavitation processing on physico-chemical properties and microbial inactivation of peanut milk. ULTRASONICS SONOCHEMISTRY 2019; 59:104728. [PMID: 31421619 DOI: 10.1016/j.ultsonch.2019.104728] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
Ultra-sonication (US) at varying intensities (200 W, 300 W and 400 W) and hydrodynamic cavitation (HC) at increasing pressures (6 bar, 8 bar and 10 bar) on freshly extracted peanut milk as non-thermal processing of milk for enhanced quality. The effects of US and HC was investigated on physico-chemical properties of peanut milk, microbial inactivation (total plate count and yeasts and molds), microstructure by optical microscopy and particle size, ζ-potential, sedimentation index, rheology and color measurements. The high temperature short time (HTST) treated milk samples have shown 1.53 and 2 log reduction in TPC, yeast and molds respectively with highest protein hydrolysis of 15.7%. Among the non-thermal treatments HC has shown highest log reduction of TPC at around 1.2 for sample treated at 10 bar pressure, whereas the US treatment was most effective for yeast and mold at 400 W with log reduction of 0.9. A non-Newtonian flow behaviour was observed for all peanut milk samples. Viscosity determined by Herschel-Bulkley equation decreased significantly (p > 0.05) after both cavitation treatments. The US was found to be superior to HC and HTST with improved separation index and colour attributes. Therefore, the US and HC appear to be a remarkable non-thermal processing methods for peanut milk and or any dairy or non-dairy beverages.
Collapse
Affiliation(s)
- Akshata R Salve
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parikh Marg, Matunga, Mumbai 400 019, India
| | - Kakoli Pegu
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parikh Marg, Matunga, Mumbai 400 019, India
| | - Shalini S Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parikh Marg, Matunga, Mumbai 400 019, India.
| |
Collapse
|
22
|
Ma X, Yan T, Hou F, Chen W, Miao S, Liu D. Formation of soy protein isolate (SPI)-citrus pectin (CP) electrostatic complexes under a high-intensity ultrasonic field: Linking the enhanced emulsifying properties to physicochemical and structural properties. ULTRASONICS SONOCHEMISTRY 2019; 59:104748. [PMID: 31473418 DOI: 10.1016/j.ultsonch.2019.104748] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 05/06/2023]
Abstract
In this study, a high-intensity ultrasonic field was applied to the electrostatic interactions between soy protein isolate (SPI) and citrus pectin (CP). The emulsifying properties of SPI-CP soluble complexes formed under different ultrasound powers and durations were investigated and peaked at 630 W for 10 min. Micrographs of emulsions revealed that ultrasound-treated complexes generated a more homogeneous emulsion with significantly reduced and uniformly-distributed droplet sizes. To better understand the mechanism for the improved emulsifying properties, the physicochemical and structural properties of the SPI-CP complexes at pH 3.5 with and without ultrasound treatment were investigated. It was revealed that ultrasound increased the absolute values of the zeta potential and surface hydrophobicity of complexes, but significantly decreased their particle sizes, fluorescence intensity and turbidity. Results indicated that cavitation effects resulted in structural modifications in both biomacromolecules, as well as enhanced the electrostatic interactions between SPI and CP, which in combination contributed to the more desirable emulsifying properties of the complex.
Collapse
Affiliation(s)
- Xiaobin Ma
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Furong Hou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Weijun Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Mutamba seed mucilage as a novel emulsifier: Stabilization mechanisms, kinetic stability and volatile compounds retention. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Taha A, Ahmed E, Hu T, Xu X, Pan S, Hu H. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. ULTRASONICS SONOCHEMISTRY 2019; 58:104627. [PMID: 31450289 DOI: 10.1016/j.ultsonch.2019.104627] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 05/15/2023]
Abstract
In this study, high intensity ultrasound (HIU) was used to produce food protein stabilized emulsions under different ionic strengths (0, 25, 50, 100, 200 and 300 mM NaCl). Five plant and animal food proteins, whey protein isolate (WPI), soy protein isolate (SPI), bovine gelatin, peanut protein isolate (PPI) and corn zein were selected as protein emulsifiers. PPI and zein could not form emulsions using ultrasound emulsification at all ionic strengths (from 0 to 300 mM NaCl). However, ultrasound could induce stable emulsions using SPI, WPI and gelatin as emulsifiers. Moreover, different ionic strengths and protein types influenced the physicochemical properties of HIU induced emulsions obviously. It was found that the droplet sizes of gelatin emulsions were lower than those of SPI and WPI emulsions at salt concentrations of 300 mM NaCl. Furthermore, gelatin emulsions had better stability against environmental stresses (salt and temperature) than that of SPI and WPI emulsions. Moreover, the adsorbed protein (%) at the oil/water interface of SPI emulsions was higher than those of WPI and gelatin emulsions. However, the adsorbed protein amount of all proteins stabilized emulsions increased significantly after salt addition. The absolute ζ-potential values decreased with the increase of salt concentrations. The microrheology results indicated that the SPI emulsions formed a gel-like structure at high salt concentrations (>50 mM NaCl) as SPI emulsions exhibited higher elasticity than WPI and gelatin emulsions. In conclusion, the ultrasound as a green emulsification technique could be used to fabricate emulsions stabilized by plant and animal proteins.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Eman Ahmed
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Tan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China.
| |
Collapse
|
25
|
Saravana PS, Shanmugapriya K, Gereniu CRN, Chae SJ, Kang HW, Woo HC, Chun BS. Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. ULTRASONICS SONOCHEMISTRY 2019; 55:105-116. [PMID: 31084784 DOI: 10.1016/j.ultsonch.2019.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
This work aims to produce and optimize a κ-carrageenan-based nanoemulsion (NE) to encapsulate seaweed oil, which is rich in fucoxanthin (FX), using ultrasound-assisted emulsification. κ-Carrageenan was produced using subcritical water, and seaweed oil was extracted using supercritical carbon dioxide with sunflower oil as the co-solvent. Response surface methodology (RSM) was used to understand the influence of several process parameters such as ultrasound amplitude, time, temperature, and duty cycle to produce an NE. The RSM factor was used to focus on droplet size, polydispersity index, zeta potential, viscosity, antioxidant, FX, encapsulation efficiency, and emulsion stability. Our outcomes suggested that the ultrasound process had a noteworthy influence on the NE. The best conditions to obtain an NE were an ultrasound amplitude of 87 µm, a sonication time of 394 s, a temperature of 60 °C, and a duty cycle of 50%. The resulting NE was studied by UV-Vis, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Moreover, the NE obtained from optimized conditions was checked for fatty acid content, color, oxidative stability, in vitro digestion, bioaccessibility of FX, and cytotoxicity. The results obtained suggest that lower droplet size of the emulsion can improve oxidative stability, in vitro digestion, bioaccessibility of FX, and good cell inhibition against a few cell lines. Therefore, a κ-carrageenan-stabilized NE can be used as a potential delivery system to endorse applications of seaweed oil, which is rich in FX, in functional foods, beverage systems, and pharmaceuticals.
Collapse
Affiliation(s)
- Periaswamy Sivagnanam Saravana
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea; Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Karuppusamy Shanmugapriya
- Department of Biomedical Engineering and Centre for Marine-Integrated Biomedical Technology, Pukyong National University, 48513, Republic of Korea
| | - Collin Rudolf Nobbs Gereniu
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea; Department of Fisheries Studies, School of Technology, Maritime, and Fisheries Studies, Solomon Islands National University, P.O. Box R113, Honiara, Solomon Islands
| | - Sol-Ji Chae
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering and Centre for Marine-Integrated Biomedical Technology, Pukyong National University, 48513, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, Namgu, Busan 608-737, Republic of Korea
| | - Byung-Soo Chun
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea.
| |
Collapse
|
26
|
How do Different Types of Emulsifiers/Stabilizers Affect the In Vitro Intestinal Digestion of O/W Emulsions? FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09582-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Reis PML, Mezzomo N, Aguiar GPS, Senna EMTL, Hense H, Ferreira SR. Ultrasound-assisted emulsion of laurel leaves essential oil (Laurus nobilis L.) encapsulated by SFEE. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Silva EK, Costa ALR, Gomes A, Bargas MA, Cunha RL, Meireles MAA. Coupling of high-intensity ultrasound and mechanical stirring for producing food emulsions at low-energy densities. ULTRASONICS SONOCHEMISTRY 2018; 47:114-121. [PMID: 29908600 DOI: 10.1016/j.ultsonch.2018.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, coupling of ultrasound (US) device and rotor-stator (RS), operating at low-energy densities, was studied as an alternative process to individual US and RS to produce modified starch-stabilized oil-in-water emulsions, as well as its potential use to encapsulate eugenol. To this aim, a full factorial design was employed to evaluate the effects of the US nominal power (0, 360 and 720 W) and RS nominal power (0, 150 and 300 W) on the physical properties, encapsulation efficiency and kinetic stability of emulsions produced. Firstly, the action of modified starch and eugenol onto interface oil-water was evaluated. The emulsifier was rapidly adsorbed on the interface water-sunflower oil reducing the interfacial tension from 25 to 16 mN/m, while eugenol did not show surface activity. The increase of energy density, in general, resulted in droplet size reduction, indicating the relevant role of the forces involved in the droplet breakup on emulsion stability. Coupling was more efficient on the droplets breakup producing smaller droplet size with narrower size distribution. While the coupled system work during 5 min for an energy density of 583 J/mL, the corresponding emulsification time for operating singly US and RS were 7.09 min and 17.04 min, respectively. Therefore, the main advantage associate to coupled process is the reduction of processing time to produce an emulsion with better kinetic stability.
Collapse
Affiliation(s)
- Eric Keven Silva
- DEA (Department of Food Engineering)/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| | - Ana Letícia Rodrigues Costa
- DEA (Department of Food Engineering)/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Andresa Gomes
- DEA (Department of Food Engineering)/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Matheus A Bargas
- DEA (Department of Food Engineering)/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Rosiane L Cunha
- DEA (Department of Food Engineering)/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - M Angela A Meireles
- DEA (Department of Food Engineering)/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| |
Collapse
|
29
|
Guimarães JT, Silva EK, Alvarenga VO, Costa ALR, Cunha RL, Sant'Ana AS, Freitas MQ, Meireles MAA, Cruz AG. Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. ULTRASONICS SONOCHEMISTRY 2018; 44:251-260. [PMID: 29680610 DOI: 10.1016/j.ultsonch.2018.02.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/13/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
In this work, we investigated the effects of the ultrasonic power (0, 200, 400 and 600 W) on non-thermal processing of an inulin-enriched whey beverage. We studied the effects of high-intensity ultrasound (HIUS) on microbial inactivation (aerobic mesophilic heterotrophic bacteria (AMHB), total and thermotolerant coliforms and yeasts and molds), zeta potential, microstructure (optical microscopy, particle size distribution), rheology, kinetic stability and color. The non-thermal processing applying 600 W of ultrasonic power was comparable to high-temperature short-time (HTST) treatment (75 °C for 15 s) concerning the inactivation of AMHB and yeasts and molds (2 vs 2 log and 0.2 vs 0.4 log, respectively), although HIUS has reached a lower output temperature (53 ± 3 °C). The HIUS was better than HTST to improve beverage kinetic stability, avoiding phase separation, which was mainly attributed to the decrease of particles size, denaturation of whey proteins and gelation of polysaccharides (inulin and gellan gum). Thus, non-thermal processing by HIUS seems to be an interesting technology for prebiotic dairy beverages production.
Collapse
Affiliation(s)
- Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Verônica O Alvarenga
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana Letícia R Costa
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rosiane L Cunha
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Monica Q Freitas
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - M Angela A Meireles
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Costa ALR, Gomes A, Cunha RL. One-step ultrasound producing O/W emulsions stabilized by chitosan particles. Food Res Int 2018; 107:717-725. [PMID: 29580539 DOI: 10.1016/j.foodres.2018.02.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/20/2018] [Accepted: 02/25/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Ana Letícia Rodrigues Costa
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
31
|
Multi-Response Optimization in the Formulation of a Topical Cream from Natural Ingredients. COSMETICS 2018. [DOI: 10.3390/cosmetics5010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
32
|
Zabot GL, Silva EK, Azevedo VM, Meireles MAA. Replacing modified starch by inulin as prebiotic encapsulant matrix of lipophilic bioactive compounds. Food Res Int 2016; 85:26-35. [DOI: 10.1016/j.foodres.2016.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 01/16/2023]
|
33
|
Singh VK, Pandey PM, Agarwal T, Kumar D, Banerjee I, Anis A, Pal K. Development of soy lecithin based novel self-assembled emulsion hydrogels. J Mech Behav Biomed Mater 2015; 55:250-263. [PMID: 26594784 DOI: 10.1016/j.jmbbm.2015.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022]
Abstract
The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels.
Collapse
Affiliation(s)
- Vinay K Singh
- Formulation Research and Development, Aristo Pharmaceuticals Pvt. Ltd., Mandideep 462046, Madhya Pradesh, India
| | - Preeti M Pandey
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Tarun Agarwal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Dilip Kumar
- Formulation Research and Development, Aristo Pharmaceuticals Pvt. Ltd., Mandideep 462046, Madhya Pradesh, India
| | - Indranil Banerjee
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Arfat Anis
- Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia.
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|