1
|
Mahato DK, Kamle M, Pandhi S, Pandey S, Gupta A, Paul V, Kalsi R, Agrawal S, Islam D, Khare S, Singh A, Kumar P, Rab SO, Saeed M. Foodomics: A sustainable approach for the specific nutrition and diets for human health. Food Chem X 2024; 24:101872. [PMID: 39483356 PMCID: PMC11525469 DOI: 10.1016/j.fochx.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Foodomics is an interdisciplinary field that integrates various omics technologies to explore the complex relationship between food and human health in depth. This approach offers valuable insights into the biochemical, molecular, and cellular composition of food by employing advanced omics techniques. Its applications span the food industry and human health, including efforts to combat malnutrition, provide dietary recommendations, and ensure food safety. This paper critically examines the successful applications of foodomics across areas such as food safety, quality, traceability, processing, and bioactivity. It highlights the crucial role of metabolomics, proteomics, and transcriptomics in achieving a comprehensive understanding of food components, their functions, and their interactions with human biology.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North-Eastern Regional Institute of Science and Technology, Nirjuli 791109, Arunachal Pradesh, India
| | - Shikha Pandhi
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Surabhi Pandey
- Department of Food Technology, Harcourt Butler Technical University, Kanpur, 208002, India
| | - Akansha Gupta
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Veena Paul
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Rhythm Kalsi
- School of Agriculture, Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Swati Agrawal
- Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Dawrul Islam
- World Food Programme, Trust for India, New Delhi 110029, India
| | - Shubhra Khare
- Department of Applied Sciences & Humanities, Invertis University, Bareilly, India
| | - Ajey Singh
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
- College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Tatar AM. Effects of intensive and conventional farming on oxidative stress and meat quality biomarkers in holstein and simmental cattle. Sci Rep 2024; 14:26197. [PMID: 39478177 PMCID: PMC11526110 DOI: 10.1038/s41598-024-78087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024] Open
Abstract
This study investigates the intricate factors influencing meat quality, including breed, rearing conditions, and processing, with a primary focus on oxidative stress in Holstein Friesian and Simmental cattle within conventional and intensive production systems. A notable difference in oxidative stress was found between animals subjected to intensive-farming versus conventional practices, with Holstein cattle showing a more pronounced antioxidant gene response than Simmental. The analysis revealed that intensive rearing conditions resulted in increased DNA repair activity and expression of stress-response proteins like heat shock proteins, suggestive of greater cellular damage and an adaptive stress response. Muscle tissue analyses, revealed a clear distinction in gene expression associated with meat quality between the breeds and the type of farming system. A negative correlation emerged between oxidative stress levels and genes related to muscle development, which affects meat quality. Intensive farming conditions altered the expressions of apoptotic proteins, impacting meat quality at the molecular level. These results underscore the profound effect rearing conditions have on meat quality, driven by stress-related molecular responses. This highlights the need for further research into the influence of husbandry practices on animal welfare and meat quality, with the intention of developing strategies to mitigate the negative consequences of intensive-farming.
Collapse
Affiliation(s)
- Ali Murat Tatar
- Faculty of Agriculture, Department of Animal Science, Dicle University, 21280, Diyarbakır, Turkey.
| |
Collapse
|
3
|
Šedo O, Roblíčková A, Ježek F, Gintar P, Kameník J, Zdráhal Z. Discriminatory power of MALDI-TOF MS protein profiling analysis of pork meat and meat products. Food Chem 2024; 449:139155. [PMID: 38608601 DOI: 10.1016/j.foodchem.2024.139155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Forty different sample preparation methods were tested to obtain the most informative MALDI-TOF MS protein profiles of pork meat. Extraction by 25% formic acid with the assistance of zirconia-silica beads followed by defatting by methanol:chloroform mixture (1:1, v/v) and deposition by using the layer-by-layer method was determined as the optimum sample preparation protocol. The discriminatory power of the method was then examined on samples of pork meat and meat products. The method was able to discriminate between selected salami based on the production method and brand and was able to monitor the ripening process in salami. However, it was not able to differentiate between different brands of pork ham or closely located parts of pork meat. In the latter case, a more comprehensive analysis using LC-MS/MS was used to assess the differences in protein abundance and their relation to the outputs of MALDI - TOF MS profiling.
Collapse
Affiliation(s)
- Ondrej Šedo
- Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Alena Roblíčková
- Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic
| | - František Ježek
- University of Veterinary Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Petr Gintar
- Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic; Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Josef Kameník
- University of Veterinary Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Zbyněk Zdráhal
- Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic; Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
4
|
Alessandroni L, Sagratini G, Gagaoua M. Proteomics and bioinformatics analyses based on two-dimensional electrophoresis and LC-MS/MS for the primary characterization of protein changes in chicken breast meat from divergent farming systems: Organic versus antibiotic-free. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100194. [PMID: 38298469 PMCID: PMC10828576 DOI: 10.1016/j.fochms.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Proteomics is a key analytical method in meat research thanks to its potential in investigating the proteins at interplay in post-mortem muscles. This study aimed to characterize for the first time the differences in early post-mortem muscle proteomes of chickens raised under two farming systems: organic versus antibiotic-free. Forty post-mortem Pectoralis major muscle samples from two chicken strains (Ross 308 versus Ranger Classic) reared under organic versus antibiotic-free farming systems were characterized and compared using two-dimensional electrophoresis and LC-MS/MS mass spectrometry. Within antibiotic-free and organic farming systems, 14 and 16 proteins were differentially abundant between Ross 308 and Ranger Classic, respectively. Within Ross 308 and Ranger Classic chicken strains, 12 and 18 proteins were differentially abundant between organic and antibiotic-free, respectively. Bioinformatics was applied to investigate the molecular pathways at interplay, which highlighted the key role of muscle structure and energy metabolism. Antibiotic-free and organic farming systems were found to significantly impact the muscle proteome of chicken breast meat. This paper further proposes a primary list of putative protein biomarkers that can be used for chicken meat or farming system authenticity.
Collapse
Affiliation(s)
- Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | | |
Collapse
|
5
|
Barcellos JOJ, Zago D, Fagundes HX, Pereira GR, Sartori ED. Foetal programming in sheep: Reproductive and productive implications. Anim Reprod Sci 2024; 265:107494. [PMID: 38723401 DOI: 10.1016/j.anireprosci.2024.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
The aim of this study was to evaluate the effects of pregnant ewe nutrition on the performance of offspring in terms of meat, wool production, and reproduction. Foetal programming in sheep has focused on several aspects related to foetal growth, postnatal production, behaviour, and immunological performance. Currently, significant efforts are being made to understand the endocrine, metabolic, and epigenetic mechanisms involved in offspring development. Current studies have not only evaluated the foetal period, despite the pre-conception parental nutrition has demonstrated an effect on the foetal, embryonic, and pre-implantation periods and can generate permanent effects in the foetal and postnatal phases. The performance of offspring is the result of interactions between the genome, epigenome, and environmental interventions during conception. Several factors influence the expression of phenotypic characteristics in progenies; however, this study focused on presenting data on the effect of pregnant ewe nutrition alone on foetal growth and the productive aspects of their offspring.
Collapse
Affiliation(s)
| | - Daniele Zago
- Federal University of Rio Grande do Sul - Department of Animal Science, Porto Alegre, Brazil
| | - Helena Xavier Fagundes
- Federal University of Rio Grande do Sul - Department of Animal Science, Porto Alegre, Brazil
| | | | - Everton Dezordi Sartori
- Federal University of Rio Grande do Sul - Department of Animal Science, Porto Alegre, Brazil
| |
Collapse
|
6
|
Wanapat M, Dagaew G, Sommai S, Matra M, Suriyapha C, Prachumchai R, Muslykhah U, Phupaboon S. The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review. J Anim Sci Biotechnol 2024; 15:58. [PMID: 38689368 PMCID: PMC11062008 DOI: 10.1186/s40104-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies-which have been steadily gaining popularity as technological tools-to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.
Collapse
Affiliation(s)
- Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, University of Technology Thanyaburi, Rajamangala Pathum Thani, 12130, Thailand
| | - Uswatun Muslykhah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Yu Y, Zhang B, Jiang X, Cui Y, Luo H, Stergiadis S, Wang B. Exploring the metabolomic landscape: Perilla frutescens as a promising enhancer of production, flavor, and nutrition in Tan lamb meat. Meat Sci 2024; 209:109419. [PMID: 38154372 DOI: 10.1016/j.meatsci.2023.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Addressing health-related concerns linked to the metabolite profile of lamb meat has become paramount, in line with the growing demand for enhanced flavor and taste. We examined the impact of Perilla frutescens seeds on Tan lamb growth, carcass traits, and metabolite profiles. Three diets were employed: a low-concentrate group (LC), a high-concentrate group (HC), and a PFS group (the LC diet supplemented with 3% Perilla frutescens seeds) on a dry matter basis. Forty-five male Tan-lambs (approximately six months) with similar body weights (25.1 kg ± 1.12 SD) were randomly assigned to one of these three groups for 84-day feeding, including an initial 14-day adjustment phase. The supplementation of PFS resulted in increased average daily gain (P < 0.01) and improved carcass quality and meat color (P < 0.05). Additionally, it led to an enhancement in omega-3 polyunsaturated fatty acids (P < 0.05) and a reduction in the omega-6/omega-3 ratio (P < 0.05). Using gas chromatography-mass spectrometry, 369 volatile compounds were identified with enhanced levels of acetaldehyde and 1,2,4-trimethyl-benzene associated with PFS (P < 0.05). Among the 807 compounds identified by ultra-high performance liquid chromatography-mass spectrometry, there were 66 significantly differential compounds (P < 0.05), including 43 hydrophilic metabolites and 23 lipids. PFS supplementation led to significant alterations in 66 metabolites, with three metabolites including 2,5-diisopropyl-3-methylphenol, 3-hydroxydecanoic acid, and lysophosphatidylcholine (15:0) emerging as potential PFS-related biomarkers. The study indicates that PFS supplementation can enhance Tan-lamb growth, feed efficiency, and meat quality, potentially providing lamb meat with improved flavor and nutritional characteristics.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Boyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xianzhe Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Sokratis Stergiadis
- University of Reading, School of Agriculture, Policy and Development, Department of Animal Sciences, Reading RG6 6EU, United Kingdom
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
8
|
Song S, Cheng H, Park J, Kim GD. Relationship between peptides and the change in quality characteristics of beef strip loin (M. longissimus lumborum) and tenderloin (M. psoas major). Food Chem 2024; 430:137036. [PMID: 37536066 DOI: 10.1016/j.foodchem.2023.137036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Peptides in fresh and aged beef strip loin (M. longissimus lumborum) and tenderloin (M. psoas major) were quantified to investigate the relationship between proteolysis-induced peptides and beef quality characteristics. A total of 409 and 450 peptides were quantified from strip loin and tenderloin, respectively, and found to be significantly correlated to beef quality characteristics. Changes in redness and yellowness were significantly correlated to the peptides derived from G3P, ENOB, and KCRM in both muscles during 14 days of storage. The peptides produced from MYG, ENOB, HBA, PGK1, and TPIS were strongly associated with improved tenderness, while those derived from major myofibrillar proteins, such as MYH1, MYH2, ACTS, and DESM, were associated with changes in tenderloin color. These results improve our understanding of the association between peptides and changes in meat quality during cold storage, indicating that proteolysis-induced peptides can be indicators of the quality characteristics of fresh and aged meat.
Collapse
Affiliation(s)
- Sumin Song
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Huilin Cheng
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Junyoung Park
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
9
|
Song P, Huo G, Feng J, Zhang W, Li X, Zhao J. Intramuscular vitamin A injection in newborn lambs enhances antioxidant capacity and improves meat quality. Front Vet Sci 2023; 10:1272874. [PMID: 38111737 PMCID: PMC10725944 DOI: 10.3389/fvets.2023.1272874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Vitamin A (VA) and its metabolite, retinoic acid (RA) possess several biological functions. This report investigated whether neonatal intramuscular VA injection affected antioxidative activity and meat quality in longissimus dorsi (LD) muscle of lambs. Methods Lambs were injected with 0 (control) or 7,500 IU VA palmitate into the biceps femoris muscle on day 2 after birth. At 3, 12, and 32 weeks of age, blood samples were collected in the jugular vein for serum levels of RA and muscle samples were collected in the biceps femoris for analysis of relative mRNA expression of enzyme contributors to retinoid metabolism. All animals were harvested at 32 weeks of age and muscle samples were collected to explore the role of VA on the meat quality and antioxidant capacity of lambs. Results and discussion Our results indicated that VA increased the redness, crude protein, and crude fat (p < 0.05), without affecting moisture, ash, and amino acid composition in LD muscle (p > 0.05). In addition, VA increased catalase (CAT) activity and decreased malondialdehyde (MDA) levels in LD muscle (p < 0.05). Meanwhile, greater levels of CAT and NRF2 mRNA and protein contents with VA treatment were observed in LD muscle (p < 0.05), partly explained by the increased level of RA (p < 0.05). Collectively, our findings indicated that VA injection at birth could improve lamb meat quality by elevating the redness, crude protein, crude fat, and antioxidative capacity in LD muscle of lambs.
Collapse
Affiliation(s)
| | | | | | | | | | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
10
|
Yao CB, Feng L, Wu P, Liu Y, Jiang J, Zhang L, Mi HF, Zhou XQ, Jiang WD. Promotion of fatty acid metabolism and glucose metabolism in the muscle of sub-adult grass carp ( Ctenopharyngodon idella): The role of alpha-linoleic acid/linoleic acid (ALA/LNA) ratios. Food Chem X 2023; 19:100752. [PMID: 37384144 PMCID: PMC10293787 DOI: 10.1016/j.fochx.2023.100752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
The n6/n3 ratios improved meat quality of terrestrial animals, but alpha-linolenic acid/linoleic acid (ALA/LNA) ratios were rarely studied in aquatic animals. In this study, sub-adult grass carp (Ctenopharyngodon idella) were fed diets fed diets containing six varying ALA/LNA ratios (0.03, 0.47, 0.92, 1.33, 1.69, and 2.15) for 9 weeks and the total value of n3 + n6 (1.98) was kept constant for all six treatments. The results indicated optimal ALA/LNA ratio improved growth performance, changed fatty acid composition in grass carp muscle, and promoted glucose metabolism. Additionally, optimal ALA/LNA ratio improved chemical attributes by increasing crude protein and lipid contents, and technological attributes by increasing pH24h value and shear force in grass carp muscle. The signaling pathways related to fatty acid metabolism and glucose metabolism (LXRα/SREBP-1, PPARα, PPARγ, AMPK) might be responsible for these changes. Dietary optimal ALA/LNA ratio based on PWG, UFA and glucose contents was 1.03, 0.88 and 0.92, respectively.
Collapse
Affiliation(s)
- Chi-Bei Yao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China
- Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | | | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| |
Collapse
|
11
|
Zubiri-Gaitán A, Blasco A, Hernández P. Plasma metabolomic profiling in two rabbit lines divergently selected for intramuscular fat content. Commun Biol 2023; 6:893. [PMID: 37653068 PMCID: PMC10471702 DOI: 10.1038/s42003-023-05266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
This study provides a thorough comparison of the plasma metabolome of two rabbit lines divergently selected for intramuscular fat content (IMF). The divergent selection led to a correlated response in the overall adiposity, turning these lines into a valuable animal material to study also the genetics of obesity. Over 900 metabolites were detected, and the adjustment of multivariate models, both discriminant and linear, allowed to identify 322 with differential abundances between lines, which also adjusted linearly to the IMF content. The most affected pathways were those of lipids and amino acids, with differences between lines ranging from 0.23 to 6.04 standard deviations, revealing a limited capacity of the low-IMF line to obtain energy from lipids, and a greater branched-chain amino acids catabolism in the high-IMF line related to its increased IMF content. Additionally, changes in metabolites derived from microbial activity supported its relevant role in the lipid deposition. Future research will focus on the analysis of the metabolomic profile of the cecum content, and on the integration of the several -omics datasets available for these lines, to help disentangle the host and microbiome biological mechanisms involved in the IMF deposition.
Collapse
Affiliation(s)
- Agostina Zubiri-Gaitán
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain.
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
12
|
Zhu Y, Hamill RM, Mullen AM, Kelly AL, Gagaoua M. Molecular mechanisms contributing to the development of beef sensory texture and flavour traits and related biomarkers: Insights from early post-mortem muscle using label-free proteomics. J Proteomics 2023; 286:104953. [PMID: 37390894 DOI: 10.1016/j.jprot.2023.104953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Beef sensory quality comprises a suite of traits, each of which manifests its ultimate phenotype through interaction of muscle physiology with environment, both in vivo and post-mortem. Understanding variability in meat quality remains a persistent challenge, but omics studies to uncover biological connections between natural variability in proteome and phenotype could provide validation for exploratory studies and offer new insights. Multivariate analysis of proteome and meat quality data from Longissimus thoracis et lumborum muscle samples taken early post-mortem from 34 Limousin-sired bulls was conducted. Using for the first-time label-free shotgun proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), 85 proteins were found to be related with tenderness, chewiness, stringiness and flavour sensory traits. The putative biomarkers were classified in five interconnected biological pathways; i) muscle contraction, ii) energy metabolism, iii) heat shock proteins, iv) oxidative stress, v) regulation of cellular processes and binding. Among the proteins, PHKA1 and STBD1 correlated with all four traits, as did the GO biological process 'generation of precursor metabolites and energy'. Optimal regression models explained a high level (58-71%) of phenotypic variability with proteomic data for each quality trait. The results of this study propose several regression equations and biomarkers to explain the variability of multiple beef eating quality traits. Thanks to annotation and network analyses, they further suggest protein interactions and mechanisms underpinning the physiological processes regulating these key quality traits. SIGNIFICANCE: The proteomic profiles of animals with divergent quality profiles have been compared in numerous studies; however, a wide range of phenotypic variation is required to better understand the mechanisms underpinning the complex biological pathways correlated with beef quality and protein interactions. We used multivariate regression analyses and bioinformatics to analyse shotgun proteomics data to decipher the molecular signatures involved in beef texture and flavour variations with a focus on multiple quality traits. We developed multiple regression equations to explain beef texture and flavour. Additionally, potential candidate biomarkers correlated with multiple beef quality traits are suggested, which could have utility as indicators of beef overall sensory quality. This study explained the biological process responsible for determining key quality traits such as tenderness, chewiness, stringiness, and flavour in beef, which will provide support for future beef proteomics studies.
Collapse
Affiliation(s)
- Yao Zhu
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Ruth M Hamill
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland.
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland; PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France.
| |
Collapse
|
13
|
Zou B, Jia F, Ji L, Li X, Dai R. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr 2023; 64:11239-11262. [PMID: 37452658 DOI: 10.1080/10408398.2023.2235435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meat quality holds significant importance for both consumers and meat producers. Various factors influence meat quality, and among them, mitochondria play a crucial role. Recent studies have indicated that mitochondria can sustain their functions and viability for a certain duration in postmortem muscles. Consequently, mitochondria have an impact on oxygen consumption, energy metabolism, and apoptotic processes, which in turn affect myoglobin levels, oxidative stress, meat tenderness, fat oxidation, and protein oxidation. Ultimately, these factors influence the color, tenderness, and flavor of meat. However, there is a dearth of comprehensive summaries addressing the effects of mitochondria on postmortem muscle physiology and meat quality. Therefore, this review aims to describe the characteristics of muscle mitochondria and their potential influence on muscle. Additionally, a suitable method for isolating mitochondria is presented. Lastly, the review emphasizes the regulation of oxygen consumption, energy metabolism, and apoptosis by postmortem muscle mitochondria, and provides an overview of relevant research and recent advancements. The ultimate objective of this review is to elucidate the underlying mechanisms through which mitochondria impact meat quality.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lin Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
14
|
Lamri M, Della Malva A, Djenane D, López-Pedrouso M, Franco D, Albenzio M, Lorenzo JM, Gagaoua M. Towards the discovery of goat meat quality biomarkers using label-free proteomics. J Proteomics 2023; 278:104868. [PMID: 36871648 DOI: 10.1016/j.jprot.2023.104868] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to identify for the first time protein biomarkers of meat quality traits from Longissimus thoracis (LT) muscle of goats (Capra hircus). Male goats of similar age and weight reared under extensive rearing conditions were used to relate the LT muscle proteome with multiple meat quality traits. The early post-mortem muscle proteome analyzed using label-free proteomics was compared among three texture clusters built using hierarchical clustering analysis. Twenty-five proteins were differentially abundant and their mining using bioinformatics revealed three major biological pathways to be involved: 10 muscle structure proteins (MYL1, MYL4, MYLPF, MYL6B, MYH1, MYH2, ACTA1, ACTBL2, FHL1 and MYOZ1); 6 energy metabolism proteins (ALDOA, PGAM2, ATP5F1A, GAPDH, PGM1 and ATP5IF1), and two heat shock proteins: HSPB1 (small) and HSPA8 (large). Seven other miscellaneous proteins belonging to pathways such as regulation, proteolysis, apoptosis, transport and binding, tRNA processing or calmodulin-binding were further identified to play a role in the variability of goat meat quality. The differentially abundant proteins were correlated with the goat meat quality traits in addition to multivariate regression models built to propose the first regression equations of each quality trait. This study is the first to highlight in a multi-trait quality comparison the early post-mortem changes in the goat LT muscle proteome. It also evidenced the mechanisms underpinning the development of several quality traits of interest in goat meat production along the major biochemical pathways at interplay. SIGNIFICANCE: The discovery of protein biomarkers in the field of meat research is an emerging topic. In the case of goat meat quality, very few studies using proteomics have been conducted with the aim of proposing biomarkers. Therefore, this study is the first to quest for biomarkers of goat meat quality using label-free shotgun proteomics with a focus on multiple quality traits. We identified the molecular signatures underlying goat meat texture variation, which were found to belong to muscle structure and related proteins, energy metabolism and heat shock proteins along with other proteins involved in regulation, proteolysis, apoptosis, transport and binding, tRNA processing or calmodulin-binding. We further evaluated the potential of the candidate biomarkers to explain meat quality using the differentially abundant proteins by means of correlation and regression analyses. The results allowed the explanation of the variation in multiple traits such as pH, color, water-holding capacity, drip and cook losses traits and texture.
Collapse
Affiliation(s)
- Melisa Lamri
- Department of Food Science, Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box. 17, Tizi-Ouzou 15000, Algeria
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 71121 Foggia, Italy
| | - Djamel Djenane
- Department of Food Science, Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box. 17, Tizi-Ouzou 15000, Algeria
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 71121 Foggia, Italy
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| | | |
Collapse
|
15
|
Lamri M, Della Malva A, Djenane D, Albenzio M, Gagaoua M. First insights into the dynamic protein changes in goat Semitendinosus muscle during the post-mortem period using high-throughput proteomics. Meat Sci 2023; 202:109207. [PMID: 37150067 DOI: 10.1016/j.meatsci.2023.109207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Proteomics plays a key and insightful role in meat research in the post-genomic era. This study aimed to unveil using a shotgun proteomics approach the temporal dynamic changes in early post-mortem proteome of goat Semitendinosus muscle. Therefore, the evolution and comparison of the muscle proteome over three post-mortem times (1, 8, and 24 h) was assessed. The temporal proteomics profiling quantified 748 proteins, from which 174 were differentially abundant (DAPs): n = 55 between 1 h versus 8 h, n = 52 between 8 h versus 24 h, and n = 154 between 1 h versus 24 h. The DAPs belong to myriad interconnected pathways. Binding, transport and calcium homeostasis, as well as muscle contraction and structure, exhibited an equivalent contribution during post-mortem, demonstrating their central role. Catalytic, metabolism and ATP metabolic process, and proteolysis were active pathways from the first hours of animal bleeding. Conversely, oxidative stress, response to hypoxia and cell redox homeostasis along chaperones and heat shock proteins accounted for the large proportion of the biochemical processes, more importantly after 8 h post-mortem. Overall, the conversion of muscle into meat is largely orchestrated by energy production as well as mitochondrial metabolism and homeostasis through calcium and permeability transition regulation. The study further evidenced the role of ribosomal proteins in goat post-mortem muscle, signifying that several proteins experiencing changes during storage, also undergo splicing modifications, which is for instance a mechanism known for mitochondrial proteins. Overall, temporal proteomics profiling of early post-mortem muscle proteome offers an unparalleled view of the sophisticated post-mortem biochemical and proteolytic events associated with goat meat quality determination.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratoire de Qualité et Sécurité des Aliments, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| | - Djamel Djenane
- Laboratoire de Qualité et Sécurité des Aliments, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| | | |
Collapse
|
16
|
Zhang R, Pavan E, Ross AB, Deb-Choudhury S, Dixit Y, Mungure TE, Realini CE, Cao M, Farouk MM. Molecular insights into quality and authentication of sheep meat from proteomics and metabolomics. J Proteomics 2023; 276:104836. [PMID: 36764652 DOI: 10.1016/j.jprot.2023.104836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Sheep meat (encompassing lamb, hogget and mutton) is an important source of animal protein in many countries, with a unique flavour and sensory profile compared to other red meats. Flavour, colour and texture are the key quality attributes contributing to consumer liking of sheep meat. Over the last decades, various factors from 'farm to fork', including production system (e.g., age, breed, feeding regimes, sex, pre-slaughter stress, and carcass suspension), post-mortem manipulation and processing (e.g., electrical stimulation, ageing, packaging types, and chilled and frozen storage) have been identified as influencing different aspects of sheep meat quality. However conventional meat-quality assessment tools are not able to elucidate the underlying mechanisms and pathways for quality variations. Advances in broad-based analytical techniques have offered opportunities to obtain deeper insights into the molecular changes of sheep meat which may become biomarkers for specific variations in quality traits and meat authenticity. This review provides an overview on how omics techniques, especially proteomics (including peptidomics) and metabolomics (including lipidomics and volatilomics) are applied to elucidate the variations in sheep meat quality, mainly in loin muscles, focusing on colour, texture and flavour, and as tools for authentication. SIGNIFICANCE: From this review, we observed that attempts have been made to utilise proteomics and metabolomics techniques on sheep meat products for elucidating pathways of quality variations due to various factors. For instance, the improvement of colour stability and tenderness could be associated with the changes to glycolysis, energy metabolism and endogenous antioxidant capacity. Several studies identify proteolysis as being important, but potentially conflicting for quality as the enhanced proteolysis improves tenderness and flavour, while reducing colour stability. The use of multiple analytical methods e.g., lipidomics, metabolomics, and volatilomics, detects a wider range of flavour precursors (including both water and lipid soluble compounds) that underlie the possible pathways for sheep meat flavour evolution. The technological advancement in omics (e.g., direct analysis-mass spectrometry) could make analysis of the proteins, lipids and metabolites in sheep meat routine, as well as enhance the confidence in quality determination and molecular-based assurance of meat authenticity.
Collapse
Affiliation(s)
- Renyu Zhang
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand.
| | - Enrique Pavan
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand; Unidad Integrada Balcarce (FCA, UNMdP - INTA, EEA Balcarce), Ruta 226 km 73.5, CP7620 Balcarce, Argentina
| | - Alastair B Ross
- Proteins and Metabolites, AgResearch Ltd, Lincoln, New Zealand
| | | | - Yash Dixit
- Food informatics, AgResearch Ltd, Palmerston North, New Zealand
| | | | - Carolina E Realini
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand
| | - Mingshu Cao
- Data Science, AgResearch Ltd, Palmerston North, New Zealand
| | - Mustafa M Farouk
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
17
|
Hou X, Zhang R, Yang M, Niu N, Wu J, Shu Z, Zhang P, Shi L, Zhao F, Wang L, Wang L, Zhang L. Metabolomics and lipidomics profiles related to intramuscular fat content and flavor precursors between Laiwu and Yorkshire pigs. Food Chem 2023; 404:134699. [DOI: 10.1016/j.foodchem.2022.134699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
18
|
Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals (Basel) 2022; 12:ani12212976. [PMID: 36359100 PMCID: PMC9654910 DOI: 10.3390/ani12212976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary A bibliometric analysis was carried out to know the evolution of research on genes associated with meat tenderness, of interest for the development of selection programs. Since 1993, studies have been limited to a few researchers in high-income countries due to the costs associated with the techniques. The main findings showed that the scientific production had a discontinuous growth because science experienced a significant change since approximately 2010. Marker-assisted selection was widely used, evaluating mainly CAPN (calpain) and CAST (calpastatin) genes for their contribution to meat tenderness, especially in cattle. However, the effects are small; therefore, genomic selection was implemented by genotyping thousands of single nucleotide polymorphisms (SNPs) for further explanation of genetic variation. The results shown are important for scholars to identify emerging methodologies and gaps in the literature and to know who the prolific authors and institutions in the field for possible collaborations, etc., are. Abstract Tenderness is one of the main characteristics of meat because it determines its price and acceptability. This is the first bibliometric study on the trend of research on the role of genes in meat tenderness. A total of 175 original and English-language articles published up to 2021 were retrieved from Scopus. The bibliometric analysis was carried out with VOSviewer (version 1.6.18, Eck and Waltman, Leiden, Netherlands) and complemented with the Analyze search results service from Scopus. Erroneous and duplicate data were eliminated, and incomplete information was added to standardize the results. Scientific production was evaluated by means of quantity, quality and structure indicators. As a first glance, 8.816% of authors have published more than 50% of papers mainly related to genes encoding the calpain (CAPN)-calpastatin (CAST) system and single nucleotide polymorphisms (SNPs). Among other findings, a strong link was found between the contribution of the main countries (led by the United States with) and their institutions (led by the USDA Agricultural Research Service with) to their gross domestic product. Most studies on the topic are published in the Journal of Animal Science, and other journals with high impact according to the number of citations and different metrics. Finally, when evaluating the most cited articles, the occurrence and association of the main keywords, it was confirmed that research is focused on the role of CAPN and CAST genes and of SNPs in beef tenderness. The change in science was emphasized; although marker-assisted selection is still used, genes have an infinitesimal effect on complex traits. Therefore, since about 2010, new research groups adopted genomic selection to evaluate dense panels of SNPs and better explain genetic variation in meat tenderness.
Collapse
|
19
|
Rocchetti G, Becchi PP, Lucini L, Cittadini A, Munekata PES, Pateiro M, Domínguez R, Lorenzo JM. Elderberry ( Sambucus nigra L.) Encapsulated Extracts as Meat Extenders against Lipid and Protein Oxidation during the Shelf-Life of Beef Burgers. Antioxidants (Basel) 2022; 11:antiox11112130. [PMID: 36358504 PMCID: PMC9687035 DOI: 10.3390/antiox11112130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we studied the impact of encapsulated elderberry extracts as natural meat extenders to preserve both the quality and the oxidative stability of beef burgers. In particular, the comprehensive chemical changes of beef burgers treated with different antioxidants, namely, (a) a control without antioxidants, (b) 0.5 g/kg sodium erythorbate (ERY), (c) 2.5 g/kg encapsulated elderberry extract (EE 2.5), and (d) 5 g/kg encapsulated elderberry extract (EE 5), each one packaged under modified atmosphere (80% O2 and 20% CO2) for 13 days storage at 2 ± 1 °C, were deeply evaluated. Overall, EEs showed a wide array of antioxidant compounds, namely polyphenols like anthocyanins, flavonols, and phenolic acids. Multivariate statistics provided marked chemical differences between burgers manufactured with EEs and synthetic antioxidants (ERY) during 13-days storage in terms of both metabolomic profiles and typical lipid/protein oxidation markers (such as malondialdehyde and total carbonyls). Most of the differences could be attributed to some discriminant compounds, namely glutathione, 4-hydroxy-2-nonenal, hydroxy/peroxy-derivatives of fatty acids, carbonyl compounds (such as 5-nonen-2-one and 1,5-octadien-3-one), and cholesterol. Interestingly, significant correlations (p < 0.01) were observed between malondialdehyde, total carbonyls, and these discriminant metabolites. The combination of spectrophotometric approaches and a high-throughput untargeted metabolomics analysis outlined a strong modulation of both lipid and protein oxidations, likely promoted by the encapsulated meat extender (elderberry), thus confirming its ability to delay oxidative phenomena during the shelf-life of beef burgers.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence: (G.R.); (R.D.); (J.M.L.)
| | - Pier Paolo Becchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Aurora Cittadini
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia N° 4, San Cibrao das Viñas, 32900 Ourense, Spain
- Instituto de Innovación y Sostenibilidad en la Cadena Agroalimentaria (IS-FOOD), Universidad Pública de Navarra (UPNA), Arrosadia Campus, 31006 Pamplona, Spain
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia N° 4, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia N° 4, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia N° 4, San Cibrao das Viñas, 32900 Ourense, Spain
- Correspondence: (G.R.); (R.D.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia N° 4, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (G.R.); (R.D.); (J.M.L.)
| |
Collapse
|
20
|
Severino M, Gagaoua M, Baldassini W, Ribeiro R, Torrecilhas J, Pereira G, Curi R, Chardulo LA, Padilha P, Neto OM. Proteomics Unveils Post-Mortem Changes in Beef Muscle Proteins and Provides Insight into Variations in Meat Quality Traits of Crossbred Young Steers and Heifers Raised in Feedlot. Int J Mol Sci 2022; 23:ijms232012259. [PMID: 36293120 PMCID: PMC9603352 DOI: 10.3390/ijms232012259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Proteomics has been widely used to study muscle biology and meat quality traits from different species including beef. Beef proteomics studies allow a better understanding of the biological processes related to meat quality trait determination. This study aimed to decipher by means of two-dimensional electrophoresis (2D-PAGE), mass spectrometry and bioinformatics the changes in post-mortem muscle with a focus on proteins differentially expressed in the Longissimus thoracis (LT) muscle of immunocastrated young heifers and steers. Carcass traits, chemical composition, pH, instrumental color (L*, a*, b*), cooking loss and Warner-Bratzler shear force (WBSF) of meat from F1 Montana-Nellore cattle were also evaluated. Backfat thickness (BFT) and intramuscular fat content (IMF) were 46.8% and 63.6% higher in heifers (p < 0.05), respectively, while evaporation losses (EL) were 10.22% lower compared to steers. No differences (p > 0.05) were observed for tenderness evaluated by WBSF (3, 10, and 17 days post-mortem), pH, and color traits (L*, a* and b*) between the experimental groups. The study revealed several proteins to be differentially expressed proteins in heifers compared steers (p < 0.05). In heifers, proteins involved in nutrient transport (TF, ALB, and MB), energy metabolism (ALDOA, GAPDH, and PKM), and oxidative stress and response to stress (HSPA8 and CA3) were associated with a greater BFT and IMF deposition. The higher expression of these proteins indicated greater oxidative capacity and lower glycolytic activity in the LT muscle of heifers. In steers, there was greater abundance of protein expression related to muscle contraction and proteins of structure (ACTA1, TPM2 and TNNT3), energy metabolism (ENO1, ENO3, PYGM, PGM1 and TPI1) and ATP metabolism (ATP5F1B, PEBP1 and AK1), indicating greater glycogenolysis in LT muscle, suggesting a shift in the glycolytic/oxidative fibers of steers.
Collapse
Affiliation(s)
- Mariane Severino
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Physiologie, Environnement et Génétique Pour l’Animal et les Systèmes d’Élevage (PEGASE), INRAE, Institut Agro, 35590 Saint-Gilles, France
- Correspondence: or (M.G.); (O.M.N.)
| | - Welder Baldassini
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Richard Ribeiro
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Juliana Torrecilhas
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Guilherme Pereira
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Rogério Curi
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- Physiologie, Environnement et Génétique Pour l’Animal et les Systèmes d’Élevage (PEGASE), INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - Luis Artur Chardulo
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Pedro Padilha
- Institute of Bioscience (IB), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Otávio Machado Neto
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
- Correspondence: or (M.G.); (O.M.N.)
| |
Collapse
|
21
|
Harlina PW, Maritha V, Musfiroh I, Huda S, Sukri N, Muchtaridi M. Possibilities of Liquid Chromatography Mass Spectrometry
(LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat
Products: A Mini Review. Food Sci Anim Resour 2022; 42:744-761. [PMID: 36133639 PMCID: PMC9478982 DOI: 10.5851/kosfa.2022.e37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Putri Widyanti Harlina
- Department of Food Industrial Technology,
Faculty of Agro-Industrial Technology, Universitas
Padjadjaran, Bandung 45363, Indonesia
- Corresponding author: Putri
Widyanti Harlina, Department of Food Industrial Technology, Faculty of
Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia,
Tel: +62-22-7798844, E-mail:
| | - Vevi Maritha
- Department of Pharmaceutical Analysis and
Medicinal Chemistry, Faculty of Pharmacy, Universitas
Padjadjaran, Bandung 45363, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and
Medicinal Chemistry, Faculty of Pharmacy, Universitas
Padjadjaran, Bandung 45363, Indonesia
| | - Syamsul Huda
- Department of Food Industrial Technology,
Faculty of Agro-Industrial Technology, Universitas
Padjadjaran, Bandung 45363, Indonesia
| | - Nandi Sukri
- Department of Food Industrial Technology,
Faculty of Agro-Industrial Technology, Universitas
Padjadjaran, Bandung 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and
Medicinal Chemistry, Faculty of Pharmacy, Universitas
Padjadjaran, Bandung 45363, Indonesia
- Corresponding author:
Muchtaridi Muchtaridi, Department of Pharmaceutical Analysis and Medicinal
Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363,
Indonesia, Tel: +62-22-8784288888 (ext. 3210), E-mail:
| |
Collapse
|
22
|
Gagaoua M. Recent Advances in OMICs Technologies and Application for Ensuring Meat Quality, Safety and Authenticity. Foods 2022; 11:foods11162532. [PMID: 36010532 PMCID: PMC9407444 DOI: 10.3390/foods11162532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
23
|
Letcher SM, Rubio NR, Ashizawa RN, Saad MK, Rittenberg ML, McCreary A, Ali A, Calkins OP, Trimmer BA, Kaplan DL. In vitro Insect Fat Cultivation for Cellular Agriculture Applications. ACS Biomater Sci Eng 2022; 8:3785-3796. [PMID: 35977409 DOI: 10.1021/acsbiomaterials.2c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cell-cultured fat could provide important elements of flavor, nutrition, and texture to enhance the quality and therefore expand consumer adoption of alternative meat products. In contrast to cells from livestock animals, insect cells have been proposed as a relatively low-cost and scalable platform for tissue engineering and muscle cell-derived cultured meat production. Furthermore, insect fat cells have long been cultured and characterized for basic biology and recombinant protein production but not for food production. To develop a food-relevant approach to insect fat cell cultivation and tissue engineering, Manduca sexta cells were cultured and induced to accumulate lipids in 2D and 3D formats within decellularized mycelium scaffolding. The resultant in vitro fat tissues were characterized and compared to in vivo fat tissue data by imaging, lipidomics, and texture analyses. The cells exhibited robust lipid accumulation when treated with a 0.1 mM soybean oil emulsion and had "healthier" fat profiles, as measured by the ratio of unsaturated to saturated fatty acids. Mycelium scaffolding provided a simple, food-grade approach to support the 3D cell cultures and lipid accumulation. This approach provides a low-cost, scalable, and nutritious method for cultured fat production.
Collapse
Affiliation(s)
- Sophia M Letcher
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Natalie R Rubio
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Reina N Ashizawa
- Department of Biology, Tufts University, Medford, Massachusetts 02155, United States
| | - Michael K Saad
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Miriam L Rittenberg
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Aidan McCreary
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Adham Ali
- Department of Biology, Tufts University, Medford, Massachusetts 02155, United States.,Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Olivia P Calkins
- Department of Chemical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Barry A Trimmer
- Department of Biology, Tufts University, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
24
|
New insights into the mechanism of freeze-induced damage based on ice crystal morphology and exudate proteomics. Food Res Int 2022; 161:111757. [DOI: 10.1016/j.foodres.2022.111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
|
25
|
Impact of Cattle Feeding Strategy on the Beef Metabolome. Metabolites 2022; 12:metabo12070640. [PMID: 35888764 PMCID: PMC9320084 DOI: 10.3390/metabo12070640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 02/06/2023] Open
Abstract
The present study explored changes in the meat metabolome of animals subjected to different finishing systems and growth rates. Thirty-six Angus × Nellore crossbred steers were used in a completely randomized design with four treatments: (1) feedlot system with high average daily gain (ADG; FH); (2) feedlot system with low ADG (FL); (3) pasture system with high ADG (PH); and (4) pasture system with low ADG (PL). After harvest and chilling, Longissimus thoracis (LT) muscle samples were taken for metabolite profile analysis using nuclear magnetic resonance. Spectrum was analyzed using chenomx software, and multi- and mega-variate data analyses were performed. The PLS-DA showed clear separation between FH and PL groups and overlap among treatments with different finishing systems but similar for matching ADG (FL and PH) treatments. Using a VIP cut-off of around 1.0, ATP and fumarate were shown to be greater in meat from PL cattle, while succinate, leucine, AMP, glutamate, carnosine, inosine, methionine, G1P, and choline were greater in meat from FH. Comparing FL and PH treatments, glutamine, carnosine, urea, NAD+, malonate, lactate, isoleucine, and alanine were greater in the meat of PH cattle, while G6P and betaine were elevated in that of FL cattle. Relevant pathways were also identified by differences in growth rate (FH versus PL) and finishing system were also noted. Growth rate caused a clear difference in meat metabolism that was highlighted by energy metabolism and associated pathways, while the feeding system tended to alter protein and lipid metabolism.
Collapse
|
26
|
Li X, Liu X, Song P, Zhao J, Zhang J, Zhao J. Skeletal muscle mass, meat quality and antioxidant status in growing lambs supplemented with guanidinoacetic acid. Meat Sci 2022; 192:108906. [PMID: 35850029 DOI: 10.1016/j.meatsci.2022.108906] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Guanidinoacetic acid (GAA) exists naturally as a precursor of creatine, which possesses several biological functions. In the present study, the effects of dietary GAA supplementation on skeletal muscle mass and meat quality of lambs were investigated. The GAA supplementation increased final body weight, promoted muscle mass and changed the distribution of myofiber size. Meanwhile, elevated ultimate pH and water holding capacity (WHC) of resulting meat were observed in GAA fed lambs. Moreover, the total antioxidative capacity was elevated. Dietary GAA accelerated myofibril protein synthesis through regulation with IGF-1/Akt/mTOR signaling pathway and minimized protein breakdown via regulating abundances of myostatin and phosphorylated FoxO1. In vitro, GAA treatment inhibited sheep primary myoblasts proliferation, and enhanced its myogenic potential. Collectively, these results suggested that GAA might be a feed additive for use by the lamb meat industry as it has potential to improve growth performance, antioxidant status and WHC of resulting meat.
Collapse
Affiliation(s)
- Xinrui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xiaomei Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jianxin Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
27
|
Wang B, Zhao X, Zhang B, Cui Y, Nueraihemaiti M, Kou Q, Luo H. Assessment of components related to flavor and taste in Tan-lamb meat under different silage-feeding regimens using integrative metabolomics. Food Chem X 2022; 14:100269. [PMID: 35252839 PMCID: PMC8892073 DOI: 10.1016/j.fochx.2022.100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Two untargeted metabolomics approaches based on gas chromatography mass spectrometry and ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry were used to identify the effects of different feeding regimes (concentrate, corn silage, alfalfa silage, mulberry leaf silage) on the potential meat flavor and taste components of Tan-lamb. Among 31 identified volatiles, hexanal was affected by the alfalfa silage diet, and 3-hydroxydodecanoic acid was changed by the mulberry leaf silage diet. l-Pipecolic acid (area under the curve = 1, fold change = 0.18-0.48) and trimethylamine N-oxide (area under the curve = 1, fold change = 5.26-22.84) was the potential best discriminant biomarker under alfalfa silage and concentrate feeding, respectively. The hydrophilic components were more readily changed by feeding regimes than volatile flavor compounds. Our findings are helpful for the illustration of Tan-lamb meat chemistry and producing high-quality lamb meat with improved flavor and taste by corn silage, alfalfa silage, or mulberry leaf silage.
Collapse
Key Words
- AS, alfalfa silage-based diet
- AUC, area under the curve
- CON, concentrate-based diet
- CS, corn silage-based diet
- DFMs, differential metabolites
- DVCs, differential volatile metabolites
- ESI, electrospray ionization
- FC, fold change
- Foodomics
- GC-MS, gas chromatograph-mass spectrograph
- IDA, information dependent acquisition
- IMF, intramuscular fat
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MS, mulberry leaf silage-based diet
- OPLS-DA, orthogonal partial least squares discriminant analysis
- PCA, principal component analysis
- PLS-DA, partial least squares discriminant analysis
- QC, quality control
- RI, retention index
- SPME, solid-phase microextraction
- TMAO, Trimethylamine N-oxide
- Tan lamb meat
- UHPLC-QTOF-MS
- UHPLC-QTOF-MS, ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry
- VIP, variable importance in the projection
- Volatiles
- Water-soluble flavor precursors
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xingang Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Boyan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Muzaipaier Nueraihemaiti
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Qifang Kou
- Ningxia Hongsipu District Tianyuan Liangzhong Sheep Breeding Co., Ltd., Wuzhong 751999, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
28
|
Xiao Y, Shen Q, Gu M, Jiao Y, Liu Y. Changes in transcriptome of goat muscle during frozen, ice‐temperature and chilled storage within 7 days. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Xiao
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an Shaanxi 710062 China
| | - Qian Shen
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an Shaanxi 710062 China
| | - Minghui Gu
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an Shaanxi 710062 China
| | - Yang Jiao
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an Shaanxi 710062 China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an Shaanxi 710062 China
| |
Collapse
|
29
|
López-Pedrouso M, Lorenzo JM, Varela Z, Fernández JÁ, Franco D. Finding Biomarkers in Antioxidant Molecular Mechanisms for Ensuring Food Safety of Bivalves Threatened by Marine Pollution. Antioxidants (Basel) 2022; 11:antiox11020369. [PMID: 35204251 PMCID: PMC8868406 DOI: 10.3390/antiox11020369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aquaculture production as an important source of protein for our diet is sure to continue in the coming years. However, marine pollution will also likely give rise to serious problems for the food safety of molluscs. Seafood is widely recognized for its high nutritional value in our diet, leading to major health benefits. However, the threat of marine pollution including heavy metals, persistent organic pollutants and other emerging pollutants is of ever-growing importance and seafood safety may not be guaranteed. New approaches for the search of biomarkers would help us to monitor pollutants and move towards a more global point of view; protocols for the aquaculture industry would also be improved. Rapid and accurate detection of food safety problems in bivalves could be carried out easily by protein biomarkers. Hence, proteomic technologies could be considered as a useful tool for the discovery of protein biomarkers as a first step to improve the protocols of seafood safety. It has been demonstrated that marine pollutants are altering the bivalve proteome, affecting many biological processes and molecular functions. The main response mechanism of bivalves in a polluted marine environment is based on the antioxidant defense system against oxidative stress. All these proteomic data provided from the literature suggest that alterations in oxidative stress due to marine pollution are closely linked to robust and confident biomarkers for seafood safety.
Collapse
Affiliation(s)
- María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Zulema Varela
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - J. Ángel Fernández
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - Daniel Franco
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence:
| |
Collapse
|
30
|
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Ibáñez E, Cifuentes A. Foodomics: Analytical Opportunities and Challenges. Anal Chem 2022; 94:366-381. [PMID: 34813295 PMCID: PMC8756396 DOI: 10.1021/acs.analchem.1c04678] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Bárbara Socas-Rodríguez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| |
Collapse
|
31
|
Zhang Y, Tian X, Jiao Y, Liu Q, Li R, Wang W. An out of box thinking: the changes of iron-porphyrin during meat processing and gastrointestinal tract and some methods for reducing its potential health hazard. Crit Rev Food Sci Nutr 2021; 63:1390-1405. [PMID: 34387535 DOI: 10.1080/10408398.2021.1963946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron-porphyrin is a very important substance in organisms, especially in animals. It is not only the source of iron in human body, but is also the catalytic center of many reactions. Previous studies suggested that adequate intake of iron was important for the health of human, especially for children and pregnant women. However, associated diseases caused by iron over-intake and excessive meat consumption suggested its potential harmfulness for human health. During meat processing, Iron-porphyrin will cause the oxidation of proteins and fatty acids. In the gastrointestinal tract, iron-porphyrin can induce the production of malondialdehyde, fats oxidation, and indirectly cause oxidation of amino acids and nitrates etc. Iron-porphyrin enters the intestinal tract and disturbs the balance of intestinal flora. Finally, some common measures for inhibiting its activity are introduced, including the use of chelating agent, antioxidants, competitive inhibitor, etc., as well as give the hypothesis that sodium chloride increases the catalytic activity of iron-porphyrin. The purpose of this review is to present an overview of current knowledge about the changes of iron-porphyrin in the whole technico- and gastrointesto- processing axis and to provide ideas for further research in meat nutrition.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qiubo Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
32
|
Gagaoua M, Warner RD, Purslow P, Ramanathan R, Mullen AM, López-Pedrouso M, Franco D, Lorenzo JM, Tomasevic I, Picard B, Troy D, Terlouw EMC. Dark-cutting beef: A brief review and an integromics meta-analysis at the proteome level to decipher the underlying pathways. Meat Sci 2021; 181:108611. [PMID: 34157500 DOI: 10.1016/j.meatsci.2021.108611] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/06/2023]
Abstract
Comprehensive characterization of the post-mortem muscle proteome defines a fundamental goal in meat proteomics. During the last decade, proteomics tools have been applied in the field of foodomics to help decipher factors underpinning meat quality variations and to enlighten us, through data-driven methods, on the underlying mechanisms leading to meat quality defects such as dark-cutting meat known also as dark, firm and dry (DFD) meat. In cattle, several proteomics studies have focused on the extent to which changes in the post-mortem muscle proteome relate to dark-cutting beef development. The present data-mining study firstly reviews proteomics studies which investigated dark-cutting beef, and secondly, gathers the protein biomarkers that differ between dark-cutting versus beef with normal-pH in a unique repertoire. A list of 130 proteins from eight eligible studies was curated and mined through bioinformatics for Gene Ontology annotations, molecular pathways enrichments, secretome analysis and biological pathways comparisons to normal beef color from a previous meta-analysis. The major biological pathways underpinning dark-cutting beef at the proteome level have been described and deeply discussed in this integromics study.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter Purslow
- Centro de Investigacion Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7001BBO, Argentina
| | - Ranjith Ramanathan
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Maria López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Igor Tomasevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080, Belgrade, Serbia
| | - Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - E M Claudia Terlouw
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
33
|
Zhu Y, Gagaoua M, Mullen AM, Viala D, Rai DK, Kelly AL, Sheehan D, Hamill RM. Shotgun proteomics for the preliminary identification of biomarkers of beef sensory tenderness, juiciness and chewiness from plasma and muscle of young Limousin-sired bulls. Meat Sci 2021; 176:108488. [DOI: 10.1016/j.meatsci.2021.108488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
|
34
|
A Proteomic Study for the Discovery of Beef Tenderness Biomarkers and Prediction of Warner-Bratzler Shear Force Measured on Longissimus thoracis Muscles of Young Limousin-Sired Bulls. Foods 2021; 10:foods10050952. [PMID: 33925360 PMCID: PMC8145402 DOI: 10.3390/foods10050952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Beef tenderness is of central importance in determining consumers’ overall liking. To better understand the underlying mechanisms of tenderness and be able to predict it, this study aimed to apply a proteomics approach on the Longissimus thoracis (LT) muscle of young Limousin-sired bulls to identify candidate protein biomarkers. A total of 34 proteins showed differential abundance between the tender and tough groups. These proteins belong to biological pathways related to muscle structure, energy metabolism, heat shock proteins, response to oxidative stress, and apoptosis. Twenty-three putative protein biomarkers or their isoforms had previously been identified as beef tenderness biomarkers, while eleven were novel. Using regression analysis to predict shear force values, MYOZ3 (Myozenin 3), BIN1 (Bridging Integrator-1), and OGN (Mimecan) were the major proteins retained in the regression model, together explaining 79% of the variability. The results of this study confirmed the existing knowledge but also offered new insights enriching the previous biomarkers of tenderness proposed for Longissimus muscle.
Collapse
|
35
|
Purslow PP, Gagaoua M, Warner RD. Insights on meat quality from combining traditional studies and proteomics. Meat Sci 2020; 174:108423. [PMID: 33422773 DOI: 10.1016/j.meatsci.2020.108423] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Following a century of major discoveries on the mechanisms determining meat colour and tenderness using traditional scientific methods, further research into complex and interactive factors contributing to variations in meat quality is increasingly being based on data-driven "omics" approaches such as proteomics. Using two recent meta-analyses of proteomics studies on beef colour and tenderness, this review examines how knowledge of the mechanisms and factors underlying variations in these meat qualities can be both confirmed and extended by data-driven approaches. While proteomics seems to overlook some sources of variations in beef toughness, it highlights the role of post-mortem energy metabolism in setting the conditions for development of meat colour and tenderness, and also points to the complex interplay of energy metabolism, calcium regulation and mitochondrial metabolism. In using proteomics as a future tool for explaining variations in meat quality, the need for confirmation by further hypothesis-driven experimental studies of post-hoc explanations of why certain proteins are biomarkers of beef quality in data-driven studies is emphasised.
Collapse
Affiliation(s)
- Peter P Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia.
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| |
Collapse
|
36
|
López-Pedrouso M, Lorenzo JM, Gagaoua M, Franco D. Application of Proteomic Technologies to Assess the Quality of Raw Pork and Pork Products: An Overview from Farm-To-Fork. BIOLOGY 2020; 9:E393. [PMID: 33187082 PMCID: PMC7696211 DOI: 10.3390/biology9110393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The quality assurance of pork meat and products includes the study of factors prior to slaughter such as handling practices, diet and castration, and others during the post-mortem period such as aging, storage, and cooking. The development over the last two decades of high-throughput techniques such as proteomics offer great opportunities to examine the molecular mechanisms and study a priori the proteins in the living pigs and main post-mortem changes and post-translational modifications during the conversion of the muscle into the meat. When the most traditional crossbreeding and rearing strategies to improve pork quality were assessed, the main findings indicate that metabolic pathways early post-mortem were affected. Among the factors, it is well documented that pre-slaughter stress provokes substantial changes in the pork proteome that led to defective meat, and consequently, novel protein biomarkers should be identified and validated. Additionally, modifications in pork proteins had a strong effect on the sensory attributes due to the impact of processing, either physical or chemical. Maillard compounds and protein oxidation should be monitored in order to control proteolysis and volatile compounds. Beyond this, the search of bioactive peptides is becoming a paramount goal of the food and nutraceutical industry. In this regard, peptidomics is a major tool to identify and quantify these peptides with beneficial effects for human health.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15 DY05 Dublin 15, Ireland;
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| |
Collapse
|