1
|
Xie S, Hoehl S, Moeskops M, Kayhan E, Kliesch C, Turtleton B, Köster M, Cichy RM. Visual category representations in the infant brain. Curr Biol 2022; 32:5422-5432.e6. [PMID: 36455560 PMCID: PMC9796816 DOI: 10.1016/j.cub.2022.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Visual categorization is a human core cognitive capacity1,2 that depends on the development of visual category representations in the infant brain.3,4,5,6,7 However, the exact nature of infant visual category representations and their relationship to the corresponding adult form remains unknown.8 Our results clarify the nature of visual category representations from electroencephalography (EEG) data in 6- to 8-month-old infants and their developmental trajectory toward adult maturity in the key characteristics of temporal dynamics,2,9 representational format,10,11,12 and spectral properties.13,14 Temporal dynamics change from slowly emerging, developing representations in infants to quickly emerging, complex representations in adults. Despite those differences, infants and adults already partly share visual category representations. The format of infants' representations is visual features of low to intermediate complexity, whereas adults' representations also encode high-complexity features. Theta band activity contributes to visual category representations in infants, and these representations are shifted to the alpha/beta band in adults. Together, we reveal the developmental neural basis of visual categorization in humans, show how information transmission channels change in development, and demonstrate the power of advanced multivariate analysis techniques in infant EEG research for theory building in developmental cognitive science.
Collapse
Affiliation(s)
- Siying Xie
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee, Berlin 14195, Germany.
| | - Stefanie Hoehl
- Faculty of Psychology, Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse, Wien 1010, Austria; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße, 04103 Leipzig, Germany
| | - Merle Moeskops
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee, Berlin 14195, Germany
| | - Ezgi Kayhan
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße, 04103 Leipzig, Germany; Department of Developmental Psychology, University of Potsdam, Karl-Liebknecht-Straße, 14476 Potsdam, Germany
| | - Christian Kliesch
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße, 04103 Leipzig, Germany; Department of Developmental Psychology, University of Potsdam, Karl-Liebknecht-Straße, 14476 Potsdam, Germany
| | - Bert Turtleton
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee, Berlin 14195, Germany
| | - Moritz Köster
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee, Berlin 14195, Germany; Institute of Psychology, University of Regensburg, Universitätsstraße, 93053 Regensburg, Germany
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee, Berlin 14195, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden, 10099 Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Charitéplatz, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Unter den Linden, 10099 Berlin, Germany.
| |
Collapse
|
2
|
Chen Y, Allison O, Green HL, Kuschner ES, Liu S, Kim M, Slinger M, Mol K, Chiang T, Bloy L, Roberts TPL, Edgar JC. Maturational trajectory of fusiform gyrus neural activity when viewing faces: From 4 months to 4 years old. Front Hum Neurosci 2022; 16:917851. [PMID: 36034116 PMCID: PMC9411513 DOI: 10.3389/fnhum.2022.917851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Infant and young child electrophysiology studies have provided information regarding the maturation of face-encoding neural processes. A limitation of previous research is that very few studies have examined face-encoding processes in children 12-48 months of age, a developmental period characterized by rapid changes in the ability to encode facial information. The present study sought to fill this gap in the literature via a longitudinal study examining the maturation of a primary node in the face-encoding network-the left and right fusiform gyrus (FFG). Whole-brain magnetoencephalography (MEG) data were obtained from 25 infants with typical development at 4-12 months, and with follow-up MEG exams every ∼12 months until 3-4 years old. Children were presented with color images of Face stimuli and visual noise images (matched on spatial frequency, color distribution, and outer contour) that served as Non-Face stimuli. Using distributed source modeling, left and right face-sensitive FFG evoked waveforms were obtained from each child at each visit, with face-sensitive activity identified via examining the difference between the Non-Face and Face FFG timecourses. Before 24 months of age (Visits 1 and 2) the face-sensitive FFG M290 response was the dominant response, observed in the left and right FFG ∼250-450 ms post-stimulus. By 3-4 years old (Visit 4), the left and right face-sensitive FFG response occurred at a latency consistent with a face-sensitive M170 response ∼100-250 ms post-stimulus. Face-sensitive left and right FFG peak latencies decreased as a function of age (with age explaining greater than 70% of the variance in face-sensitive FFG latency), and with an adult-like FFG latency observed at 3-4 years old. Study findings thus showed face-sensitive FFG maturational changes across the first 4 years of life. Whereas a face-sensitive M290 response was observed under 2 years of age, by 3-4 years old, an adult-like face-sensitive M170 response was observed bilaterally. Future studies evaluating the maturation of face-sensitive FFG activity in infants at risk for neurodevelopmental disorders are of interest, with the present findings suggesting age-specific face-sensitive neural markers of a priori interest.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Heather L. Green
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Emily S. Kuschner
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michelle Slinger
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Taylor Chiang
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy P. L. Roberts
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J. Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Hervé E, Mento G, Desnous B, François C. Challenges and new perspectives of developmental cognitive EEG studies. Neuroimage 2022; 260:119508. [PMID: 35882267 DOI: 10.1016/j.neuroimage.2022.119508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022] Open
Abstract
Despite shared procedures with adults, electroencephalography (EEG) in early development presents many specificities that need to be considered for good quality data collection. In this paper, we provide an overview of the most representative early cognitive developmental EEG studies focusing on the specificities of this neuroimaging technique in young participants, such as attrition and artifacts. We also summarize the most representative results in developmental EEG research obtained in the time and time-frequency domains and use more advanced signal processing methods. Finally, we briefly introduce three recent standardized pipelines that will help promote replicability and comparability across experiments and ages. While this paper does not claim to be exhaustive, it aims to give a sufficiently large overview of the challenges and solutions available to conduct robust cognitive developmental EEG studies.
Collapse
Affiliation(s)
- Estelle Hervé
- CNRS, LPL, Aix-Marseille University, 5 Avenue Pasteur, Aix-en-Provence 13100, France
| | - Giovanni Mento
- Department of General Psychology, University of Padova, Padova 35131, Italy; Padua Neuroscience Center (PNC), University of Padova, Padova 35131, Italy
| | - Béatrice Desnous
- APHM, Reference Center for Rare Epilepsies, Timone Children Hospital, Aix-Marseille University, Marseille 13005, France; Inserm, INS, Aix-Marseille University, Marseille 13005, France
| | - Clément François
- CNRS, LPL, Aix-Marseille University, 5 Avenue Pasteur, Aix-en-Provence 13100, France.
| |
Collapse
|
4
|
Feng X, Monzalvo K, Dehaene S, Dehaene-Lambertz G. Evolution of reading and face circuits during the first three years of reading acquisition. Neuroimage 2022; 259:119394. [PMID: 35718022 DOI: 10.1016/j.neuroimage.2022.119394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Although words and faces activate neighboring regions in the fusiform gyrus, we lack an understanding of how such category selectivity emerges during development. To investigate the organization of reading and face circuits at the earliest stage of reading acquisition, we measured the fMRI responses to words, faces, houses, and checkerboards in three groups of 60 French children: 6-year-old pre-readers, 6-year-old beginning readers and 9-year-old advanced readers. The results showed that specific responses to written words were absent prior to reading, but emerged in beginning readers, irrespective of age. Likewise, specific responses to faces were barely visible in pre-readers and continued to evolve in the 9-year-olds, yet primarily driven by age rather than by schooling. Crucially, the sectors of ventral visual cortex that become specialized for words and faces harbored their own functional connectivity prior to reading acquisition: the VWFA with left-hemispheric spoken language areas, and the FFA with the contralateral region and the amygdalae. The results support the view that reading acquisition occurs through the recycling of a pre-existing but plastic circuit which, in pre-readers, already connects the VWFA site to other distant language areas. We argue that reading acquisition does not compete with the face system directly, through a pruning of preexisting face responses, but indirectly, by hindering the slow growth of face responses in the left hemisphere, thus increasing a pre-existing right hemispheric bias.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Karla Monzalvo
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Collège de France, Université PSL Paris Sciences Lettres, Paris, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France.
| |
Collapse
|
5
|
Abstract
Categorization is the basis of thinking and reasoning. Through the analysis of infants’ gaze, we describe the trajectory through which visual object representations in infancy incrementally match categorical object representations as mapped onto adults’ visual cortex. Using a methodological approach that allows for a comparison of findings obtained with behavioral and brain measures in infants and adults, we identify the transition from visual exploration guided by perceptual salience to an organization of objects by categories, which begins with the animate–inanimate distinction in the first months of life and continues with a spurt of biologically relevant categories (human bodies, nonhuman bodies, nonhuman faces, small natural objects) through the second year of life. Humans make sense of the world by organizing things into categories. When and how does this process begin? We investigated whether real-world object categories that spontaneously emerge in the first months of life match categorical representations of objects in the human visual cortex. Using eye tracking, we measured the differential looking time of 4-, 10-, and 19-mo-olds as they looked at pairs of pictures belonging to eight animate or inanimate categories (human/nonhuman, faces/bodies, real-world size big/small, natural/artificial). Taking infants’ looking times as a measure of similarity, for each age group, we defined a representational space where each object was defined in relation to others of the same or of a different category. This space was compared with hypothesis-based and functional MRI-based models of visual object categorization in the adults’ visual cortex. Analyses across different age groups showed that, as infants grow older, their looking behavior matches neural representations in ever-larger portions of the adult visual cortex, suggesting progressive recruitment and integration of more and more feature spaces distributed over the visual cortex. Moreover, the results characterize infants’ visual categorization as an incremental process with two milestones. Between 4 and 10 mo, visual exploration guided by saliency gives way to an organization according to the animate–inanimate distinction. Between 10 and 19 mo, a category spurt leads toward a mature organization. We propose that these changes underlie the coupling between seeing and thinking in the developing mind.
Collapse
|
6
|
Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct Funct 2021; 227:599-629. [PMID: 34731327 DOI: 10.1007/s00429-021-02370-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The right hemispheric lateralization of face recognition, which is well documented and appears to be specific to the human species, remains a scientific mystery. According to a long-standing view, the evolution of language, which is typically substantiated in the left hemisphere, competes with the cortical space in that hemisphere available for visuospatial processes, including face recognition. Over the last decade, a specific hypothesis derived from this view according to which neural competition in the left ventral occipito-temporal cortex with selective representations of letter strings causes right hemispheric lateralization of face recognition, has generated considerable interest and research in the scientific community. Here, a systematic review of studies performed in various populations (infants, children, literate and illiterate adults, left-handed adults) and methodologies (behavior, lesion studies, (intra)electroencephalography, neuroimaging) offers little if any support for this reading lateralized neural competition hypothesis. Specifically, right-lateralized face-selective neural activity already emerges at a few months of age, well before reading acquisition. Moreover, consistent evidence of face recognition performance and its right hemispheric lateralization being modulated by literacy level during development or at adulthood is lacking. Given the absence of solid alternative hypotheses and the key role of neural competition in the sensory-motor cortices for selectivity of representations, learning, and plasticity, a revised language-related neural competition hypothesis for the right hemispheric lateralization of face recognition should be further explored in future research, albeit with substantial conceptual clarification and advances in methodological rigor.
Collapse
|
7
|
Chen Y, Slinger M, Edgar JC, Bloy L, Kuschner ES, Kim M, Green HL, Chiang T, Yount T, Liu S, Lebus J, Lam S, Stephen JM, Huang H, Roberts TPL. Maturation of hemispheric specialization for face encoding during infancy and toddlerhood. Dev Cogn Neurosci 2021; 48:100918. [PMID: 33571846 PMCID: PMC7876542 DOI: 10.1016/j.dcn.2021.100918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Using infant magnetoencephalography (MEG), study findings show maturational changes to fusiform gyrus (FFG) activity when viewing faces. Earlier right FFG activity to face stimuli is associated with better social and cognitive ability. Stronger right- than left-hemisphere FFG responses to face stimuli are most evident after 1 year of age.
Little is known about the neural processes associated with attending to social stimuli during infancy and toddlerhood. Using infant magnetoencephalography (MEG), fusiform gyrus (FFG) activity while processing Face and Non-Face stimuli was examined in 46 typically developing infants 3 to 24 months old (28 males). Several findings indicated FFG maturation throughout the first two years of life. First, right FFG responses to Face stimuli decreased as a function of age. Second, hemispheric specialization to the face stimuli developed somewhat slowly, with earlier right than left FFG peak activity most evident after 1 year of age. Right FFG activity to Face stimuli was of clinical interest, with an earlier right FFG response associated with better performance on tests assessing social and cognitive ability. Building on the above, clinical studies examining maturational change in FFG activity (e.g., lateralization and speed) in infants at-risk for childhood disorders associated with social deficits are of interest to identify atypical FFG maturation before a formal diagnosis is possible.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Michelle Slinger
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Taylor Chiang
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tess Yount
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jill Lebus
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Samantha Lam
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Hao Huang
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Lochy A, Schiltz C, Rossion B. The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Dev Sci 2020; 23:e12914. [PMID: 31618490 PMCID: PMC7379294 DOI: 10.1111/desc.12914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
The developmental origin of human adults' right hemispheric dominance in response to face stimuli remains unclear, in particular because young infants' right hemispheric advantage in face-selective response is no longer present in preschool children, before written language acquisition. Here we used fast periodic visual stimulation (FPVS) with scalp electroencephalography (EEG) to test 52 preschool children (5.5 years old) at two different levels of face discrimination: discrimination of faces against objects, measuring face-selectivity, or discrimination between individual faces. While the contrast between faces and nonface objects elicits strictly bilateral occipital responses in children, strengthening previous observations, discrimination of individual faces in the same children reveals a strong right hemispheric lateralization over the occipitotemporal cortex. Picture-plane inversion of the face stimuli significantly decreases the individual discrimination response, although to a much smaller extent than in older children and adults tested with the same paradigm. However, there is only a nonsignificant trend for a decrease in right hemispheric lateralization with inversion. There is no relationship between the right hemispheric lateralization in individual face discrimination and preschool levels of readings abilities. The observed difference in the right hemispheric lateralization obtained in the same population of children with two different paradigms measuring neural responses to faces indicates that the level of visual discrimination is a key factor to consider when making inferences about the development of hemispheric lateralization of face perception in the human brain.
Collapse
Affiliation(s)
- Aliette Lochy
- Cognitive Science and Assessment InstituteEducation, Culture, Cognition, and Society Research UnitUniversity of LuxemburgEsch‐sur AlzetteLuxembourg
| | - Christine Schiltz
- Cognitive Science and Assessment InstituteEducation, Culture, Cognition, and Society Research UnitUniversity of LuxemburgEsch‐sur AlzetteLuxembourg
| | - Bruno Rossion
- IPSYUniversité Catholique de LouvainLouvain‐La‐NeuveBelgium
- CNRSCRANUniversité de LorraineNancyFrance
- CHRU‐NancyUniversité de LorraineNancyFrance
| |
Collapse
|
9
|
Abstract
The influence of arousal on visual attention was examined in 6.5-month-old infants (N = 42) in the context of a visual search task. Phasic increases in arousal were induced with brief sounds and measured with pupil dilation. Evidence was found for an inverted U-shaped relation between pupil dilation amplitude and visual orienting, with highest likelihood of a target fixation at intermediate levels of arousal. Effects were similar for facial stimuli and simple objects. Together, these results contribute to our understanding of the relation between arousal and attention in infancy. The study also demonstrates that infants have a bias to orient to human eyes, even when presented in isolation.
Collapse
Affiliation(s)
| | | | - Terje Falck‐Ytter
- Uppsala University
- Karolinska Institutet
- Swedish Collegium for Advanced Studies (SCAS)
| |
Collapse
|
10
|
Issard C, Gervain J. Variability of the hemodynamic response in infants: Influence of experimental design and stimulus complexity. Dev Cogn Neurosci 2018; 33:182-193. [PMID: 29397345 PMCID: PMC6969282 DOI: 10.1016/j.dcn.2018.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
Measuring brain activity in developmental populations remains a major challenge despite great technological advances. Among the numerous available methods, functional near-infrared spectroscopy (fNIRS), an imaging modality that probes the hemodynamic response, is a powerful tool for recording brain activity in a great variety of situations and populations. Neurocognitive studies with infants have often reported inverted hemodynamic responses, i.e. a decrease instead of an increase in regional blood oxygenation, but the exact physiological explanation and cognitive interpretation of this response remain unclear. Here, we first provide an overview of the basic principles of NIRS and its use in cognitive developmental neuroscience. We then review the infant fNIRS literature to show that the hemodynamic response is modulated by experimental design and stimulus complexity, sometimes leading to hemodynamic responses with non-canonical shapes. We also argue that this effect is further modulated by the age of participants, the cortical regions involved, and the developmental stage of the tested cognitive process. We argue that this variability needs to be taken into account when designing and interpreting developmental studies measuring the hemodynamic response.
Collapse
Affiliation(s)
- Cécile Issard
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| | - Judit Gervain
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire Psychologie de la Perception, CNRS UMR 8242, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
11
|
Right but not left hemispheric discrimination of faces in infancy. Nat Hum Behav 2017; 2:67-79. [DOI: 10.1038/s41562-017-0249-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/19/2017] [Indexed: 11/08/2022]
|
12
|
Lochy A, de Heering A, Rossion B. The non-linear development of the right hemispheric specialization for human face perception. Neuropsychologia 2017; 126:10-19. [PMID: 28655606 DOI: 10.1016/j.neuropsychologia.2017.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022]
Abstract
The developmental origins of human adults' right hemispheric specialization for face perception remain unclear. On the one hand, infant studies have shown a right hemispheric advantage for face perception. On the other hand, it has been proposed that the adult right hemispheric lateralization for face perception slowly emerges during childhood due to reading acquisition, which increases left lateralized posterior responses to competing written material (e.g., visual letters and words). Since methodological approaches used in infant and children typically differ when their face capabilities are explored, resolving this issue has been difficult. Here we tested 5-year-old preschoolers varying in their level of visual letter knowledge with the same fast periodic visual stimulation (FPVS) paradigm leading to strongly right lateralized electrophysiological occipito-temporal face-selective responses in 4- to 6-month-old infants (de Heering and Rossion, 2015). Children's face-selective response was quantitatively larger and differed in scalp topography from infants', but did not differ across hemispheres. There was a small positive correlation between preschoolers' letter knowledge and a non-normalized index of right hemispheric specialization for faces. These observations show that previous discrepant results in the literature reflect a genuine nonlinear development of the neural processes underlying face perception and are not merely due to methodological differences across age groups. We discuss several factors that could contribute to the adult right hemispheric lateralization for faces, such as myelination of the corpus callosum and reading acquisition. Our findings point to the value of FPVS coupled with electroencephalography to assess specialized face perception processes throughout development with the same methodology.
Collapse
Affiliation(s)
- Aliette Lochy
- Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| | - Adélaïde de Heering
- UNESCOG, Center for Cognition & Neurosciences, Universite Libre de Bruxelles, Belgium
| | - Bruno Rossion
- Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium; Neurology Unit, Centre Hospitalier Regional Universitaire (CHRU) de Nancy, F-54000 Nancy, France
| |
Collapse
|
13
|
Sugden NA, Moulson MC. Hey Baby, what's “up”? One- and 3-Month-Olds Experience Faces Primarily Upright but Non-Upright Faces Offer the Best Views. Q J Exp Psychol (Hove) 2017; 70:959-969. [DOI: 10.1080/17470218.2016.1154581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Experience has been theorized to shape how we process faces. Frequent face types are better discriminated and processed using expert-level holistic strategies while less frequent types are less well discriminated and processed using less mature featural strategies. Although experience is probably influencing the development of face processing, it is unclear what aspects of experience are most influential. The current study utilized infant-perspective head-mounted cameras to capture infants’ daily lives at 1 and 3 months of age to measure the perceptual qualities of frequent and infrequent face types. We examined experience with upright (i.e., frequently experienced) and inverted (i.e., infrequently experienced) faces. A large majority (88%) of all face exposure was to upright faces. Most faces, regardless of orientation, were viewed near to the infant, alone in the field of view, and in a frontal viewpoint (i.e., an “ideal view”). Although they were less frequent than upright faces, proportionally more non-upright faces were viewed in an “ideal view”. At this young age, nearly all faces, even non-upright faces, are seen in ways that facilitate processing.
Collapse
Affiliation(s)
- Nicole A. Sugden
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | | |
Collapse
|
14
|
Peykarjou S, Wissner J, Pauen S. Categorical ERP repetition effects for human and furniture items in 7-month-old infants. INFANT AND CHILD DEVELOPMENT 2016. [DOI: 10.1002/icd.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Julia Wissner
- Department of Psychology; Heidelberg University; Heidelberg Germany
| | - Sabina Pauen
- Department of Psychology; Heidelberg University; Heidelberg Germany
| |
Collapse
|
15
|
Nordt M, Hoehl S, Weigelt S. The use of repetition suppression paradigms in developmental cognitive neuroscience. Cortex 2016; 80:61-75. [DOI: 10.1016/j.cortex.2016.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
|
16
|
The development of category specificity in infancy – What can we learn from electrophysiology? Neuropsychologia 2016; 83:114-122. [DOI: 10.1016/j.neuropsychologia.2015.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022]
|
17
|
Putting the face in context: Body expressions impact facial emotion processing in human infants. Dev Cogn Neurosci 2016; 19:115-21. [PMID: 26974742 PMCID: PMC6988095 DOI: 10.1016/j.dcn.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 11/22/2022] Open
Abstract
Brain responses were measured by presenting emotional faces in the context of emotional bodies. ERP data showed that 8-month-old infants discriminate between facial expressions only when presented in the context of congruent body expressions. Neural evidence for the existence of context-sensitive facial emotion perception in infants.
Body expressions exert strong contextual effects on facial emotion perception in adults. Specifically, conflicting body cues hamper the recognition of emotion from faces, as evident on both the behavioral and neural level. We examined the developmental origins of the neural processes involved in emotion perception across body and face in 8-month-old infants by measuring event-related brain potentials (ERPs). We primed infants with body postures (fearful, happy) that were followed by either congruent or incongruent facial expressions. Our results revealed that body expressions impact facial emotion processing and that incongruent body cues impair the neural discrimination of emotional facial expressions. Priming effects were associated with attentional and recognition memory processes, as reflected in a modulation of the Nc and Pc evoked at anterior electrodes. These findings demonstrate that 8-month-old infants possess neural mechanisms that allow for the integration of emotion across body and face, providing evidence for the early developmental emergence of context-sensitive facial emotion perception.
Collapse
|
18
|
de Heering A, Goffaux V, Dollion N, Godard O, Durand K, Baudouin JY. Three-month-old infants' sensitivity to horizontal information within faces. Dev Psychobiol 2016; 58:536-42. [PMID: 26857944 DOI: 10.1002/dev.21396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/20/2016] [Indexed: 11/05/2022]
Abstract
Horizontal information is crucial to face processing in adults. Yet the ontogeny of this preferential type of processing remains unknown. To clarify this issue, we tested 3-month-old infants' sensitivity to horizontal information within faces. Specifically, infants were exposed to the simultaneous presentation of a face and a car presented in upright or inverted orientation while their looking behavior was recorded. Face and car images were either broadband (UNF) or filtered to only reveal horizontal (H), vertical (V) or this combined information (HV). As expected, infants looked longer at upright faces than at upright cars, but critically, only when horizontal information was preserved in the stimulus (UNF, HV, H). These results first indicate that horizontal information already drives upright face processing at 3 months of age. They also recall the importance, for infants, of some facial features, arranged in a top-heavy configuration, particularly revealed by this band of information. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 536-542, 2016.
Collapse
Affiliation(s)
- Adélaïde de Heering
- Institute of Research in Psychology and Institute of Neuroscience, University of Louvain, Louvain-la-Neuve, Belgium.
| | - Valérie Goffaux
- Institute of Research in Psychology and Institute of Neuroscience, University of Louvain, Louvain-la-Neuve, Belgium
| | - Nicolas Dollion
- Developmental Ethology and Cognitive Psychology Group, Center for Smell, Taste, and Food Science, UMR 6265 CNRS - UMR 1324 INRA - Université de Bourgogne Franche-Comté, Dijon, France
| | - Ornella Godard
- Developmental Ethology and Cognitive Psychology Group, Center for Smell, Taste, and Food Science, UMR 6265 CNRS - UMR 1324 INRA - Université de Bourgogne Franche-Comté, Dijon, France
| | - Karine Durand
- Developmental Ethology and Cognitive Psychology Group, Center for Smell, Taste, and Food Science, UMR 6265 CNRS - UMR 1324 INRA - Université de Bourgogne Franche-Comté, Dijon, France
| | - Jean-Yves Baudouin
- Developmental Ethology and Cognitive Psychology Group, Center for Smell, Taste, and Food Science, UMR 6265 CNRS - UMR 1324 INRA - Université de Bourgogne Franche-Comté, Dijon, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
19
|
Friedrich M, Friederici AD. The origins of word learning: Brain responses of 3-month-olds indicate their rapid association of objects and words. Dev Sci 2015; 20. [DOI: 10.1111/desc.12357] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Manuela Friedrich
- Institute of Psychology; Humboldt-University Berlin; Germany
- Department of Neuropsychology; Max Planck Institute for Human Cognitive and Brain Sciences; Germany
| | - Angela D. Friederici
- Department of Neuropsychology; Max Planck Institute for Human Cognitive and Brain Sciences; Germany
| |
Collapse
|
20
|
|
21
|
Impaired functional differentiation for categories of objects in the ventral visual stream: A case of developmental visual impairment. Neuropsychologia 2015; 77:52-61. [DOI: 10.1016/j.neuropsychologia.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/17/2015] [Accepted: 08/09/2015] [Indexed: 11/22/2022]
|
22
|
Hadley H, Scott L. Babies get it right. eLife 2015; 4:e08232. [PMID: 26032563 PMCID: PMC4450158 DOI: 10.7554/elife.08232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Infants use a region on the right side of their brain to distinguish between human faces and objects.
Collapse
Affiliation(s)
- Hillary Hadley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, United States
| | - Lisa Scott
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, United States
| |
Collapse
|
23
|
de Heering A, Rossion B. Rapid categorization of natural face images in the infant right hemisphere. eLife 2015; 4:e06564. [PMID: 26032564 PMCID: PMC4450157 DOI: 10.7554/elife.06564] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/16/2015] [Indexed: 01/23/2023] Open
Abstract
Human performance at categorizing natural visual images surpasses automatic algorithms, but how and when this function arises and develops remain unanswered. We recorded scalp electrical brain activity in 4–6 months infants viewing images of objects in their natural background at a rapid rate of 6 images/second (6 Hz). Widely variable face images appearing every 5 stimuli generate an electrophysiological response over the right hemisphere exactly at 1.2 Hz (6 Hz/5). This face-selective response is absent for phase-scrambled images and therefore not due to low-level information. These findings indicate that right lateralized face-selective processes emerge well before reading acquisition in the infant brain, which can perform figure-ground segregation and generalize face-selective responses across changes in size, viewpoint, illumination as well as expression, age and gender. These observations made with a highly sensitive and objective approach open an avenue for clarifying the developmental course of natural image categorization in the human brain. DOI:http://dx.doi.org/10.7554/eLife.06564.001 Putting names to faces can sometimes be challenging, but humans are generally extremely good at recognising faces. Computers, on the other hand, often find it difficult to categorize a face as a face. Indeed, a major challenge in face recognition arises because faces come in many different shapes and sizes. Moreover, both the lighting conditions and the orientation of the head can change, which makes the challenge even more difficult. Young infants also show a preference for pictures of human faces over nonsense images, which suggests that the ability to recognise faces is at least partly hard-wired. Neuroimaging studies have revealed that face recognition depends on activity in specific regions of the right hemisphere of the brain, and adults who sustain damage to these regions lose their face recognition skills. De Heering and Rossion have now provided the first evidence that the right hemisphere is specialized for distinguishing between natural images of faces and ‘non-face objects’ in infants as young as 4 to 6 months. By using scalp electrodes to record electrical activity in the brain as the infants viewed images on a screen, De Heering and Rossion showed that photographs of human faces triggered a distinct pattern of electrical activity in the right hemisphere: this pattern was clearly different to the patterns triggered by photographs of animals or objects. A consistent response was triggered by faces of different genders and expressions, and by faces presented from various viewpoints and under different lighting conditions. In a control experiment, De Heering and Rossion demonstrated that low-level visual features such as differences in luminance or contrast do not contribute to this selective response to faces. These results argue against the idea that face perception only becomes assigned to the right hemisphere of the brain when children learn to read (that is, when language processing begins to occupy parts of the left hemisphere). By generating significant responses in a short period of time (just five minutes or less), the protocol developed by De Heering and Rossion has the potential to prove very useful to researchers investigating developmental changes to the perception of visual images during childhood. DOI:http://dx.doi.org/10.7554/eLife.06564.002
Collapse
Affiliation(s)
- Adélaïde de Heering
- Psychological Sciences Research Institute, University of Louvain, Louvain-la-Neuve, Belgium
| | - Bruno Rossion
- Psychological Sciences Research Institute, University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
24
|
Hoehl S. How do neural responses to eyes contribute to face-sensitive ERP components in young infants? A rapid repetition study. Brain Cogn 2015; 95:1-6. [DOI: 10.1016/j.bandc.2015.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
25
|
Nishimura M, Scherf KS, Zachariou V, Tarr MJ, Behrmann M. Size precedes view: developmental emergence of invariant object representations in lateral occipital complex. J Cogn Neurosci 2014; 27:474-91. [PMID: 25244115 DOI: 10.1162/jocn_a_00720] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although object perception involves encoding a wide variety of object properties (e.g., size, color, viewpoint), some properties are irrelevant for identifying the object. The key to successful object recognition is having an internal representation of the object identity that is insensitive to these properties while accurately representing important diagnostic features. Behavioral evidence indicates that the formation of these kinds of invariant object representations takes many years to develop. However, little research has investigated the developmental emergence of invariant object representations in the ventral visual processing stream, particularly in the lateral occipital complex (LOC) that is implicated in object processing in adults. Here, we used an fMR adaptation paradigm to evaluate age-related changes in the neural representation of objects within LOC across variations in size and viewpoint from childhood through early adulthood. We found a dissociation between the neural encoding of object size and object viewpoint within LOC: by age of 5-10 years, area LOC demonstrates adaptation across changes in size, but not viewpoint, suggesting that LOC responses are invariant to size variations, but that adaptation across changes in view is observed in LOC much later in development. Furthermore, activation in LOC was correlated with behavioral indicators of view invariance across the entire sample, such that greater adaptation was correlated with better recognition of objects across changes in viewpoint. We did not observe similar developmental differences within early visual cortex. These results indicate that LOC acquires the capacity to compute invariance specific to different sources of information at different time points over the course of development.
Collapse
|
26
|
Hoehl S, Peykarjou S. The early development of face processing--what makes faces special? Neurosci Bull 2012; 28:765-88. [PMID: 23132679 PMCID: PMC5561817 DOI: 10.1007/s12264-012-1280-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/16/2012] [Indexed: 10/27/2022] Open
Abstract
In the present article we review behavioral and neurophysiological studies on face processing in adults and in early development. From the existing empirical and theoretical literature we derive three aspects that distinguish face processing from the processing of other visual object categories. Each of these aspects is discussed from a developmental perspective. First, faces are recognized and represented at the individual level rather than at the basic level. Second, humans typically acquire extensive expertise in individuating faces from early on in development. And third, more than other objects, faces are processed holistically. There is a quantitative difference in the amount of visual experience for faces and other object categories in that the amount of expertise typically acquired for faces is greater than that for other object categories. In addition, we discuss possible qualitative differences in experience for faces and objects. For instance, there is evidence for a sensitive period in infancy for building up a holistic face representation and for perceptual narrowing for faces of one's own species and race. We conclude our literature review with questions for future research, for instance, regarding the exact relationship between behavioral and neuronal markers of face processing across development.
Collapse
Affiliation(s)
- Stefanie Hoehl
- Department of Psychology, University of Heidelberg, Hauptstr. 47-51 Heidelberg 69117, Germany.
| | | |
Collapse
|
27
|
Abstract
Researchers from different backgrounds have an increasing interest in investigating infant cognitive development using electroencephalogram (EEG) recordings. Although EEG measurements are suitable for infants, the method poses several challenges including setting up an infant-friendly, but interference-free lab environment and designing age-appropriate stimuli and paradigms. Certain specifics of infant EEG data have to be considered when deriving event-related potentials (ERPs) to investigate cognitive processes in the developing brain. The present article summarizes the practical aspects of conducting ERP research with infants and describes how researchers typically deal with the specific challenges entailed in this work.
Collapse
Affiliation(s)
- Stefanie Hoehl
- Department of Psychology, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
28
|
Kobayashi M, Otsuka Y, Nakato E, Kanazawa S, Yamaguchi MK, Kakigi R. Do infants represent the face in a viewpoint-invariant manner? Neural adaptation study as measured by near-infrared spectroscopy. Front Hum Neurosci 2011; 5:153. [PMID: 22164142 PMCID: PMC3230256 DOI: 10.3389/fnhum.2011.00153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/10/2011] [Indexed: 11/28/2022] Open
Abstract
Recent adult functional magnetic resonance imaging (fMRI) studies reported that face-sensitive cortical areas showed attenuated responses to the repeated presentation of an identical facial image compared to the presentation of different facial images (fMRI-adaptation effects: e.g., Andrews and Ewbank, 2004). Building upon this finding, the current study, employing the adaptation paradigm, used near-infrared spectroscopy (NIRS) to explore the neural basis of face processing in infants. In Experiment 1, we compared hemodynamic responses in the bilateral temporal regions during the repeated presentation of the same face (the same-face condition) and the sequential presentation of different faces (the different-face condition). We found that (1) hemodynamic responses in the channels around the T5 and T6 regions increased during the presentation of different faces compared to those during the presentation of different objects; and that (2) these channels showed significantly lower response in the same-face condition than in the different-face condition, demonstrating the neural adaptation effect in 5- to 8-month-olds as measured by NIRS. In Experiment 2, when faces in both the same-face and different-face conditions were changed in viewpoint, lower hemodynamic responses in the same-face condition were found in 7- to 8-month-olds but not in 5- to 6-month-olds. Our results suggest that faces are represented in a viewpoint-invariant manner in 7- and 8-month-old infants.
Collapse
Affiliation(s)
- Megumi Kobayashi
- Department of Psychology, Chuo UniversityHachioji, Tokyo, Japan
- Japan Society for the Promotion of Sciences, Chiyoda WardTokyo, Japan
| | - Yumiko Otsuka
- School of Psychology, The University of New South WalesSydney, NSW, Australia
- Department of Psychology, Japan Women’s UniversityKawasaki, Kanagawa, Japan
| | - Emi Nakato
- Department of Integrative Physiology, National Institute for Physical SciencesOkazaki, Aichi, Japan
| | - So Kanazawa
- Department of Psychology, Japan Women’s UniversityKawasaki, Kanagawa, Japan
| | | | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physical SciencesOkazaki, Aichi, Japan
| |
Collapse
|
29
|
TSURUHARA AKI, KANAZAWA SO, YAMAGUCHI MASAMIK. Infants' perception of human body orientation and the effect of a surrounding square. JAPANESE PSYCHOLOGICAL RESEARCH 2010. [DOI: 10.1111/j.1468-5884.2010.00443.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
|
31
|
Grossmann T, Gliga T, Johnson MH, Mareschal D. The neural basis of perceptual category learning in human infants. J Cogn Neurosci 2009; 21:2276-86. [PMID: 19199422 DOI: 10.1162/jocn.2009.21188] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We measured looking times and ERPs to examine the cognitive and brain bases of perceptual category learning in 6-month-old infants. In Experiment 1, we showed that categorization and exemplar discrimination rely on different cortical processes. Specifically, the repetition of individual exemplars resulted in differential cortical processing at posterior channels at an early stage during object processing (100-300 msec), whereas discriminating among members of different categories was reflected in ERP differences over anterior cortical regions occurring later in time (300-500 msec) than the repetition effects. In Experiment 2, replicating the findings of Study 1, we found that infants engage the same cortical processes to categorize visual objects into basic-level categories, regardless of whether a basic (bird vs. fish) or global level is crossed (birds vs. cars). This pattern of findings is consistent with perceptual accounts of infant categorization [Quinn, P. C., & Eimas, P. D. Perceptual organization and categorization in young infants. In C. Rovee-Collier & L. P. Lipsitt (Eds.), Advances in infancy research ( pp. 1-36). Norwood, NJ: Ablex, 1996] and accords with recent adult neural-level models of perceptual categorization.
Collapse
Affiliation(s)
- Tobias Grossmann
- Centre for Brain and Cognitive Development, Birkbek, University of London, UK.
| | | | | | | |
Collapse
|
32
|
|
33
|
Turk-Browne NB, Scholl BJ, Chun MM. Babies and brains: habituation in infant cognition and functional neuroimaging. Front Hum Neurosci 2008; 2:16. [PMID: 19104669 PMCID: PMC2605404 DOI: 10.3389/neuro.09.016.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/15/2008] [Indexed: 11/13/2022] Open
Abstract
Many prominent studies of infant cognition over the past two decades have relied on the fact that infants habituate to repeated stimuli - i.e. that their looking times tend to decline upon repeated stimulus presentations. This phenomenon had been exploited to reveal a great deal about the minds of preverbal infants. Many prominent studies of the neural bases of adult cognition over the past decade have relied on the fact that brain regions habituate to repeated stimuli - i.e. that the hemodynamic responses observed in fMRI tend to decline upon repeated stimulus presentations. This phenomenon has been exploited to reveal a great deal about the neural mechanisms of perception and cognition. Similarities in the mechanics of these two forms of habituation suggest that it may be useful to relate them to each other. Here we outline this analogy, explore its nuances, and highlight some ways in which the study of habituation in functional neuroimaging could yield novel insights into the nature of habituation in infant cognition - and vice versa.
Collapse
|
34
|
Distinct cerebral pathways for object identity and number in human infants. PLoS Biol 2008; 6:e11. [PMID: 18254657 PMCID: PMC2225438 DOI: 10.1371/journal.pbio.0060011] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 12/06/2007] [Indexed: 11/29/2022] Open
Abstract
All humans, regardless of their culture and education, possess an intuitive understanding of number. Behavioural evidence suggests that numerical competence may be present early on in infancy. Here, we present brain-imaging evidence for distinct cerebral coding of number and object identity in 3-mo-old infants. We compared the visual event-related potentials evoked by unforeseen changes either in the identity of objects forming a set, or in the cardinal of this set. In adults and 4-y-old children, number sense relies on a dorsal system of bilateral intraparietal areas, different from the ventral occipitotemporal system sensitive to object identity. Scalp voltage topographies and cortical source modelling revealed a similar distinction in 3-mo-olds, with changes in object identity activating ventral temporal areas, whereas changes in number involved an additional right parietoprefrontal network. These results underscore the developmental continuity of number sense by pointing to early functional biases in brain organization that may channel subsequent learning to restricted brain areas. Behavioural experiments indicate that infants aged 4½ months or older possess an early “number sense” that, for instance, enables them to detect changes in the approximate number of objects in a set. However, the neural bases of this competence are unknown. We recorded the electrical activity evoked by the brain on the surface of the scalp as 3-mo-old infants were watching images of sets of objects. Most images depicted the same objects and contained the same number of objects, but occasionally the number or the identity of the objects changed. As indicated by the voltage potential at the surface of the scalp, the infants' brains reacted when either object identity or number changes were introduced. Using a 3-D model of the infant head, we reconstructed the cortical sources of these responses. Brain areas responding to object or number changes are distinct, and reveal a basic ventral/dorsal organization already in place in the infant brain. As in adults and children, object identity in infants is encoded along a ventral pathway in the temporal lobes, although number activates an additional right parietoprefrontral network. These results underscore the developmental continuity of number sense by pointing to early functional biases in brain organization. Cerebral imaging reveals that human infants are sensitive to numerical quantity at a very early age and that the basic dorsal/ventral functional organization is already in place in the infant brain.
Collapse
|
35
|
Microstructural correlates of infant functional development: example of the visual pathways. J Neurosci 2008; 28:1943-8. [PMID: 18287510 DOI: 10.1523/jneurosci.5145-07.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of cognitive functions during childhood relies on several neuroanatomical maturation processes. Among these processes is myelination of the white matter pathways, which speeds up electrical conduction. Quantitative indices of such structural processes can be obtained in vivo with diffusion tensor imaging (DTI), but their physiological significance remains uncertain. Here, we investigated the microstructural correlates of early functional development by combining DTI and visual event-related potentials (VEPs) in 15 one- to 4-month-old healthy infants. Interindividual variations of the apparent conduction speed, computed from the latency of the first positive VEP wave (P1), were significantly correlated with the infants' age and DTI indices measured in the optic radiations. This demonstrates that fractional anisotropy and transverse diffusivity are structural markers of functionally efficient myelination. Moreover, these indices computed along the optic radiations showed an early wave of maturation in the anterior region, with the posterior region catching up later in development, which suggests two asynchronous fronts of myelination in both the geniculocortical and corticogeniculate fibers. Thus, in addition to microstructural information, DTI provides noninvasive exquisite information on the functional development of the brain in human infants.
Collapse
|
36
|
Gliga T, Csibra G. Seeing the face through the eyes: a developmental perspective on face expertise. PROGRESS IN BRAIN RESEARCH 2007; 164:323-39. [PMID: 17920440 DOI: 10.1016/s0079-6123(07)64018-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most people are experts in face recognition. We propose that the special status of this particular body part in telling individuals apart is the result of a developmental process that heavily biases human infants and children to attend towards the eyes of others. We review the evidence supporting this proposal, including neuroimaging results and studies in developmental disorders, like autism. We propose that the most likely explanation of infants' bias towards eyes is the fact that eye gaze serves important communicative functions in humans.
Collapse
Affiliation(s)
- Teodora Gliga
- Centre for Brain and Cognitive Development, School of Psychology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK.
| | | |
Collapse
|