1
|
Kavitha V, Siva R. HCBiLSTM-WOA: hybrid convolutional bidirectional long short-term memory with water optimization algorithm for autism spectrum disorder. Comput Methods Biomech Biomed Engin 2025; 28:818-840. [PMID: 39290085 DOI: 10.1080/10255842.2024.2399016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Autism Spectrum Disorder (ASD) is a type of brain developmental disability that cannot be completely treated, but its impact can be reduced through early interventions. Early identification of neurological disorders will better assist in preserving the subjects' physical and mental health. Although numerous research works exist for detecting autism spectrum disorder, they are cumbersome and insufficient for dealing with real-time datasets. Therefore, to address these issues, this paper proposes an ASD detection mechanism using a novel Hybrid Convolutional Bidirectional Long Short-Term Memory based Water Optimization Algorithm (HCBiLSTM-WOA). The prediction efficiency of the proposed HCBiLSTM-WOA method is investigated using real-time ASD datasets containing both ASD and non-ASD data from toddlers, children, adolescents, and adults. The inconsistent and incomplete representations of the raw ASD dataset are modified using preprocessing procedures such as handling missing values, predicting outliers, data discretization, and data reduction. The preprocessed data obtained is then fed into the proposed HCBiLSTM-WOA classification model to effectively predict the non-ASD and ASD classes. The initially randomly initialized hyperparameters of the HCBiLSTM model are adjusted and tuned using the water optimization algorithm (WOA) to increase the prediction accuracy of ASD. After detecting non-ASD and ASD classes, the HCBiLSTM-WOA method further classifies the ASD cases into respective stages based on the autistic traits observed in toddlers, children, adolescents, and adults. Also, the ethical considerations that should be taken into account when campaign ASD risk communication are complex due to the data privacy and unpredictability surrounding ASD risk factors. The fusion of sophisticated deep learning techniques with an optimization algorithm presents a promising framework for ASD diagnosis. This innovative approach shows potential in effectively managing intricate ASD data, enhancing diagnostic precision, and improving result interpretation. Consequently, it offers clinicians a tool for early and precise detection, allowing for timely intervention in ASD cases. Moreover, the performance of the proposed HCBiLSTM-WOA method is evaluated using various performance indicators such as accuracy, kappa statistics, sensitivity, specificity, log loss, and Area Under the Receiver Operating Characteristics (AUROC). The simulation results reveal the superiority of the proposed HCBiLSTM-WOA method in detecting ASD compared to other existing methods. The proposed method achieves a higher ASD prediction accuracy of about 98.53% than the other methods being compared.
Collapse
Affiliation(s)
- V Kavitha
- Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - R Siva
- Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Alzakari SA, Allinjawi A, Aldrees A, Zamzami N, Umer M, Innab N, Ashraf I. Early detection of autism spectrum disorder using explainable AI and optimized teaching strategies. J Neurosci Methods 2025; 413:110315. [PMID: 39532186 DOI: 10.1016/j.jneumeth.2024.110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/13/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Autism spectrum disorder (ASD) is defined by the deficits of social relating, language, object use and understanding, intelligence and learning, and verbal and nonverbal communication. Most of the individuals with ASD have genetic conditions; however, early identification and intervention reduce the use of health services and other diagnostic procedures. The varied nature of ASD is widely acknowledged, with each affected individual displaying distinct traits. The variability among autistic children underscores the challenge of identifying effective teaching strategies, as what works for one child may not be suitable for another. In this study, we merge two ASD screening datasets focusing on toddlers. We employ three feature engineering techniques to extract significant features from the dataset to enhance model performance. This study presents an innovative two-phase method where initially, we employ diverse machine learning models, such as a combination of logistic regression and support vector machine classifiers. The focus of the second phase is on identifying tailored educational methods for children with ASD through the assessment of their behavioral, verbal, and physical responses. The main goal of this study is to develop personalized educational strategies for individuals with ASD. This will be achieved by employing machine learning techniques to enhance precision and better meet their unique needs. Experimental results achieve a classification accuracy of 94% in ASD identification using Chi-square extracted features. Concerning the choice of the best teaching approach for ASD children, the proposed approach shows 99.29% accuracy. Performance comparison with existing studies shows the superior performance of the proposed LR-SVM ensemble coupled with Chi-square features. In conclusion, the proposed approach provides a two-phase strategy for identifying ASD children and offering a suitable teaching strategy with respect to the severity of the ASD, thereby potentially contributing to the development of tailored solutions for children with varying needs.
Collapse
Affiliation(s)
- Sarah A Alzakari
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Arwa Allinjawi
- Department of Computer Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia.
| | - Asma Aldrees
- Department of Informatics and Computer Systems College of Computer Science, King Khalid University, Abha, Saudi Arabia.
| | - Nuha Zamzami
- College of Computer Science and Engineering, Department of Computer Science and Artificial Intelligence, University of Jeddah, Jeddah, Saudi Arabia.
| | - Muhammad Umer
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Imran Ashraf
- Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Aldrees A, Ojo S, Wanliss J, Umer M, Khan MA, Alabdullah B, Alsubai S, Innab N. Data-centric automated approach to predict autism spectrum disorder based on selective features and explainable artificial intelligence. Front Comput Neurosci 2024; 18:1489463. [PMID: 39498381 PMCID: PMC11532156 DOI: 10.3389/fncom.2024.1489463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by notable challenges in cognitive function, understanding language, recognizing objects, interacting with others, and communicating effectively. Its origins are mainly genetic, and identifying it early and intervening promptly can reduce the necessity for extensive medical treatments and lengthy diagnostic procedures for those impacted by ASD. This research is designed with two types of experimentation for ASD analysis. In the first set of experiments, authors utilized three feature engineering techniques (Chi-square, backward feature elimination, and PCA) with multiple machine learning models for autism presence prediction in toddlers. The proposed XGBoost 2.0 obtained 99% accuracy, F1 score, and recall with 98% precision with chi-square significant features. In the second scenario, main focus shifts to identifying tailored educational methods for children with ASD through the assessment of their behavioral, verbal, and physical responses. Again, the proposed approach performs well with 99% accuracy, F1 score, recall, and precision. In this research, cross-validation technique is also implemented to check the stability of the proposed model along with the comparison of previously published research works to show the significance of the proposed model. This study aims to develop personalized educational strategies for individuals with ASD using machine learning techniques to meet their specific needs better.
Collapse
Affiliation(s)
- Asma Aldrees
- Department of Informatics and Computer Systems, College of Computer Science, King Khalid University, Abha, Saudi Arabia
| | - Stephen Ojo
- College of Engineering, Anderson University, Anderson, SC, United States
| | - James Wanliss
- College of Engineering, Anderson University, Anderson, SC, United States
| | - Muhammad Umer
- Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Attique Khan
- Department of AI, College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Bayan Alabdullah
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shtwai Alsubai
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Koochakpour K, Nytrø Ø, Leventhal BL, Sverre Westbye O, Brox Røst T, Koposov R, Frodl T, Clausen C, Stien L, Skokauskas N. A review of information sources and analysis methods for data driven decision aids in child and adolescent mental health services. Int J Med Inform 2024; 188:105479. [PMID: 38761460 DOI: 10.1016/j.ijmedinf.2024.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE Clinical data analysis relies on effective methods and appropriate data. Recognizing distinctive clinical services and service functions may lead to improved decision-making. Our first objective is to categorize analytical methods, data sources, and algorithms used in current research on information analysis and decision support in child and adolescent mental health services (CAMHS). Our secondary objective is to identify the potential for data analysis in different clinical services and functions in which data-driven decision aids can be useful. MATERIALS AND METHODS We searched related studies in Science Direct and PubMed from 2018 to 2023(Jun), and also in ACM (Association for Computing Machinery) Digital Library, DBLP (Database systems and Logic Programming), and Google Scholar from 2018 to 2021. We have reviewed 39 studies and extracted types of analytical methods, information content, and information sources for decision-making. RESULTS In order to compare studies, we developed a framework for characterizing health services, functions, and data features. Most data sets in reviewed studies were small, with a median of 1,176 patients and 46,503 record entries. Structured data was used for all studies except two that used textual clinical notes. Most studies used supervised classification and regression. Service and situation-specific data analysis dominated among the studies, only two studies used temporal, or process features from the patient data. This paper presents and summarizes the utility, but not quality, of the studies according to the care situations and care providers to identify service functions where data-driven decision aids may be relevant. CONCLUSIONS Frameworks identifying services, functions, and care processes are necessary for characterizing and comparing electronic health record (EHR) data analysis studies. The majority of studies use features related to diagnosis and assessment and correspondingly have utility for intervention planning and follow-up. Profiling the disease severity of referred patients is also an important application area.
Collapse
Affiliation(s)
- Kaban Koochakpour
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Øystein Nytrø
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Computer Science, The Arctic University of Norway (UiT), Tromsø, Norway
| | | | - Odd Sverre Westbye
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU Central Norway), Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Child and Adolescent Psychiatry, St. Olav's University Hospital, Trondheim, Norway
| | | | - Roman Koposov
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU), The Arctic University of Norway (UiT), Tromsø, Norway
| | - Thomas Frodl
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Carolyn Clausen
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU Central Norway), Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Line Stien
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU Central Norway), Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Norbert Skokauskas
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU Central Norway), Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Zhang X, Gao Y, Zhang Y, Li F, Li H, Lei F. Identification of Autism Spectrum Disorder Using Topological Data Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1023-1037. [PMID: 38351222 PMCID: PMC11169318 DOI: 10.1007/s10278-024-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
Autism spectrum disorder (ASD) is a pervasive brain development disease. Recently, the incidence rate of ASD has increased year by year and posed a great threat to the lives and families of individuals with ASD. Therefore, the study of ASD has become very important. A suitable feature representation that preserves the data intrinsic information and also reduces data complexity is very vital to the performance of established models. Topological data analysis (TDA) is an emerging and powerful mathematical tool for characterizing shapes and describing intrinsic information in complex data. In TDA, persistence barcodes or diagrams are usually regarded as visual representations of topological features of data. In this paper, the Regional Homogeneity (ReHo) data of subjects obtained from Autism Brain Imaging Data Exchange (ABIDE) database were used to extract features by using TDA. The average accuracy of cross validation on ABIDE I database was 95.6% that was higher than any other existing methods (the highest accuracy among existing methods was 93.59%). The average accuracy for sampling with the same resolutions with the ABIDE I on the ABIDE II database was 96.5% that was also higher than any other existing methods (the highest accuracy among existing methods was 75.17%).
Collapse
Affiliation(s)
- Xudong Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Yaru Gao
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Yunge Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fengling Li
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China.
| | - Huanjie Li
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fengchun Lei
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Alharthi AG, Alzahrani SM. Do it the transformer way: A comprehensive review of brain and vision transformers for autism spectrum disorder diagnosis and classification. Comput Biol Med 2023; 167:107667. [PMID: 37939407 DOI: 10.1016/j.compbiomed.2023.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a condition observed in children who display abnormal patterns of interaction, behavior, and communication with others. Despite extensive research efforts, the underlying causes of this neurodevelopmental disorder and its biomarkers remain unknown. However, advancements in artificial intelligence and machine learning have improved clinicians' ability to diagnose ASD. This review paper investigates various MRI modalities to identify distinct features that characterize individuals with ASD compared to typical control subjects. The review then moves on to explore deep learning models for ASD diagnosis, including convolutional neural networks (CNNs), autoencoders, graph convolutions, attention networks, and other models. CNNs and their variations are particularly effective due to their capacity to learn structured image representations and identify reliable biomarkers for brain disorders. Computer vision transformers often employ CNN architectures with transfer learning techniques like fine-tuning and layer freezing to enhance image classification performance, surpassing traditional machine learning models. This review paper contributes in three main ways. Firstly, it provides a comprehensive overview of a recommended architecture for using vision transformers in the systematic ASD diagnostic process. To this end, the paper investigates various pre-trained vision architectures such as VGG, ResNet, Inception, InceptionResNet, DenseNet, and Swin models that were fine-tuned for ASD diagnosis and classification. Secondly, it discusses the vision transformers of 2020th like BiT, ViT, MobileViT, and ConvNeXt, and applying transfer learning methods in relation to their prospective practicality in ASD classification. Thirdly, it explores brain transformers that are pre-trained on medically rich data and MRI neuroimaging datasets. The paper recommends a systematic architecture for ASD diagnosis using brain transformers. It also reviews recently developed brain transformer-based models, such as METAFormer, Com-BrainTF, Brain Network, ST-Transformer, STCAL, BolT, and BrainFormer, discussing their deep transfer learning architectures and results in ASD detection. Additionally, the paper summarizes and discusses brain-related transformers for various brain disorders, such as MSGTN, STAGIN, and MedTransformer, in relation to their potential usefulness in ASD. The study suggests that developing specialized transformer-based models, following the success of natural language processing (NLP), can offer new directions for image classification problems in ASD brain biomarkers learning and classification. By incorporating the attention mechanism, treating MRI modalities as sequence prediction tasks trained on brain disorder classification problems, and fine-tuned on ASD datasets, brain transformers can show a great promise in ASD diagnosis.
Collapse
Affiliation(s)
- Asrar G Alharthi
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia.
| | - Salha M Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia
| |
Collapse
|
7
|
Alharthi AG, Alzahrani SM. Multi-Slice Generation sMRI and fMRI for Autism Spectrum Disorder Diagnosis Using 3D-CNN and Vision Transformers. Brain Sci 2023; 13:1578. [PMID: 38002538 PMCID: PMC10670036 DOI: 10.3390/brainsci13111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Researchers have explored various potential indicators of ASD, including changes in brain structure and activity, genetics, and immune system abnormalities, but no definitive indicator has been found yet. Therefore, this study aims to investigate ASD indicators using two types of magnetic resonance images (MRI), structural (sMRI) and functional (fMRI), and to address the issue of limited data availability. Transfer learning is a valuable technique when working with limited data, as it utilizes knowledge gained from a pre-trained model in a domain with abundant data. This study proposed the use of four vision transformers namely ConvNeXT, MobileNet, Swin, and ViT using sMRI modalities. The study also investigated the use of a 3D-CNN model with sMRI and fMRI modalities. Our experiments involved different methods of generating data and extracting slices from raw 3D sMRI and 4D fMRI scans along the axial, coronal, and sagittal brain planes. To evaluate our methods, we utilized a standard neuroimaging dataset called NYU from the ABIDE repository to classify ASD subjects from typical control subjects. The performance of our models was evaluated against several baselines including studies that implemented VGG and ResNet transfer learning models. Our experimental results validate the effectiveness of the proposed multi-slice generation with the 3D-CNN and transfer learning methods as they achieved state-of-the-art results. In particular, results from 50-middle slices from the fMRI and 3D-CNN showed a profound promise in ASD classifiability as it obtained a maximum accuracy of 0.8710 and F1-score of 0.8261 when using the mean of 4D images across the axial, coronal, and sagittal. Additionally, the use of the whole slices in fMRI except the beginnings and the ends of brain views helped to reduce irrelevant information and showed good performance of 0.8387 accuracy and 0.7727 F1-score. Lastly, the transfer learning with the ConvNeXt model achieved results higher than other transformers when using 50-middle slices sMRI along the axial, coronal, and sagittal planes.
Collapse
Affiliation(s)
| | - Salha M. Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
8
|
Almars AM, Badawy M, Elhosseini MA. ASD 2-TL∗ GTO: Autism spectrum disorders detection via transfer learning with gorilla troops optimizer framework. Heliyon 2023; 9:e21530. [PMID: 38027906 PMCID: PMC10660553 DOI: 10.1016/j.heliyon.2023.e21530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Autism Spectrum Disorder (ASD) treatment requires accurate diagnosis and effective rehabilitation. Artificial intelligence (AI) techniques in medical diagnosis and rehabilitation can aid doctors in detecting a wide range of diseases more effectively. Nevertheless, due to its highly heterogeneous symptoms and complicated nature, ASD diagnostics continues to be a challenge for researchers. This study introduces an intelligent system based on the Artificial Gorilla Troops Optimizer (GTO) metaheuristic optimizer to detect ASD using Deep Learning and Machine Learning. Kaggle and UCI ML Repository are the data sources used in this study. The first dataset is the Autistic Children Data Set, which contains 3,374 facial images of children divided into Autistic and Non-Autistic categories. The second dataset is a compilation of data from three numerical repositories: (1) Autism Screening Adults, (2) Autistic Spectrum Disorder Screening Data for Adolescents, and (3) Autistic Spectrum Disorder Screening Data for Children. When it comes to image dataset experiments, the most notable results are (1) a TF learning ratio greater than or equal to 50 is recommended, (2) all models recommend data augmentation, and (3) the DenseNet169 model reports the lowest loss value of 0.512. Concerning the numeric dataset, five experiments recommend standardization and the final five attributes are optional in the classification process. The performance metrics demonstrate the worthiness of the proposed feature selection technique using GTO more than counterparts in the literature review.
Collapse
Affiliation(s)
- Abdulqader M. Almars
- Taibah University, College of Computer Science and Engineering, Yanbu, 46421, Saudi Arabia
| | - Mahmoud Badawy
- Taibah University, Applied College, Computer Science, and Information Department, Medina, 41461, Saudi Arabia
- Mansoura University, Faculty of Engineering, Computers and Control Systems Engineering Department, Mansoura, 35516, Egypt
| | - Mostafa A. Elhosseini
- Taibah University, College of Computer Science and Engineering, Yanbu, 46421, Saudi Arabia
- Mansoura University, Faculty of Engineering, Computers and Control Systems Engineering Department, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Mishra M, Pati UC. A classification framework for Autism Spectrum Disorder detection using sMRI: Optimizer based ensemble of deep convolution neural network with on-the-fly data augmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
10
|
Benabdallah FZ, Drissi El Maliani A, Lotfi D, El Hassouni M. A Convolutional Neural Network-Based Connectivity Enhancement Approach for Autism Spectrum Disorder Detection. J Imaging 2023; 9:110. [PMID: 37367458 DOI: 10.3390/jimaging9060110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Autism spectrum disorder (ASD) represents an ongoing obstacle facing many researchers to achieving early diagnosis with high accuracy. To advance developments in ASD detection, the corroboration of findings presented in the existing body of autism-based literature is of high importance. Previous works put forward theories of under- and over-connectivity deficits in the autistic brain. An elimination approach based on methods that are theoretically comparable to the aforementioned theories proved the existence of these deficits. Therefore, in this paper, we propose a framework that takes into account the properties of under- and over-connectivity in the autistic brain using an enhancement approach coupled with deep learning through convolutional neural networks (CNN). In this approach, image-alike connectivity matrices are created, and then connections related to connectivity alterations are enhanced. The overall objective is the facilitation of early diagnosis of this disorder. After conducting tests using information from the large multi-site Autism Brain Imaging Data Exchange (ABIDE I) dataset, the results show that this approach provides an accurate prediction value reaching up to 96%.
Collapse
Affiliation(s)
- Fatima Zahra Benabdallah
- Laboratory of Research in Information Technology and Telecommunication (LRIT), Rabat IT Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat B.P. 1014 RP, Morocco
| | - Ahmed Drissi El Maliani
- Laboratory of Research in Information Technology and Telecommunication (LRIT), Rabat IT Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat B.P. 1014 RP, Morocco
| | - Dounia Lotfi
- Laboratory of Research in Information Technology and Telecommunication (LRIT), Rabat IT Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat B.P. 1014 RP, Morocco
| | - Mohammed El Hassouni
- Laboratory of Research in Information Technology and Telecommunication (LRIT), Rabat IT Center, lFLSH, Mohammed V University in Rabat, Rabat B.P. 1014 RP, Morocco
| |
Collapse
|
11
|
Previously Marzena Szkodo MOR, Micai M, Caruso A, Fulceri F, Fazio M, Scattoni ML. Technologies to support the diagnosis and/or treatment of neurodevelopmental disorders: A systematic review. Neurosci Biobehav Rev 2023; 145:105021. [PMID: 36581169 DOI: 10.1016/j.neubiorev.2022.105021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In recent years, there has been a great interest in utilizing technology in mental health research. The rapid technological development has encouraged researchers to apply technology as a part of a diagnostic process or treatment of Neurodevelopmental Disorders (NDDs). With the large number of studies being published comes an urgent need to inform clinicians and researchers about the latest advances in this field. Here, we methodically explore and summarize findings from studies published between August 2019 and February 2022. A search strategy led to the identification of 4108 records from PubMed and APA PsycInfo databases. 221 quantitative studies were included, covering a wide range of technologies used for diagnosis and/or treatment of NDDs, with the biggest focus on Autism Spectrum Disorder (ASD). The most popular technologies included machine learning, functional magnetic resonance imaging, electroencephalogram, magnetic resonance imaging, and neurofeedback. The results of the review indicate that technology-based diagnosis and intervention for NDD population is promising. However, given a high risk of bias of many studies, more high-quality research is needed.
Collapse
Affiliation(s)
| | - Martina Micai
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Fazio
- Department of Mathematics, Computer Science, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
12
|
Avberšek LK, Repovš G. Deep learning in neuroimaging data analysis: Applications, challenges, and solutions. FRONTIERS IN NEUROIMAGING 2022; 1:981642. [PMID: 37555142 PMCID: PMC10406264 DOI: 10.3389/fnimg.2022.981642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 08/10/2023]
Abstract
Methods for the analysis of neuroimaging data have advanced significantly since the beginning of neuroscience as a scientific discipline. Today, sophisticated statistical procedures allow us to examine complex multivariate patterns, however most of them are still constrained by assuming inherent linearity of neural processes. Here, we discuss a group of machine learning methods, called deep learning, which have drawn much attention in and outside the field of neuroscience in recent years and hold the potential to surpass the mentioned limitations. Firstly, we describe and explain the essential concepts in deep learning: the structure and the computational operations that allow deep models to learn. After that, we move to the most common applications of deep learning in neuroimaging data analysis: prediction of outcome, interpretation of internal representations, generation of synthetic data and segmentation. In the next section we present issues that deep learning poses, which concerns multidimensionality and multimodality of data, overfitting and computational cost, and propose possible solutions. Lastly, we discuss the current reach of DL usage in all the common applications in neuroimaging data analysis, where we consider the promise of multimodality, capability of processing raw data, and advanced visualization strategies. We identify research gaps, such as focusing on a limited number of criterion variables and the lack of a well-defined strategy for choosing architecture and hyperparameters. Furthermore, we talk about the possibility of conducting research with constructs that have been ignored so far or/and moving toward frameworks, such as RDoC, the potential of transfer learning and generation of synthetic data.
Collapse
Affiliation(s)
- Lev Kiar Avberšek
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
13
|
Integrating Graph Convolutional Networks (GCNNs) and Long Short-Term Memory (LSTM) for Efficient Diagnosis of Autism. Artif Intell Med 2022. [DOI: 10.1007/978-3-031-09342-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|