1
|
Velardi A, Mancusi A, Ruggeri L, Pierini A. How adoptive transfer of components of the donor immune system boosts GvL and prevents GvHD in HLA-haploidentical hematopoietic transplantation for acute leukemia. Bone Marrow Transplant 2024; 59:301-305. [PMID: 38212671 DOI: 10.1038/s41409-024-02199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Why a new Perspective in allogeneic hematopoietic transplantation? A summary. Nowadays, for high-risk acute leukemia patients without an HLA-matched donor (sibling or volunteer), hematopoietic transplants that use HLA-haploidentical grafts combined with enhanced post transplant immune suppression (i.e., high-dose cyclophosphamide) are widely used. They are associated with low TRM rates. However, they are also associated with significant chronic GvHD while they only partially abrogate leukemia relapse rates. One may speculate that post-transplant immune suppression, required for GvHD prophylaxis, weakens the anti-leukemic potential of the graft. Historically, haploidentical transplants became feasible for the first time through transplantation of T cell-depleted peripheral blood hematopoietic progenitor cells. Lack of post-transplant immune suppression allowed the emergence of donor-versus-recipient NK-cell alloreactions that eradicated AML. In an attempt to improve these results we recently combined an age-adapted, irradiation-based conditioning regimen with transplant of T-cell-depleted grafts and infusion of regulatory and conventional T cells, without any post transplant immune suppression. With the obvious limitations of a single center experience, this protocol resulted in extremely low relapse and chronic GvHD rates and, consequently, in a remarkable 75% chronic GvHD/relapse-free survival in over 50 AML patients up to the age of 65 many of whom at high risk of relapse.
Collapse
Affiliation(s)
- Andrea Velardi
- Department of Medicine and Surgery, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy.
| | - Antonella Mancusi
- Department of Medicine and Surgery, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Loredana Ruggeri
- Department of Medicine and Surgery, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Antonio Pierini
- Department of Medicine and Surgery, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Seliger B, Koehl U. Underlying mechanisms of evasion from NK cells as rational for improvement of NK cell-based immunotherapies. Front Immunol 2022; 13:910595. [PMID: 36045670 PMCID: PMC9422402 DOI: 10.3389/fimmu.2022.910595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells belong to the family of innate immune cells with the capacity to recognize and kill tumor cells. Different phenotypes and functional properties of NK cells have been described in tumor patients, which could be shaped by the tumor microenvironment. The discovery of HLA class I-specific inhibitory receptors controlling NK cell activity paved the way to the fundamental concept of modulating immune responses that are regulated by an array of inhibitory receptors, and emphasized the importance to explore the potential of NK cells in cancer therapy. Although a whole range of NK cell-based approaches are currently being developed, there are still major challenges that need to be overcome for improved efficacy of these therapies. These include escape of tumor cells from NK cell recognition due to their expression of inhibitory molecules, immune suppressive signals of NK cells, reduced NK cell infiltration of tumors, an immune suppressive micromilieu and limited in vivo persistence of NK cells. Therefore, this review provides an overview about the NK cell biology, alterations of NK cell activities, changes in tumor cells and the tumor microenvironment contributing to immune escape or immune surveillance by NK cells and their underlying molecular mechanisms as well as the current status and novel aspects of NK cell-based therapeutic strategies including their genetic engineering and their combination with conventional treatment options to overcome tumor-mediated evasion strategies and improve therapy efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- *Correspondence: Barbara Seliger,
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Bednarski JJ, Zimmerman C, Berrien-Elliott MM, Foltz JA, Becker-Hapak M, Neal CC, Foster M, Schappe T, McClain E, Pence PP, Desai S, Kersting-Schadek S, Wong P, Russler-Germain DA, Fisk B, Lie WR, Eisele J, Hyde S, Bhatt ST, Griffith OL, Griffith M, Petti AA, Cashen AF, Fehniger TA. Donor memory-like NK cells persist and induce remissions in pediatric patients with relapsed AML after transplant. Blood 2022; 139:1670-1683. [PMID: 34871371 PMCID: PMC8931511 DOI: 10.1182/blood.2021013972] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.
Collapse
Affiliation(s)
| | - Clare Zimmerman
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jennifer A Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carly C Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Patrick P Pence
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sweta Desai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Samantha Kersting-Schadek
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - David A Russler-Germain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Bryan Fisk
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Jeremy Eisele
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Stephanie Hyde
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Sima T Bhatt
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Allegra A Petti
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
| | - Amanda F Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Sliz A, Yokoyama WM. NK Cells and ILC1s in Cancer Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:41-55. [DOI: 10.1007/978-981-16-8387-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Donor Killer Immunoglobulin Receptor Gene Content and Ligand Matching and Outcomes of Pediatric Patients with Juvenile Myelomonocytic Leukemia Following Unrelated Donor Transplantation. Transplant Cell Ther 2021; 27:926.e1-926.e10. [PMID: 34407489 DOI: 10.1016/j.jtct.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Natural killer (NK) cell determinants predict relapse-free survival after allogeneic hematopoietic cell transplantation (HCT) for acute myelogenous leukemia, and previous studies have shown a beneficial graft-versus-leukemia effect in patients with juvenile myelomonocytic leukemia (JMML). However, whether NK cell determinants predict protection against relapse for JMML patients undergoing HCT is unknown. Therefore, we investigated NK cell-related donor and recipient immunogenetics as determinants of HCT outcomes in patients with JMML. Patients with JMML (age 0 to <19 years) who underwent a first allogeneic HCT from an unrelated donor between 2000 and 2017 and had available donor samples from the Center for International Blood and Marrow Transplant Research Repository were included. Donor killer immunoglobulin receptor (KIR) typing was performed on pre-HCT samples. The primary endpoint was disease-free survival (DFS); secondary endpoints included relapse, grade II-IV acute graft versus-host-disease (aGVHD), chronic GVHD (cGVHD), GVHD-free relapse-free survival, transplantation-related mortality, and overall survival (OS). Donor KIR models tested included KIR genotype (AA versus Bx), B content (0-1 versus ≥2), centromeric and telomeric region score (AA versus AB versus BB), B content score (best, better, or neutral), composite score (2 versus 3 versus 4), activating KIR content, and the presence of KIR2DS4. Ligand-ligand and KIR-ligand mismatch effects on outcomes were analyzed in HLA-mismatched donors (≤7/8; n = 74) only. Univariate analyses were performed for primary and secondary outcomes of interest, with a P value <.05 considered significant. One hundred sixty-five patients (113 males), with a median follow-up of 85 months (range, 6 to 216 months) met the study criteria. Of these, 111 underwent an unrelated donor HCT and 54 underwent a UCB HCT. Almost all (n = 161; 98%) received a myeloablative conditioning regimen. After exclusion of recipients of reduced-intensity/nonmyeloablative conditioning regimens and ex vivo T cell-depleted grafts (n = 8), there were 42 AA donors and 115 Bx donors, respectively. Three-year DFS, OS, relapse, and GRFS for the entire cohort were 58% (95% confidence interval [CI], 50% to 66%), 67% (95% CI, 59% to 74%), 26% (95% CI, 19% to 33%), and 27% (95% CI, 19% to 35%), respectively. The cumulative incidence of grade II-IV aGVHD at 100 days was 36% (95% CI, 27% to 44%), and that of cGVHD at 1 year was 23% (95% CI, 17% to 30%). There were no differences between AA donors and Bx donors for any recipient survival outcomes. The risk of grade II-IV aGVHD was lower in patients with donors with a B content score of ≥2 (hazard ratio [HR], 0.46; 95% CI, 0.26 to 0.83; P = .01), an activating KIR content score of >3 (HR, 0.52; 95% CI, 0.29 to 0.95; P = .032), centromeric A/B score (HR, 0.57; 95% CI, 033 to 0.98; P = .041), and telomeric A/B score (HR, 0.58; 95% CI, 0.34 to 1.00; P = .048). To our knowledge, this is the first study analyzing the association of NK cell determinants and outcomes in JMML HCT recipients. This study identifies potential benefits of donor KIR-B genotypes in reducing aGVHD. Our findings warrant further study of the role of NK cells in enhancing the graft-versus-leukemia effect via recognition of JMML blasts.
Collapse
|
7
|
Mo F, Mamonkin M, Brenner MK, Heslop HE. Taking T-Cell Oncotherapy Off-the-Shelf. Trends Immunol 2021; 42:261-272. [PMID: 33536140 PMCID: PMC7914205 DOI: 10.1016/j.it.2021.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Banked allogeneic or 'off-the-shelf' (OTS) T cells from healthy human donors are being developed to address the limitations of autologous cell therapies. Potential challenges of OTS T cell therapies are associated with their allogeneic origin and the possibility of graft-versus-host disease (GvHD) and host-versus-graft immune reactions. While the risk of GvHD from OTS T cells has been proved to be manageable in clinical studies, approaches to prevent immune rejection of OTS cells are at an earlier stage of development. We provide an overview of strategies to generate OTS cell therapies and mitigate alloreactivity-associated adverse events, with a focus on recent advances for preventing immune rejection.
Collapse
Affiliation(s)
- Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Fregni G, Perier A, Avril MF, Caignard A. NK cells sense tumors, course of disease and treatments: Consequences for NK-based therapies. Oncoimmunology 2021; 1:38-47. [PMID: 22720210 PMCID: PMC3376977 DOI: 10.4161/onci.1.1.18312] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent findings on NK activation indicate that these cells are important antitumor effectors. NK cells participate in the graft-vs.-leukemia effect to control the relapse in leukemic patients transplanted with allogeneic hematopoietic stem cells. In various tumors, correlation between NK cell infiltrates and prognosis were reported. However, tumor-infiltrating NK cells are yet poorly characterized. We here summarize our results and the recent studies of the literature on tumor-infiltrating NK cells, and discuss the impact of these novel insights into NK cell responses against tumors for the design of NK cell-based therapies.
Collapse
Affiliation(s)
- Giulia Fregni
- Institut Cochin-INSERM U06; CNRS UMR 804; Université Paris Descartes; Paris, France
| | | | | | | |
Collapse
|
9
|
Masuda K, Kawamoto H. Possible NK cell-mediated immune responses against iPSC-derived cells in allogeneic transplantation settings. Inflamm Regen 2021; 41:2. [PMID: 33407951 PMCID: PMC7788987 DOI: 10.1186/s41232-020-00150-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
In the regenerative medicine field, allogenic transplantation of regenerated tissues has been promoted because autologous transplantation setting is costly and time-consuming to prepare and therefore unsuitable for emergent treatment. To avoid a T cell-mediated immune rejection in the allogenic transplantation setting, induced pluripotent stem cells (iPSCs) derived from different HLA haplotype-homozygous (HLA-homo) donors have been prepared to be used as source of regenerated tissues. However, there still remain immunological issues, even when HLA-homo iPSCs are used. One issue is the immune response against minor histocompatibility antigens expressed on the regenerated tissues, and the other is the immune rejection mediated by NK cells. In this article, we introduce our research on NK cell reactivity against the regenerated tissues in the HLA homo-to-hetero transplantation setting. We further introduce several approaches taken by other groups that address the NK-mediated immune rejection issue.
Collapse
Affiliation(s)
- Kyoko Masuda
- Lab of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroshi Kawamoto
- Lab of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
10
|
Gang M, Wong P, Berrien-Elliott MM, Fehniger TA. Memory-like natural killer cells for cancer immunotherapy. Semin Hematol 2020; 57:185-193. [PMID: 33256911 DOI: 10.1053/j.seminhematol.2020.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphoid cells that protect the host from infection and mediate anti-tumor responses. Classically considered part of the innate immune system, NK cells were previously thought to not possess the specificity or enhanced recall responses associated with adaptive T and B lymphocytes. However, a large body of work has transformed these long-held divisions between innate and adaptive immunity; NK cell memory and memory-like responses are clearly established after hapten exposure, viral infection, and combined cytokine activation. These advances come with opportunities to translate innate NK cell recall responses into the clinic as cancer immunotherapy. Here, we review our current understanding of the heterogeneity of memory and memory-like NK cell responses, with distinct formation, molecular biology, and memory type functions. We elaborate on cytokine-induced memory-like NK cells and highlight their application as adoptive immunotherapy for cancer, and as a platform for engineering optimal NK cell anti-tumor responses.
Collapse
Affiliation(s)
- Margery Gang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Pamela Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
11
|
NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2020; 27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, which are often upregulated in cancer; (2) targeting cells that have a loss of major histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific antigens on the tumor cell surface. All these strategies have been successfully harnessed in adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-induced immune escape and immune suppression can limit NK cell therapies' efficacy. Therefore, we also discuss how these limitations can be overcome by conferring NK cells with the ability to redirect their tumor-targeting capabilities and survive the immune-suppressive tumor microenvironment. Finally, we also discuss how future iterations can benefit from combination therapies with other immunotherapeutic agents.
Collapse
|
12
|
Abstract
Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment. Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors. Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication. A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells. Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function. In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer-NK cell immunity cycle. We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types. Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Joseph Cursons
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia
| |
Collapse
|
13
|
Sheng L, Mu Q, Wu X, Yang S, Zhu H, Wang J, Lai Y, Wu H, Sun Y, Hu Y, Fu H, Wang Y, Xu K, Sun Y, Zhang Y, Zhang P, Zhou M, Lai B, Xu Z, Gao M, Zhang Y, Ouyang G. Cytotoxicity of Donor Natural Killer Cells to Allo-Reactive T Cells Are Related With Acute Graft-vs.-Host-Disease Following Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:1534. [PMID: 32849519 PMCID: PMC7411138 DOI: 10.3389/fimmu.2020.01534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: The mechanism and immunoregulatory role of human natural killer (NK) cells in acute graft-vs.-host-disease (aGVHD) remains unclear. This study quantitatively analyzed the cytotoxicity of donor NK cells toward allo-reactive T cells, and investigated their relationship with acute GVHD (aGVHD). Methods: We evaluated NK dose, subgroup, and receptor expression in allografts from 98 patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). A CD107a degranulating assay was used as a quantitative detection method for the cytotoxic function of donor NK cells to allo-reactive T cells. In antibody-blocking assay, NK cells were pre-treated with anti-DNAM-1(CD226), anti-NKG2D, anti-NKP46, or anti-NKG-2A monoclonal antibodies (mAbs) before the degranulating assay. Results: NK cells in allografts effectively inhibited auto-T cell proliferation following alloantigen stimulation, selectively killing alloantigen activated T cells. NKG2A− NK cell subgroups showed higher levels of CD107a degranulation toward activated T cells, when compared with NKG2A− subgroups. Blocking NKG2D or CD226 (DNAM-1) led to significant reductions in degranulation, whereas NKG2A block resulted in increased NK degranulation. Donor NK cells in the aGVHD group expressed lower levels of NKG2D and CD226, higher levels of NKG2A, and showed higher CD107a degranulation levels when compared with NK cells in the non-aGVHD group. Using univariate analysis, higher NK degranulation activities in allografts (CD107ahigh) were correlated with a decreased risk in grade I–IV aGVHD (hazard risk [HR] = 0.294; P < 0.0001), grade III–IV aGVHD (HR = 0.102; P < 0.0001), and relapse (HR = 0.157; P = 0.015), and improved overall survival (HR = 0.355; P = 0.028) after allo-HSCT. Multivariate analyses showed that higher NK degranulation activities (CD107ahigh) in allografts were independent risk factors for grades, I–IV aGVHD (HR = 0.357; P = 0.002), and grades III–IV aGVHD (HR = 0.13; P = 0.009). Conclusions: These findings reveal that the degranulation activity of NK in allografts toward allo-activated T cells was associated with the occurrence and the severity of aGVHD, after allogeneic stem cell transplantation. This suggested that cytotoxicity of donor NK cells to allo-reactive T cells have important roles in aGVHD regulation.
Collapse
Affiliation(s)
- Lixia Sheng
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Xiaoqing Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Shujun Yang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Huiling Zhu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Jiaping Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yanli Lai
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Hao Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Ye Sun
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Kaihong Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yongcheng Sun
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Ping Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Miao Zhou
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Binbin Lai
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Zhijuan Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Minjie Gao
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yi Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
14
|
NKG2A/CD94 Is a New Immune Receptor for HLA-G and Distinguishes Amino Acid Differences in the HLA-G Heavy Chain. Int J Mol Sci 2020; 21:ijms21124362. [PMID: 32575403 PMCID: PMC7352787 DOI: 10.3390/ijms21124362] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cell therapies are a tool to antagonize a dysfunctional immune system. NK cells recognize malignant cells, traffic to a tumor location, and infiltrate the solid tumor. The immune checkpoint molecule human leukocyte antigen (HLA)-G is upregulated on malignant cells but not on healthy surrounding cells, the requirement of understanding the basis of receptor mediated events at the HLA-G/NK cell interface becomes obvious. The NK cell receptors ILT2 and KIR2DL4 have been described to bind to HLA-G; however, their differential function and expression levels on NK cell subsets suggest the existence of an unreported receptor. Here, we performed a ligand-based receptor capture on living cells utilizing sHLA-G*01:01 molecules coupled to TriCEPS and bound to NK cells followed by mass spectrometric analyses. We could define NKG2A/CD94 as a cognate receptor of HLA-G. To verify the results, we used the reciprocal method by expressing recombinant soluble heterodimeric NKG2A/CD94 molecules and used them to target HLA-G*01:01 expressing cells. NKG2A/CD94 could be confirmed as an immune receptor of HLA-G*01:01. Despite HLA-G is marginal polymorphic, we could previously demonstrate that the most common allelic subtypes HLA-G*01:01/01:03 and 01:04 differ in peptide repertoire, their engagement to NK cells, their catalyzation of dNK cell proliferation and their impact on NK cell development. Continuing these studies with regard to NKG2A/CD94 engagement we engineered recombinant single antigen presenting K562 cells and targeted the surface expressed HLA-G*01:01, 01:03 or 01:04 molecules with NKG2A/CD94. Specificity and sensitivity of HLA-G*01:04/NKG2A/CD94 engagement could be significantly verified. The binding affinity decreases when using K562-G*01:03 or K562-G*01:01 cells as targets. These results demonstrate that the ligand-receptor assignment between HLA-G and NKG2A/CD94 is dependent of the amino acid composition in the HLA-G heavy chain. Understanding the biophysical basis of receptor-mediated events that lead to NK cell inhibition would help to remove non-tumor reactive cells and support personalized mild autologous NK cell therapies.
Collapse
|
15
|
Miyazato K, Hayakawa Y. Pharmacological targeting of natural killer cells for cancer immunotherapy. Cancer Sci 2020; 111:1869-1875. [PMID: 32301190 PMCID: PMC7293096 DOI: 10.1111/cas.14418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that rapidly respond to cancer cells without prior sensitization or restriction to the cognate antigen in comparison with tumor antigen-specific T cells. Recent advances in understanding NK-cell biology have elucidated the molecular mechanisms underlying the differentiation and maturation of NK cells, in addition to the control of their effector functions by investigating the receptors and ligands involved in the recognition of cancer cells by NK cells. Such clarification of NK-cell recognition of cancer cells also revealed the mechanism by which cancer cells potentially evade NK-cell-dependent immune surveillance. Furthermore, the recent clinical results of T-cell-targeted cancer immunotherapy have increased the expectations for new immunotherapies by targeting NK cells. However, the potential use of NK cells in cancer immunotherapy is not fully understood. In this review, we discuss the current evidence and future potential of pharmacological targeting of NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Kiho Miyazato
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | | |
Collapse
|
16
|
Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M, Ortolani C, Papa S. Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy. Cells 2020; 9:cells9030753. [PMID: 32204481 PMCID: PMC7140651 DOI: 10.3390/cells9030753] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0722-304319; Fax: +39-0722-304319
| | - Genny Del Zotto
- Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Flavia Buccella
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Sara Gabrielli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| |
Collapse
|
17
|
Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M, Ortolani C, Papa S. Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy. Cells 2020. [PMID: 32204481 DOI: 10.3390/cells9030753.pmid:32204481;pmcid:pmc7140651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L'Aquila, Italy
| | - Genny Del Zotto
- Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Flavia Buccella
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Sara Gabrielli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| |
Collapse
|
18
|
Barrett AJ. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br J Haematol 2019; 188:147-158. [DOI: 10.1111/bjh.16310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. John Barrett
- GW Cancer Center George Washington University Hospital Washington DC USA
| |
Collapse
|
19
|
Aversa F, Pierini A, Ruggeri L, Martelli MF, Velardi A. The Evolution of T Cell Depleted Haploidentical Transplantation. Front Immunol 2019; 10:2769. [PMID: 31827475 PMCID: PMC6890606 DOI: 10.3389/fimmu.2019.02769] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Work on bone marrow transplantation from haploidentical donor has been proceeding for over 20 years all over the world and new transplant procedures have been developed. To control both graft rejection and graft vs. host disease, some centers have preferred to enhance the intensity of the conditioning regimens and the post-transplant immune suppression in the absence of graft manipulation; others have concentrated on manipulating the graft in the absence of any additional post-transplant immune suppressive agent. Due to the current high engraftment rates, the low incidence of graft-vs.-host disease and regimen related mortality, transplantation from haploidentical donors have been progressively offered even to elderly patients. Overall, survivals compare favorably with reports on transplants from unrelated donors. Further improvements will come with successful implementation of strategies to enhance post-transplant immune reconstitution and to prevent leukemia relapse.
Collapse
Affiliation(s)
- Franco Aversa
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Pierini
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Loredana Ruggeri
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Massimo Fabrizio Martelli
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Mancusi A, Alvarez M, Piccinelli S, Velardi A, Pierini A. TNFR2 signaling modulates immunity after allogeneic hematopoietic cell transplantation. Cytokine Growth Factor Rev 2019; 47:54-61. [PMID: 31122819 DOI: 10.1016/j.cytogfr.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) signaling through TNF receptor 2 (TNFR2) plays a complex immune regulatory role in allogeneic hematopoietic cell transplantation (HCT). TNF-α is rapidly released in the circulation after the conditioning regimen with chemotherapy and/or radiotherapy. It activates the function of donor alloreactive T cells and donor Natural Killer cells and promotes graft versus tumor effects. However, donor alloreactive T cells also attack host tissues and cause graft versus host disease (GVHD), a life-threatening complication of HCT. Indeed, anti-TNF-α therapy has been used to treat steroid-refractory GVHD. Recent studies have highlighted another role for TNFR2 signaling, as it enhances the function of immune cells with suppressive properties, in particular CD4+Foxp3+ regulatory T cells (Tregs). Various clinical trials are employing Treg-based treatments to prevent or treat GVHD. The present review will discuss the effects of TNFR2 signaling in the setting of allogeneic HCT, the implications for the use of anti-TNF-α therapy to treat GVHD and the clinical perspectives of strategies that specifically target this pathway.
Collapse
Affiliation(s)
- Antonella Mancusi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sara Piccinelli
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Andrea Velardi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Antonio Pierini
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
21
|
Sanchez-Correa B, Lopez-Sejas N, Duran E, Labella F, Alonso C, Solana R, Tarazona R. Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunol Immunother 2019; 68:861-870. [PMID: 30953117 PMCID: PMC11028212 DOI: 10.1007/s00262-019-02336-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
The incidence of some types of tumours has increased progressively in recent years and is expected to continue growing in the coming years due in part to the aging of the population. The design of new therapies based on natural killer (NK) cells opens new possibilities especially for the treatment of elderly patients who are particularly susceptible to the toxicity of conventional chemotherapy treatments. In recent years, the potential use of NK cells in cancer immunotherapy has been of great interest thanks to advances in the study of NK cell biology. The identification of key points (checkpoints) in the activation of NK cells that can be regulated by monoclonal antibodies has allowed the design of new therapeutic strategies based on NK cells. However, there are still limitations for its use and the first clinical trials blocking KIR inhibitory receptors have shown little efficacy by inhibiting the maturation of NK cells. Blockade of other inhibitory receptors such as TIGIT, TIM3, LAG3 and PD1 may represent novel strategies to increase NK function in cancer patients. Altogether, the identification of NK cell and tumour cell markers of resistance or susceptibility to the action of NK cells will contribute to identifying those patients that will most likely benefit from NK cell-based immunotherapy.
Collapse
Affiliation(s)
| | | | - Esther Duran
- Histology and Pathology Unit, Faculty of Veterinary, University of Extremadura, Caceres, Spain
| | | | - Corona Alonso
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael Solana
- Immunology Unit, Universidad de Cordoba, Cordoba, Spain.
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
| | | |
Collapse
|
22
|
Guillamón CF, Martínez-Sánchez MV, Gimeno L, Mrowiec A, Martínez-García J, Server-Pastor G, Martínez-Escribano J, Torroba A, Ferri B, Abellán D, Campillo JA, Legaz I, López-Álvarez MR, Moya-Quiles MR, Muro M, Minguela A. NK Cell Education in Tumor Immune Surveillance: DNAM-1/KIR Receptor Ratios as Predictive Biomarkers for Solid Tumor Outcome. Cancer Immunol Res 2018; 6:1537-1547. [PMID: 30242020 DOI: 10.1158/2326-6066.cir-18-0022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
Abstract
Natural killer cell (NKc)-based therapies offer promising outcomes in patients with tumors, but they could improve with appropriate selection of donors and optimization of methods to expand NKcs in vitro Education through licensing interactions of inhibitory killer cell immunoglobulin-like receptors (iKIR) and NKG2A with their cognate HLA class-I ligands optimizes NKc functional competence. This work has evaluated the role of licensing interactions in NKc differentiation and the survival of cancer patients. We have analyzed KIR and KIR-ligand genes, and the expression of activating (CD16 and DNAM-1/CD226) and inhibitory (NKG2A and iKIRs) receptors on peripheral blood NKcs in 621 healthy controls and 249 solid cancer patients (80 melanoma, 80 bladder, and 89 ovarian). Licensing interactions upregulated the expression of activating CD226, reduced that of iKIR receptors, and shifted the CD226/iKIR receptor ratio on NKc membranes to activating receptors. A high tumor burden decreased CD226 expression, reduced the ratio of CD226/iKIR, and negatively affected patient survival. The progression-free survival (38.1 vs. 67.0 months, P < 0.002) and overall survival (56.3 vs. 99.6 months, P < 0.00001) were significantly shorter in patients with lower expression of CD226 on NKcs. Hence, transformed cells can downmodulate these licensing-driven receptor rearrangements as a specific mechanism to escape NKc immune surveillance. Our results suggest the importance of the CD226/iKIR receptor ratio of NKcs induced by licensing interactions as critical determinants for solid cancer immune surveillance, and may provide predictive biomarkers for patient survival that may also improve the selection of donors for NKc immunotherapy.
Collapse
Affiliation(s)
- Concepción F Guillamón
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - María V Martínez-Sánchez
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Lourdes Gimeno
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Anna Mrowiec
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | | | | | | | | | - Daniel Abellán
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - José A Campillo
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Isabel Legaz
- Forensic Medicine, Universidad de Murcia, Murcia, Spain
| | - María R López-Álvarez
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - María Rosa Moya-Quiles
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Manuel Muro
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.
| |
Collapse
|
23
|
Rodriguez-Barbosa JI, Ferreras MC, Buhler L, Jones ND, Schneider P, Perez-Simon JA, Del Rio ML. Therapeutic implications of NK cell regulation of allogeneic CD8 T cell-mediated immune responses stimulated through the direct pathway of antigen presentation in transplantation. MAbs 2018; 10:1030-1044. [PMID: 30036156 PMCID: PMC6204794 DOI: 10.1080/19420862.2018.1502127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Natural killer (NK) cells are a population of innate type I lymphoid cells essential for early anti-viral responses and are known to modulate the course of humoral and cellular-mediated T cell responses. We assessed the role of NK cells in allogeneic CD8 T cell-mediated responses in an immunocompetent mouse model across an MHC class I histocompatibility barrier to determine its impact in therapeutic clinical interventions with polyclonal or monoclonal antibodies (mAbs) targeting lymphoid cells in transplantation. The administration of an NK cell depleting antibody to either CD8 T cell replete or CD8 T cell-depleted naïve C57BL/6 immunocompetent mice accelerated graft rejection. This accelerated rejection response was associated with an in vivo increased cytotoxic activity of CD8 T cells against bm1 allogeneic hematopoietic cells and bm1 skin allografts. These findings show that NK cells were implicated in the control host anti-donor cytotoxic responses, likely by competing for common cell growth factors in both CD8 T cell replete and CD8 T cell-depleted mice, the latter reconstituting in response to lymphopenia. Our data calls for precaution in solid organ transplantation under tolerogenic protocols involving extensive depletion of lymphocytes. These pharmacological biologics with depleting properties over NK cells may accelerate graft rejection and promote aggressive CD8 T cell cytotoxic alloresponses refractory to current immunosuppression.
Collapse
Affiliation(s)
- J I Rodriguez-Barbosa
- a Transplantation Immunobiology Section , University of León , Leon , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| | - M C Ferreras
- b Department of Animal Health, Mountain Livestock Institute (CSIC), School of Veterinary Sciences , University of Leon , Leon , Spain
| | - L Buhler
- c Visceral and Transplantation Surgery, Department of Surgery , University Hospitals of Geneva and Faculty of Medicine , Geneva , Switzerland
| | - N D Jones
- d MRC Centre of Immune Regulation, School of Immunity and Infection, Medical School , University of Birmingham , Birmingham , United Kingdom
| | - P Schneider
- e Department of Biochemistry , University of Lausanne , Epalinges , Switzerland
| | - J A Perez-Simon
- f Department of Hematology , University Hospital Virgen del Rocio/Institute of Biomedicine (IBIS/CSIC) , Sevilla , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| | - M L Del Rio
- a Transplantation Immunobiology Section , University of León , Leon , Spain.,g Leon Regional Transplantation Coordination Center , Leon University Hospital , Leon , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| |
Collapse
|
24
|
Bacigalupo A, Laurenti L. Identifying the Best Haploidentical Donor: Are We There? Biol Blood Marrow Transplant 2018; 24:638-640. [PMID: 29545184 DOI: 10.1016/j.bbmt.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Bacigalupo
- Istituto di Ematologia, Fondazione Policlinico Universitario Gemelli, Università Cattolica, Roma, Italy.
| | - Luca Laurenti
- Istituto di Ematologia, Fondazione Policlinico Universitario Gemelli, Università Cattolica, Roma, Italy
| |
Collapse
|
25
|
Hassani SN, Rezaeeyan H, Ghodsi A, Saki N. Restoration of natural killer cell cytotoxicity in the suppressive tumor microenvironment: novel approaches to treat AML. J Hematop 2017. [DOI: 10.1007/s12308-017-0306-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Lee CJ, Savani BN, Mohty M, Labopin M, Ruggeri A, Schmid C, Baron F, Esteve J, Gorin NC, Giebel S, Ciceri F, Nagler A. Haploidentical hematopoietic cell transplantation for adult acute myeloid leukemia: a position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2017; 102:1810-1822. [PMID: 28883081 PMCID: PMC5664385 DOI: 10.3324/haematol.2017.176107] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022] Open
Abstract
Allogeneic blood or marrow hematopoietic cell transplantation continues to be the most potent anti-leukemic treatment for adult patients with standard, high-risk, or chemo-refractory acute myeloid leukemia. Until recently, this procedure was generally limited to those recipients who had an available matched-sibling donor or matched-unrelated donor. Technical advances in graft cell processing and manipulation, control of bidirectional T cell alloreactivity, graft-versus-host disease prophylaxis, and other supportive measures in haploidentical transplantation now enable nearly all patients with acute myeloid leukemia to benefit from the graft-versus-leukemia effect with substantial reduction in procedure-related mortality. Over recent years, haploidentical donors have been increasingly adopted as a valid donor source in allogeneic hematopoietic cell transplantation for acute myeloid leukemia in the absence of an HLA-matched donor. Among centers of the European Society for Blood and Marrow Transplantation, the use of haploidentical related donor transplantation has increased by 250% since 2010, and 291% since 2005. On behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation, we summarize recent utilization trends in haploidentical transplantation for acute myeloid leukemia and describe the transformative changes in haploidentical hematopoietic cell transplantation techniques over the past decade, which have led to the current widespread use of this procedure. Furthermore, we review the efficacy of haploidentical hematopoietic cell transplantation for acute myeloid leukemia from available studies, including preliminary comparative studies, and bring attention to remaining unanswered questions and directions for future research. We conclude this report with our recommendations for the role of haploidentical hematopoietic cell transplantation in acute myeloid leukemia.
Collapse
Affiliation(s)
- Catherine J Lee
- Utah Blood and Marrow Transplant Program, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bipin N Savani
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohamad Mohty
- Department of Hematology, Saint-Antoine Hospital, INSERM, Paris, France
| | - Myriam Labopin
- Department of Hematology, Saint-Antoine Hospital, INSERM, Paris, France
| | - Annalisa Ruggeri
- Department of Hematology, Saint-Antoine Hospital, INSERM, Paris, France
| | - Christoph Schmid
- Klinikum Augsburg, Department of Hematology and Oncology, University of Munich, Augsburg, Germany
| | - Frédéric Baron
- Department of Medicine, Division of Hematology, University of Liège, Belgium
| | - Jordi Esteve
- Department of Hematology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Norbert C Gorin
- Department of Hematology, Saint-Antoine Hospital, APHP and University UPMC, Paris, France
| | - Sebastian Giebel
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Fabio Ciceri
- Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arnon Nagler
- Department of Hematology, Saint-Antoine Hospital, INSERM, Paris, France.,Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
27
|
αβ-T-cell depleted donor lymphocyte infusion for leukemia relapse after allogeneic stem cell transplantation. Bone Marrow Transplant 2017; 52:1668-1670. [PMID: 28869619 DOI: 10.1038/bmt.2017.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
NK Cell Alloreactivity against KIR-Ligand-Mismatched HLA-Haploidentical Tissue Derived from HLA Haplotype-Homozygous iPSCs. Stem Cell Reports 2017; 9:853-867. [PMID: 28867344 PMCID: PMC5599245 DOI: 10.1016/j.stemcr.2017.07.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/14/2023] Open
Abstract
HLA haplotype-homozygous (HLA-homo) induced pluripotent stem cells (iPSCs) are being prepared to be used for allogeneic transplantation of regenerated tissue into recipients carrying an identical haplotype in one of the alleles (HLA-hetero). However, it remains unaddressed whether natural killer (NK) cells respond to these regenerated cells. HLA-C allotypes, known to serve as major ligands for inhibitory receptors of NK cells, can be classified into group 1 (C1) and group 2 (C2), based on their binding specificities. We found that the T cells and vascular endothelial cells regenerated from HLA-homo-C1/C1 iPSCs were killed by specific NK cell subsets from a putative HLA-hetero-C1/C2 recipient. Such cytotoxicity was canceled when target cells were regenerated from iPSCs transduced with the C2 gene identical to the recipient. These results clarify that NK cells can kill regenerated cells by sensing the lack of HLA-C expression and further provide the basis for an approach to prevent such NK cell-mediated rejection responses. Cells from HLA-homo iPSCs are killed by NK cells from an HLA-hetero C1/C2 individual NK cells kill the regenerated cells by sensing the lack of KIR ligand expression Cytotoxicity is cancelled when regenerated cells overexpress the missing KIR ligand
Collapse
|
29
|
Busca A, Aversa F. In-vivo or ex-vivo T cell depletion or both to prevent graft-versus-host disease after hematopoietic stem cell transplantation. Expert Opin Biol Ther 2017; 17:1401-1415. [PMID: 28846051 DOI: 10.1080/14712598.2017.1369949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation (HSCT) represents a widely accepted therapeutic strategy for the treatment of hematologic disorders which are otherwise considered incurable. Alloreactive T cells infused with the stem cell inoculum may generate graft-versus-host disease (GVHD) representing one the most relevant obstacles to the successful outcome of patients receiving allogeneic HSCT. Areas covered: In this review, the authors provide an overview of the most recent approaches of T-cell depletion (TCD) including ex-vivo αβ+ TCD and in-vivo TCD with anti-thymocyte globulin (ATG). Expert opinion: Ex vivo depletion of donor T-cells prevents both acute and chronic GVHD without the need for any additional posttransplant immunological prophylaxis either in haploidentical HSCT and HLA matched transplants. Three prospective trials evaluating the efficacy of ATG in matched unrelated donor transplant recipients demonstrated that ATG reduces the incidence of both acute and chronic GVHD without a significant increase of relapse rate, and similar results have been reported in the setting of blood stem cell grafts from matched sibling donors.
Collapse
Affiliation(s)
- Alessandro Busca
- a SSD Trapianto di Cellule Staminali , AOU Citta' della Salute e della Scienza , Torino , Italy
| | - Franco Aversa
- b Hematology and BMT Unit , University of Parma , Parma , Italy
| |
Collapse
|
30
|
Biondi A, Magnani CF, Tettamanti S, Gaipa G, Biagi E. Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia. J Autoimmun 2017; 85:141-152. [PMID: 28843422 DOI: 10.1016/j.jaut.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Nowadays the survival rate is around 85%. Nevertheless, an urgent clinical need is still represented by primary refractory and relapsed patients who do not significantly benefit from standard approaches, including chemo-radiotherapy and hematopoietic stem cell transplantation (HSCT). For this reason, immunotherapy has so far represented a challenging novel treatment opportunity, including, as the most validated therapeutic options, cancer vaccines, donor-lymphocyte infusions and tumor-specific immune effector cells. More recently, unexpected positive clinical results in ALL have been achieved by application of gene-engineered chimeric antigen expressing (CAR) T cells. Several CAR designs across different trials have generated similar response rates, with Complete Response (CR) of 60-90% at 1 month and an Event-Free Survival (EFS) of 70% at 6 months. Relevant challenges anyway remain to be addressed, such as amelioration of technical, cost and feasibility aspects of cell and gene manipulation and the necessity to face the occurrence of relapse mechanisms. This review describes the state of the art of ALL immunotherapies, the novelties in terms of gene manipulation approaches and the problems emerged from early clinical studies. We describe and discuss the process of clinical translation, including the design of a cell manufacturing protocol, vector production and regulatory issues. Multiple antigen targeting and combination of CAR T cells with molecular targeted drugs have also been evaluated as latest strategies to prevail over immune-evasion.
Collapse
Affiliation(s)
- Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy.
| | - Chiara F Magnani
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Giuseppe Gaipa
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| |
Collapse
|
31
|
Lee JW, Kang ES, Sung KW, Yi E, Lee SH, Yoo KH, Koo HH. Incorporation of high-dose 131 I-metaiodobenzylguanidine treatment into killer immunoglobulin-like receptor/HLA-ligand mismatched haploidentical stem cell transplantation for children with neuroblastoma who failed tandem autologous stem cell transplantation. Pediatr Blood Cancer 2017; 64. [PMID: 28012219 DOI: 10.1002/pbc.26399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND We performed a pilot study (NCT 00793351) to evaluate the effectiveness and feasibility of a strategy incorporating high-dose 131 I-metaiodobenzylguanidine (HD-MIBG) treatment into killer immunoglobulin-like receptor (KIR)/HLA-ligand mismatched haploidentical stem cell transplantation (haplo-SCT) in improving the survival of children with neuroblastoma who failed previous tandem autologous SCT. PROCEDURE If the patient remained progression free with salvage treatment, HD-MIBG treatment (18 mCi/kg) was given prior to reduced-intensity conditioning (cyclophosphamide + fludarabine + antithymocyte globulin). Grafts from KIR/HLA-ligand mismatched, preferably BX haplotype, haploidentical donors were transplanted to enhance the graft-versus-tumor (GVT) effect. RESULTS A total of seven patients were enrolled and three donors had a BX haplotype. Toxicities during HD-MIBG treatment and reduced-intensity conditioning were mild. Neutrophil recovery and complete or near complete donor chimerism were rapidly achieved. Six patients experienced acute graft-versus-host disease (GVHD; grade I in five and grade III in one), and four of six evaluable patients experienced chronic GVHD (two mild and two severe). Four patients died from tumor progression, one died from sepsis without progression, and the other two remained alive in complete response during 34 and 48 months posttransplant. All three patients remained progression free after BX haplotype SCT, whereas the other four experienced progression after AA haplotype SCT. CONCLUSIONS Our results suggest that the incorporation of HD-MIBG treatment in haplo-SCT and the use of BX haplotype donors might improve outcome, but this approach is currently limited by unacceptable GVHD. Further work focused on enhancement of GVT effects in relapsed neuroblastoma should be coupled with efforts to reduce GVHD.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eunsang Yi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Front Immunol 2017; 8:533. [PMID: 28572802 PMCID: PMC5435757 DOI: 10.3389/fimmu.2017.00533] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Aline Lindner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V, Ullrich E. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Front Immunol 2017; 8:458. [PMID: 28491060 PMCID: PMC5405078 DOI: 10.3389/fimmu.2017.00458] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant diseases. Moreover, we critically discuss the technical and regulatory aspects and challenges underlying NK cell based therapeutic approaches in the clinics.
Collapse
Affiliation(s)
- Markus Granzin
- Clinical Research, Miltenyi Biotec Inc., Gaithersburg, MD, USA
| | - Juliane Wagner
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany.,Division of Immunbiochemistry, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Volker Huppert
- R&D Reagents, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| |
Collapse
|
34
|
Carapito R, Aouadi I, Ilias W, Bahram S. Natural Killer Group 2, Member D/NKG2D Ligands in Hematopoietic Cell Transplantation. Front Immunol 2017; 8:368. [PMID: 28396673 PMCID: PMC5366881 DOI: 10.3389/fimmu.2017.00368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) is an invariant activatory receptor present on subsets of natural killer and T lymphocytes. It stimulates the cytolytic effector response upon engagement of its various stress-induced ligands NKG2D ligands (NKG2DL). Malignant transformation and conditioning treatment prior to hematopoietic cell transplantation (HCT) are stress factors leading to the activation of the NKG2D/NKG2DL signaling in clinical settings. In the context of HCT, NKG2D-bearing cells can kill both tumor and healthy cells expressing NKG2DL. The NKG2D/NKG2DL engagement has therefore a key role in the regulation of one of the most salient issues in allogeneic HCT, i.e., maintaining a balance between graft-vs.-leukemia effect and graft-vs.-host disease. The present review summarizes the current state of our knowledge pertaining to the role of the NKG2D and NKG2DL in HCT.
Collapse
Affiliation(s)
- Raphael Carapito
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France; Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ismail Aouadi
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Wassila Ilias
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Seiamak Bahram
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France; Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk. J Immunol Res 2016; 2016:1376595. [PMID: 28078307 PMCID: PMC5204097 DOI: 10.1155/2016/1376595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022] Open
Abstract
Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.
Collapse
|
36
|
Burek Kamenaric M, Stingl Jankovic K, Grubic Z, Serventi Seiwerth R, Maskalan M, Nemet D, Mikulic M, Zunec R. The impact of KIR2DS4 gene on clinical outcome after hematopoietic stem cell transplantation. Hum Immunol 2016; 78:95-102. [PMID: 27998801 DOI: 10.1016/j.humimm.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/10/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIR) are a family of inhibitory/activating receptors expressed on NK cells. Interactions of KIR receptors with KIR ligands have been shown to modify hematopoietic stem cell transplantation (HSCT) outcome. The aim of this research was to determine the KIR2DS4 allele variants distribution among 111 patients with different hematological malignancy who underwent HSCT and their donors, and to evaluate KIR2DS4 alleles' impact on HSCT outcome. The KIR gene frequency analysis showed a significantly higher incidence of full-length KIR2DS4 alleles among patients. The impact of KIR2DS4 alleles on transplantation outcomes revealed that donors' full-length KIR2DS4 alleles is associated with lower overall survival rates, higher risk of GVHD and higher relapse incidence. The expression of full-length KIR2DS4 allele variants may contribute to a worse clinical outcome after HSCT. KIR typing for KIR2DS4 could be used as an additional criterion for selecting suitable donors in cases when more than one HLA identical donor is identified for a specific patient.
Collapse
Affiliation(s)
- Marija Burek Kamenaric
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Katarina Stingl Jankovic
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Zorana Grubic
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Ranka Serventi Seiwerth
- Department of Hematology, Internal Clinic, University Hospital Center Zagreb, Zagreb, Croatia
| | - Marija Maskalan
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Damir Nemet
- Department of Hematology, Internal Clinic, University Hospital Center Zagreb, Zagreb, Croatia
| | - Mirta Mikulic
- Croatian Bone Marrow Donor Registry, University Hospital Center Zagreb, Zagreb, Croatia.
| | - Renata Zunec
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia.
| |
Collapse
|
37
|
Abstract
NK cell alloreactivity mediated by donor NK cells is a fundamental therapeutic tool in HLA haplotype mismatched hematopoietic transplantation in adult acute myeloid leukemia and pediatric acute lymphoblastic leukemias. NK cell is mediated by donor NK cells recovering very early after transplant. The self donor KIR ligands educates the donor NK repertoire and arms functional NK cells which express inhibitory killer cell immunoglobulin-like receptor(s) (KIRs) for self-class I ligand(s), They sense missing expression of donor KIR ligand(s) in the recipient and mediate alloreactivity. Donor-versus-recipient NK cell alloreactivity is evaluated by KIR genotyping and phenotyping and functional assay.
Collapse
|
38
|
Oelsner S, Friede ME, Zhang C, Wagner J, Badura S, Bader P, Ullrich E, Ottmann OG, Klingemann H, Tonn T, Wels WS. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy 2016; 19:235-249. [PMID: 27887866 DOI: 10.1016/j.jcyt.2016.10.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/22/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AIMS Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. METHODS To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). RESULTS Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γnull mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. CONCLUSIONS Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent.
Collapse
Affiliation(s)
- Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Miriam E Friede
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Juliane Wagner
- Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University Frankfurt, Frankfurt, Germany; LOEWE Center for Cell and Gene Therapy, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Badura
- Department of Medicine, Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University Frankfurt, Frankfurt, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University Frankfurt, Frankfurt, Germany; LOEWE Center for Cell and Gene Therapy, Goethe University Frankfurt, Frankfurt, Germany
| | - Oliver G Ottmann
- Department of Haematology, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Torsten Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden and Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany; German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany.
| |
Collapse
|
39
|
Juric MK, Ghimire S, Ogonek J, Weissinger EM, Holler E, van Rood JJ, Oudshoorn M, Dickinson A, Greinix HT. Milestones of Hematopoietic Stem Cell Transplantation - From First Human Studies to Current Developments. Front Immunol 2016; 7:470. [PMID: 27881982 PMCID: PMC5101209 DOI: 10.3389/fimmu.2016.00470] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments.
Collapse
Affiliation(s)
- Mateja Kralj Juric
- BMT, Department of Internal Medicine I, Medical University of Vienna , Vienna , Austria
| | - Sakhila Ghimire
- Department of Internal Medicine III, University Hospital of Regensburg , Regensburg , Germany
| | - Justyna Ogonek
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | - Eva M Weissinger
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital of Regensburg , Regensburg , Germany
| | - Jon J van Rood
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Machteld Oudshoorn
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Anne Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | | |
Collapse
|
40
|
Sánchez-Martínez D, Lanuza PM, Gómez N, Muntasell A, Cisneros E, Moraru M, Azaceta G, Anel A, Martínez-Lostao L, Villalba M, Palomera L, Vilches C, García Marco JA, Pardo J. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells. Front Immunol 2016; 7:454. [PMID: 27833611 PMCID: PMC5081347 DOI: 10.3389/fimmu.2016.00454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/11/2016] [Indexed: 01/04/2023] Open
Abstract
Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.
Collapse
Affiliation(s)
- Diego Sánchez-Martínez
- Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), University of Zaragoza , Zaragoza , Spain
| | - Pilar M Lanuza
- Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), University of Zaragoza , Zaragoza , Spain
| | - Natalia Gómez
- Immunogenetics and HLA, Instituto de Investigación Sanitaria Puerta de Hierro , Majadahonda , Spain
| | - Aura Muntasell
- Immunity and infection Lab, IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Spain
| | - Elisa Cisneros
- Immunogenetics and HLA, Instituto de Investigación Sanitaria Puerta de Hierro , Majadahonda , Spain
| | - Manuela Moraru
- Immunogenetics and HLA, Instituto de Investigación Sanitaria Puerta de Hierro , Majadahonda , Spain
| | - Gemma Azaceta
- Hospital Clínico Universitario Lozano Blesa, Instituto Aragonés de Ciencias de la Salud (IACS)/Aragón Health Research Institute (IIS Aragón) , Zaragoza , Spain
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cellular Biology, Aragón Health Research Institute (IIS Aragón), University of Zaragoza , Zaragoza , Spain
| | - Luis Martínez-Lostao
- Hospital Clínico Universitario Lozano Blesa, Instituto Aragonés de Ciencias de la Salud (IACS)/Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - Martin Villalba
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France; Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, France
| | - Luis Palomera
- Hospital Clínico Universitario Lozano Blesa, Instituto Aragonés de Ciencias de la Salud (IACS)/Aragón Health Research Institute (IIS Aragón) , Zaragoza , Spain
| | - Carlos Vilches
- Immunity and infection Lab, IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Spain
| | - José A García Marco
- Unidad de Citogenética Molecular/Servicio de Hematología, Hospital Universitario Puerta de Hierro-Majadahonda , Madrid , Spain
| | - Julián Pardo
- Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain; Aragón I+D Foundation (ARAID), Government of Aragon, Zaragoza, Spain; Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
41
|
Haploidentical hematopoietic transplantation for the cure of leukemia: from its biology to clinical translation. Blood 2016; 128:2616-2623. [PMID: 27697774 DOI: 10.1182/blood-2016-07-730564] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
The present review describes the biology of human leukocyte antigen haplotype mismatched ("haploidentical") transplantation, its translation to clinical practice to cure leukemia, and the results of current transplantation protocols. The 1990s saw what had been major drawbacks of haploidentical transplantation, ie, very strong host-versus-graft and graft-versus-host alloresponses, which led respectively to rejection and graft-versus-host disease (GVHD), being overcome through transplantation of a "mega-dose" of T cell-depleted peripheral blood hematopoietic progenitor cells and no posttransplant pharmacologic immunosuppression. The absence of posttransplant immunosuppression was an opportunity to discover natural killer cell alloreactions that eradicated acute myeloid leukemia and improved survival. Furthermore, it also unveiled the benefits of transplantation from mother donors, a likely consequence of the mother-to-child interaction during pregnancy. More recent transplantation protocols use unmanipulated (without ex vivo T-cell depletion) haploidentical grafts combined with enhanced posttransplant immunosuppression to help prevent GVHD. Unmanipulated grafts substantially extended the use of haploidentical transplantation with results than even rival those of matched hematopoietic transplantation. In T cell-depleted haploidentical transplantation, recent advances were made by the adoptive transfer of regulatory and conventional T cells.
Collapse
|
42
|
Martelli MF, Aversa F. Haploidentical transplants using ex vivo T-cell depletion. Semin Hematol 2016; 53:252-256. [DOI: 10.1053/j.seminhematol.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/20/2016] [Indexed: 02/02/2023]
|
43
|
Cardozo DM, Marangon AV, da Silva RF, Aranha FJP, Visentainer JEL, Bonon SHA, Costa SCB, Miranda ECM, de Souza CA, Guimarães F. Synergistic effect of KIR ligands missing and cytomegalovirus reactivation in improving outcomes of haematopoietic stem cell transplantation from HLA-matched sibling donor for treatment of myeloid malignancies. Hum Immunol 2016; 77:861-868. [PMID: 27394130 DOI: 10.1016/j.humimm.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
The goal of this study was to evaluate the influence of KIR-HLA genotypes on the outcome of patients undergoing treatment for haematological malignancies by non-T-depleted lymphocyte haematopoietic stem cell transplantation (HSCT) from HLA-matched sibling donors. The prospective study was conducted at the Center of Hematology, University of Campinas, and 50 patients and their donors were followed up from 2008 to 2014. KIR and HLA class I genes were genotyped and patients grouped based on the presence of KIR ligands combined with KIR genotype of their respective donors. Patients with all KIR ligands present (n=13) had a significantly higher (p=0.04) incidence of acute graft-versus-host-disease (GVHD) than patients with one or more KIR ligands missing (n=37). The overall survival following transplantation of patients with myeloid malignancies (n=27) was significantly higher (p=0.035) in the group with one or more KIR ligands missing (n=18) than in the group with all ligands present (n=9). Presence of KIR2DS2 was associated with a worsening of HSCT outcome while reactivation of cytomegalovirus (CMV) infection improved the outcome of patients with one or more KIR ligands missing. Our results indicate that KIR-HLA interactions affect the outcome of the HLA-matched transplantation, particularly in patients with myeloid malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fernando Guimarães
- Hospital da Mulher Prof. Dr. José Aristodemo Pinotti - Centro de Atenção Integral à Saúde da Mulher, University of Campinas, Campinas, Brazil.
| |
Collapse
|
44
|
Tallerico R, Garofalo C, Carbone E. A New Biological Feature of Natural Killer Cells: The Recognition of Solid Tumor-Derived Cancer Stem Cells. Front Immunol 2016; 7:179. [PMID: 27242786 PMCID: PMC4861715 DOI: 10.3389/fimmu.2016.00179] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022] Open
Abstract
Natural killer (NK) cells are classified as a member of the innate lymphoid cells (ILCs) group 1. ILCs have been recently identified and grouped on the basis of their phenotypical and functional characteristics. They are effectors of innate immunity and are involved in secondary lymphoid organ generation and tissue remodeling. NK cells are powerful cytotoxic lymphocytes able to recognize and eliminate tumor- and virus-infected cells by limiting their spread and tissue damage. The recognition of tumor cells is mediated by both activating and inhibitory receptors. While in hematological malignancies the role played by NK cells is widely known, their role in recognizing solid tumors remains unclear. Recently, tumor cell populations have been divided into two compartments: cancer-initiating cells (CICs) or cancer stem cells (CSCs) and senescent tumor cells. Here, CSC will be used. CSCs are a small subset of malignant cells with stem-like properties that are involved in tumor maintenance and recurrence due to their ability to survive to traditional therapies; they are, moreover, poorly recognized by T lymphocytes. Recent data showed that NK cells recognize in vitro cancer-initiating cells derived from colon cancer, glioblastoma, and melanoma. However, more in vivo studies are urgently required to fully understand whether these new antitumor NK cells with cytotoxic capability may be considered in the design of new immunotherapeutic interventions.
Collapse
Affiliation(s)
- Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro , Catanzaro , Italy
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro , Catanzaro , Italy
| | - Ennio Carbone
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Ruggeri L, Urbani E, André P, Mancusi A, Tosti A, Topini F, Bléry M, Animobono L, Romagné F, Wagtmann N, Velardi A. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica 2016; 101:626-33. [PMID: 26721894 PMCID: PMC5004363 DOI: 10.3324/haematol.2015.135301] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/23/2015] [Indexed: 11/09/2022] Open
Abstract
Natural killer cells are key cells of the innate immune system. Natural killer cell receptor repertoires are diversified by a stochastic expression of killer-cell-immunoglobulin-like receptors and lectin-like receptors such as NKG2 receptors. All individuals harbor a subset of natural killer cells expressing NKG2A, the inhibitory checkpoint receptor for HLA-E. Most neoplastic and normal hematopoietic cells express HLA-E, the inhibitory ligand of NKG2A. A novel anti-human NKG2A antibody induced tumor cell death, suggesting that the antibody could be useful in the treatment of cancers expressing HLA-E. We found that immunodeficient mice, co-infused with human primary leukemia or Epstein-Barr virus cell lines and NKG2A(+) natural killer cells, pre-treated with anti-human NKG2A, were rescued from disease progression. Human NKG2A(+) natural killer cells reconstituted in immunodeficient mice after transplantation of human CD34(+) cells. These natural killer cells are able to kill engrafted human primary leukemia or Epstein-Barr virus cell lines by lysis after intraperitoneal administration of anti-human NKG2A. Thus, this anti-NKG2A may exploit the anti-leukemic action of the wave of NKG2A(+) natural killer cells recovering after hematopoietic stem cell transplants or adoptive therapy with natural killer cell infusions from matched or mismatched family donors after chemotherapy for acute leukemia, without the need to search for a natural killer cell alloreactive donor.
Collapse
Affiliation(s)
- Loredana Ruggeri
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | - Elena Urbani
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | | | - Antonella Mancusi
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | - Antonella Tosti
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | - Fabiana Topini
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | | | - Lucia Animobono
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | | | | | - Andrea Velardi
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Natural killer (NK) cells are innate lymphoid cells specialized to eliminate malignant cells via direct cytotoxicity and immunoregulatory cytokine production. As such, NK cells are ideal as cellular therapy for cancer patients, and several studies have provided proof of principle that adoptively transferred NK cells can induce remissions in patients with leukemia. A clear understanding of the mechanisms underlying NK cell antitumor responses, including target cell recognition, activation status, and negative regulatory signals will improve NK cellular therapy for cancer patients. RECENT FINDINGS Clinical studies have demonstrated the safety and preliminary efficacy of NK cell adoptive transfer, especially in hematologic malignancies. Various NK cell sources, isolation techniques, activation approaches, and ex-vivo expansion strategies are under investigation. New approaches have been developed and are being tested to optimize NK cell therapy, including ways to better target NK cells to malignant cells, increase their functional competence, facilitate expansion in patients, and limit inhibitory signals or cells. SUMMARY NK cells represent a promising cellular immunotherapy for the treatment of cancer. In addition to adoptive cellular therapy, adjunct treatments that optimize NK cell targeting and function will enhance their potency and broaden their potential use to many cancer types.
Collapse
|
47
|
Ma Y, Gong J, Liu Y, Guo W, Jin B, Wang X, Chen L. MicroRNA-30c promotes natural killer cell cytotoxicity via up-regulating the expression level of NKG2D. Life Sci 2016; 151:174-181. [PMID: 26968781 DOI: 10.1016/j.lfs.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
AIMS Natural killer (NK) cells play critical roles in antitumor immunity. Our previous study showed that over-expression of miR-30c-1* enhanced NKL cell cytotoxicity through up-regulation of tumor necrosis factor-α via directly targeting transcription factor homeobox containing 1. MiR-30c, the complimentary microRNA of miR-30c-1*, has been found to exert regulatory effect on T cell function. However, the effect of miR-30c on NK cells is unknown. Therefore, this study aimed to investigate whether miR-30c could play a role to enhance NK cell activation and cytotoxicity. MAIN METHODS Chemosynthesis exogenous miR-30c mimics and miR-30c inhibitor were transfected into NKL cells and isolated human peripheral blood NK cells, respectively. The expression levels of NK group 2, member D (NKG2D), CD107a and FasL on cell surface and cytotoxic ability of miRNAs transfected NKL cells against SMMC-7721 cells were evaluated. KEY FINDINGS MiR-30c could increase the expression of NKG2D and CD107a on NKL cells, and enhance cytotoxic ability of NKL cells to kill SMMC-7721 cells. Moreover, miR-30c could up-regulate the expression of FasL on both NKL cells and human peripheral blood NK cells. However, the peripheral blood NK cells from only four in ten healthy donors appeared high expression levels of NKG2D and CD107a after miR-30c transfection. SIGNIFICANCE MiR-30c could promote the cytotoxicity of NKL cells in vitro by up-regulating the expression levels of NKG2D, CD107a and FasL. However, the effect of miR-30c on ex vivo NK cells from different human individuals is diverse, indicating that miR-30c may play complicate and fine adjustment in immune system.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Jiuyu Gong
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Hospital of Hubei Armed Police Corps, Wuhan, Hubei 430000, China
| | - Yuan Liu
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenwei Guo
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China.
| | - Lihua Chen
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
48
|
Martelli MF, Ianni MD, Ruggeri L, Falzetti F, Carotti A, Reisner Y, Velardi A. Next generation HLA-haploidentical HSCT. Bone Marrow Transplant 2016; 50 Suppl 2:S63-6. [PMID: 26039211 DOI: 10.1038/bmt.2015.98] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Relapse is still the major cause of failure of allogeneic stem cell transplantation in high-risk acute leukemia patients. Indeed, whoever the donor and whatever the transplantation strategy, post-transplant relapse rates are ~30%, which is hardly satisfactory. The present phase 2 study analyzed the impact of adoptive immunotherapy with naturally occurring FoxP3+ T-regulatory cells (2 × 10(6) per kg) and conventional T lymphocytes (1 × 10(6) per kg) on prevention of GvHD and leukemia relapse in 43 high-risk adults undergoing full-haplotype mismatched transplantation without any post-transplant immunosuppression. Ninety-five percent of patients achieved full-donor type engraftment. Only 6/41 patients (15%) developed ⩾ grade II acute GvHD. Specific CD4(+) and CD8(+) for opportunistic pathogens emerged significantly earlier than after standard T-cell-depleted haplo-transplantation. The probability of disease-free survival was 0.56. At a median follow-up of 46 months (range 18-65 months), only 2/41 evaluable patients have relapsed. The cumulative incidence of relapse was significantly lower than in historical controls (0.05 vs 0.21; P = 0.03). These results demonstrate that the immunosuppressive potential of Tregs can be used to suppress GvHD without loss of the benefits of GvL activity. Humanized murine models provided insights into the mechanisms underlying separation of GvL from GvHD.
Collapse
Affiliation(s)
- M F Martelli
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - M D Ianni
- 1] Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy [2] Hematology Section, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - L Ruggeri
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - F Falzetti
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - A Carotti
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Y Reisner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A Velardi
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
49
|
Cruz CR, Bollard CM. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica 2016; 100:709-19. [PMID: 26034113 DOI: 10.3324/haematol.2014.113860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation.
Collapse
|
50
|
Kimura S, Ozaki KS, Ueki S, Zhang M, Yokota S, Stolz DB, Geller DA, Murase N. Contribution of alloantigens to hepatic ischemia/reperfusion injury: Roles of natural killer cells and innate immune recognition of nonself. Liver Transpl 2016; 22:80-90. [PMID: 26335784 DOI: 10.1002/lt.24330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/17/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022]
Abstract
Hepatic ischemia/reperfusion injury (IRI) remains a major clinical problem and involves the innate immune system's recognition of "nonself." Considering the efficient nonself recognition by natural killer (NK) cells, we hypothesize in this study that hepatic IRI associated with liver transplantation (LT) could be augmented in allogeneic rather than in syngeneic (Syn) grafts due to alloantigen recognition by innate immune cells, especially by NK cells. Using green fluorescent protein (GFP)/Sprague-Dawley rats, we tested our hypothesis in a rat LT model with 18 hours of cold storage in University of Wisconsin solution. Hepatic IRI was significantly augmented in allografts with higher alanine transaminase levels, increased necrosis, and vigorous proinflammatory mediator up-regulation compared to Syn grafts. Injury increased in allografts associated with augmented GFP+ host leukocyte infiltration due to significantly increased host CD11b/c+ and RP-1(+) neutrophil recruitment. A large number of liver-resident (donor) mature CD11b/c+ NK cells quickly diminished from allografts, but not from Syn grafts. Depletion of mature NK cells from liver grafts with anti-asialo monosialotetrahexosylganglioside significantly improved hepatic IRI and reduced neutrophil infiltration and proinflammatory mediators. In conclusion, early innate immune responses were more significantly enhanced in allografts than in Syn grafts during hepatic IRI, in part through NK cell recognition of "missing self."
Collapse
Affiliation(s)
- Shoko Kimura
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kikumi S Ozaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Shinya Ueki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Matthew Zhang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Shinichiro Yokota
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - David A Geller
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Noriko Murase
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|