1
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
2
|
Pinto D, Parameswaran R. Role of Truncated O-GalNAc Glycans in Cancer Progression and Metastasis in Endocrine Cancers. Cancers (Basel) 2023; 15:3266. [PMID: 37444377 DOI: 10.3390/cancers15133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glycans are an essential part of cells, playing a fundamental role in many pathophysiological processes such as cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumour cell invasion, and metastasis development. These glycans are also able to exert control over the changes in tumour immunogenicity, interfering with tumour-editing events and leading to immune-resistant cancer cells. The incomplete synthesis of O-glycans or the formation of truncated glycans such as the Tn-antigen (Thomsen nouveau; GalNAcα- Ser/Thr), its sialylated version the STn-antigen (sialyl-Tn; Neu5Acα2-6GalNAcα-Ser/Thr) and the elongated T-antigen (Thomsen-Friedenreich; Galβ1-3GalNAcα-Ser/Thr) has been shown to be associated with tumour progression and metastatic state in many human cancers. Prognosis in various human cancers is significantly poor when they dedifferentiate or metastasise. Recent studies in glycobiology have shown truncated O-glycans to be a hallmark of cancer cells, and when expressed, increase the oncogenicity by promoting dedifferentiation, risk of metastasis by impaired adhesion (mediated by selectins and integrins), and resistance to immunological killing by NK cells. Insight into these truncated glycans provides a complimentary and attractive route for cancer antigen discovery. The recent emergence of immunotherapies against cancers is predicted to harness the potential of using such agents against cancer-associated truncated glycans. In this review, we explore the role of truncated O-glycans in cancer progression and metastasis along with some recent studies on the role of O-glycans in endocrine cancers affecting the thyroid and adrenal gland.
Collapse
Affiliation(s)
- Diluka Pinto
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
| | - Rajeev Parameswaran
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
3
|
Tao H, Mo Y, Liu W, Wang H. A review on gout: Looking back and looking ahead. Int Immunopharmacol 2023; 117:109977. [PMID: 37012869 DOI: 10.1016/j.intimp.2023.109977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Gout is a metabolic disease caused by the deposition of monosodium urate (MSU) crystals inside joints, which leads to inflammation and tissue damage. Increased concentration of serum urate is an essential step in the development of gout. Serum urate is regulated by urate transporters in the kidney and intestine, especially GLUT9 (SLC2A9), URAT1 (SLC22A12) and ABCG. Activation of NLRP3 inflammasome bodies and subsequent release of IL-1β by monosodium urate crystals induce the crescendo of acute gouty arthritis, while neutrophil extracellular traps (NETs) are considered to drive the self-resolving of gout within a few days. If untreated, acute gout may eventually develop into chronic tophaceous gout characterized by tophi, chronic gouty synovitis, and structural joint damage, leading the crushing burden of treatment. Although the research on the pathological mechanism of gout has been gradually deepened in recent years, many clinical manifestations of gout are still unable to be fully elucidated. Here, we reviewed the molecular pathological mechanism behind various clinical manifestations of gout, with a view to making contributions to further understanding and treatment.
Collapse
|
4
|
Zhang Z, Niu J, Li Q, Huang Y, Jiang B, Li X, Jian J, Huang Y. A novel C-type lectin (CLEC12B) from Nile tilapia (Oreochromis niloticus) is involved in host defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:218-228. [PMID: 36198379 DOI: 10.1016/j.fsi.2022.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
C-type lectin (CLEC) is a family of carbohydrate-binding protein that has high affinity for calcium and mediates multiple biological events including adhesion between cells, the turnover of serum glycoproteins, and the innate immune system's reaction to prospective invaders. However, it's ill-defined for how CLEC effects bony fish's innate immunity to bacterial infection. Therefore, CLEC12B, a member of the C-type lectin domain family, was found in Nile tilapia (Oreochromis niloticus) and its functions in bacterial infection were examined. The OnCLEC12B consist of a C-type lectin domain, a transmembrane domain, and a hypothetical protein of 308 amino acids that encoded by 927 bp basic group. Besides, the OnCLEC12B protein have a series of highly conserved amino acid sites with other CLEC12B proteins. Subcellular localization showed that OnCLEC12B located in cell membrane. Transcriptional levels investigation showed that OnCLEC12B was extensively expressed in all selected organs and has high expression in the liver. The transcriptional levels of OnCLEC12B were induced by Streptococcus agalactiae and Aeromonas hydrophila in the liver, spleen, head kidney, brain, and intestine. Afterward, invitro study revealed that several kinds of pathogens could be bound and agglutinated by recombinant protein of OnCLEC12B (rOnCLEC12B). Moreover, rOnCLEC12B could not only promote the proliferation of monocytes/macrophages but also encourage its phagocytosis on S.agalactiae and A.hydrophila, and its over-expression could significantly suppress the activation of the NF-κB pathway. Summarily, our results indicated that OnCLEC12B gets involved in fish immunization activities to pathogens infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
5
|
Shields NJ, Peyroux EM, Campbell K, Mehta S, Woolley AG, Counoupas C, Neumann S, Young SL. Calpains Released from Necrotic Tumor Cells Enhance Antigen Cross-Presentation to Activate CD8 +T Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2022; 209:1635-1651. [DOI: 10.4049/jimmunol.2100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
|
6
|
Kong X, Li Y, Liu X. A review of thermosensitive antinutritional factors in plant-based foods. J Food Biochem 2022; 46:e14199. [PMID: 35502149 DOI: 10.1111/jfbc.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation. PRACTICAL APPLICATIONS: Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
Collapse
Affiliation(s)
- Xin Kong
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - You Li
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, Xue Y, He D. Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications. Front Immunol 2022; 13:888306. [PMID: 35464445 PMCID: PMC9020265 DOI: 10.3389/fimmu.2022.888306] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/03/2023] Open
Abstract
Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1β) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
8
|
Xu F, Wang Z, Zhang H, Chen J, Wang X, Cui L, Xie C, Li M, Wang F, Zhou P, Liu J, Huang P, Xia X, Xia X. Mevalonate Blockade in Cancer Cells Triggers CLEC9A + Dendritic Cell-Mediated Antitumor Immunity. Cancer Res 2021; 81:4514-4528. [PMID: 34266895 DOI: 10.1158/0008-5472.can-20-3977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Hyperactive mevalonate (MVA) metabolic activity is often observed in cancer cells, and blockade of this pathway inhibits tumor cell lipid synthesis and cell growth and enhances tumor immunogenicity. How tumor cell MVA metabolic blockade promotes antitumor immune responses, however, remains unclear. Here we show that inhibition of the MVA metabolic pathway in tumor cells elicits type 1 classical dendritic cells (cDC1)-mediated tumor recognition and antigen cross-presentation for antitumor immunity. Mechanistically, MVA blockade disrupted prenylation of the small GTPase Rac1 and induced cancer cell actin filament exposure, which was recognized by CLEC9A, a C-lectin receptor specifically expressed on cDC1s, in turn activating antitumor T cells. MVA pathway blockade or Rac1 knockdown in tumor cells induced CD8+ T-cell-mediated antitumor immunity in immunocompetent mice but not in Batf3 -/- mice lacking CLEC9A+ dendritic cells. These findings demonstrate tumor MVA metabolic blockade stimulates a cDC1 response through CLEC9A-mediated immune recognition of tumor cell cytoskeleton, illustrating a new immune surveillance mechanism by which dendritic cells monitor tumor metabolic dysregulation and providing insight into how MVA pathway inhibition may potentiate anticancer immunity. SIGNIFICANCE: These findings suggest that mevalonate blockade in cancer cells disrupts Rac1 prenylation to increase recognition and cross-presentation by conventional dendritic cells, suggesting this axis as a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiemin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Fang Wang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
9
|
Collis DWP, Yilmaz G, Yuan Y, Monaco A, Ochbaum G, Shi Y, O'Malley C, Uzunova V, Napier R, Bitton R, Becer CR, Azevedo HS. Hyaluronan (HA)-inspired glycopolymers as molecular tools for studying HA functions. RSC Chem Biol 2021; 2:568-576. [PMID: 34458800 PMCID: PMC8341579 DOI: 10.1039/d0cb00223b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA), the only non-sulphated glycosaminoglycan, serves numerous structural and biological functions in the human body, from providing viscoelasticity in tissues to creating hydrated environments for cell migration and proliferation. HA is also involved in the regulation of morphogenesis, inflammation and tumorigenesis through interactions with specific HA-binding proteins. Whilst the physicochemical and biological properties of HA have been widely studied for decades, the exact mechanisms by which HA exerts its multiple functions are not completely understood. Glycopolymers offer a simple and precise synthetic platform for the preparation of glycan analogues, being an alternative to the demanding synthetic chemical glycosylation. A library of homo, statistical and alternating HA glycopolymers were synthesised by reversible addition-fragmentation chain transfer polymerisation and post-modification utilising copper alkyne-azide cycloaddition to graft orthogonal pendant HA monosaccharides (N-acetyl glucosamine: GlcNAc and glucuronic acid: GlcA) onto the polymer. Using surface plasmon resonance, the binding of the glycopolymers to known HA-binding peptides and proteins (CD44, hyaluronidase) was assessed and compared to carbohydrate-binding proteins (lectins). These studies revealed potential structure-binding relationships between HA monosaccharides and HA receptors and novel HA binders, such as Dectin-1 and DEC-205 lectins. The inhibitory effect of HA glycopolymers on hyaluronidase (HAase) activity was also investigated suggesting GlcNAc- and GlcA-based glycopolymers as potential HAase inhibitors.
Collapse
Affiliation(s)
- Dominic W P Collis
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
| | - Gokhan Yilmaz
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Department of Chemistry, University of Warwick CV4 7AL UK
| | - Yichen Yuan
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
| | - Alessandra Monaco
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Department of Chemistry, University of Warwick CV4 7AL UK
| | - Guy Ochbaum
- Department of Chemical Engineering and the Ilza Katz, Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Yejiao Shi
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
| | - Clare O'Malley
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Institute of Bioengineering, Queen Mary University of London London E1 4NS UK
| | | | - Richard Napier
- School of Life Sciences, University of Warwick CV4 7AL UK
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilza Katz, Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - C Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Department of Chemistry, University of Warwick CV4 7AL UK
| | - Helena S Azevedo
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Institute of Bioengineering, Queen Mary University of London London E1 4NS UK
| |
Collapse
|
10
|
Abdouni Y, Ter Huurne GM, Yilmaz G, Monaco A, Redondo-Gómez C, Meijer EW, Palmans ARA, Becer CR. Self-Assembled Multi- and Single-Chain Glyconanoparticles and Their Lectin Recognition. Biomacromolecules 2020; 22:661-670. [PMID: 33373527 DOI: 10.1021/acs.biomac.0c01486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe the physicochemical characterization of amphiphilic glycopolymers synthesized via copper(0)-mediated reversible-deactivation radical polymerization (Cu-RDRP). Depending on the chemical composition of the polymer, these glycopolymers are able to form multi-chain or single-chain polymeric nanoparticles. The folding of these polymers is first of all driven by the amphiphilicity of the glycopolymers and furthermore by the supramolecular formation of helical supramolecular stacks of benzene-1,3,5-tricarboxamides (BTAs) stabilized by threefold hydrogen bonding. The obtained polymeric nanoparticles were subsequently evaluated for their lectin-binding affinity toward a series of mannose- and galactose-binding lectins via surface plasmon resonance. We found that addition of 2-ethylhexyl acrylate to the polymer composition results in compact particles, which translates to a reduction in binding affinity, whereas with the addition of BTAs, the relation between the nature of the particle and the binding ability system becomes more unpredictable.
Collapse
Affiliation(s)
- Yamin Abdouni
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - Gijs M Ter Huurne
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Gokhan Yilmaz
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alessandra Monaco
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Carlos Redondo-Gómez
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - C Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
11
|
Abstract
After both sterile and infectious insults, damage is inflicted on tissues leading to accidental or programmed cell death. In addition, events of programmed cell death also take place under homeostatic conditions, such as in embryo development or in the turnover of hematopoietic cells. Mammalian tissues are seeded with myeloid immune cells, which harbor a plethora of receptors that allow the detection of cell death, modulating immune responses. The myeloid C-type lectin receptors (CLRs) are one of the most prominent families of receptors involved in tailoring immunity after sensing dead cells. In this chapter, we will cover a diversity of signals arising from different forms of cell death and how they are recognized by myeloid CLRs. We will also explore how myeloid cells develop their sentinel function, exploring how some of these CLRs identify cell death and the type of responses triggered thereof. In particular, we will focus on DNGR-1 (CLEC9A), Mincle (CLEC4E), CLL-1 (CLEC12A), LOX-1 (OLR1), CD301 (CLEC10A) and DEC-205 (LY75) as paradigmatic death-sensing CLRs expressed by myeloid cells. The molecular processes triggered after cell death recognition by myeloid CLRs contribute to the regulation of immune responses in pathologies associated with tissue damage, such as infection, autoimmunity and cancer. A better understanding of these processes may help to improve the current approaches for therapeutic intervention.
Collapse
|
12
|
Li Q, Cheng H, Liu Y, Wang X, He F, Tang L. Activation of mTORC1 by LSECtin in macrophages directs intestinal repair in inflammatory bowel disease. Cell Death Dis 2020; 11:918. [PMID: 33106485 PMCID: PMC7589503 DOI: 10.1038/s41419-020-03114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Damage to intestinal epithelial cells and the induction of cellular apoptosis are characteristics of inflammatory bowel disease. The C-type lectin receptor family member LSECtin promotes apoptotic cell clearance by macrophages and induces the production of anti-inflammatory/tissue growth factors, which direct intestinal repair in experimental colitis. However, the mechanisms by which the phagocytosis of apoptotic cells triggers the pro-repair function of macrophages remain largely undefined. Here, using immunoprecipitation in combination with mass spectrometry to identify LSECtin-interacting proteins, we found that LSECtin interacted with mTOR, exhibiting a role in activating mTORC1. Mechanistically, apoptotic cells enhance the interaction between LSECtin and mTOR, and increase the activation of mTORC1 induced by LSECtin in macrophages. Elevated mTORC1 signaling triggers macrophages to produce anti-inflammatory/tissue growth factors that contribute to the proliferation of epithelial cells and promote the reestablishment of tissue homeostasis. Collectively, our findings suggest that LSECtin-dependent apoptotic cell clearance by macrophages activates mTORC1, and thus contributes to intestinal regeneration and the remission of colitis.
Collapse
Affiliation(s)
- Qian Li
- Institute of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Hanxing Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Yuanping Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Xiaowen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Fuchu He
- Institute of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
- Department of Biochemistry and Molecular Biology, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
13
|
Bode K, Bujupi F, Link C, Hein T, Zimmermann S, Peiris D, Jaquet V, Lepenies B, Weyd H, Krammer PH. Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2. Cell Rep 2020; 29:4435-4446.e9. [PMID: 31875551 DOI: 10.1016/j.celrep.2019.11.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
Uptake of apoptotic cells (ACs) by dendritic cells (DCs) and induction of a tolerogenic DC phenotype is an important mechanism for establishing peripheral tolerance to self-antigens. The receptors involved and underlying signaling pathways are not fully understood. Here, we identify Dectin-1 as a crucial tolerogenic receptor binding with nanomolar affinity to the core domain of several annexins (annexin A1, A5, and A13) exposed on ACs. Annexins bind to Dectin-1 on a site distinct from the interaction site of pathogen-derived β-glucans. Subsequent tolerogenic signaling induces selective phosphorylation of spleen tyrosine kinase (SYK), causing activation of NADPH oxidase-2 and moderate production of reactive oxygen species. Thus, mice deficient for Dectin-1 develop autoimmune pathologies (autoantibodies and splenomegaly) and generate stronger immune responses (cytotoxic T cells) against ACs. Our data describe an important immunological checkpoint system and provide a link between immunosuppressive signals of ACs and maintenance of peripheral immune tolerance.
Collapse
Affiliation(s)
- Kevin Bode
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Fatmire Bujupi
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Corinna Link
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Hein
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Diluka Peiris
- Attana AB, Greta Arwidssons v. 21, 11419 Stockholm, Sweden
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Peter H Krammer
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Abdouni Y, Yilmaz G, Monaco A, Aksakal R, Becer CR. Effect of Arm Number and Length of Star-Shaped Glycopolymers on Binding to Dendritic and Langerhans Cell Lectins. Biomacromolecules 2020; 21:3756-3764. [DOI: 10.1021/acs.biomac.0c00856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yamin Abdouni
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Gokhan Yilmaz
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Alessandra Monaco
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Resat Aksakal
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - C. Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Drouin M, Saenz J, Chiffoleau E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front Immunol 2020; 11:251. [PMID: 32133013 PMCID: PMC7040094 DOI: 10.3389/fimmu.2020.00251] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
C-type lectin-like receptors (CLRs) represent a family of transmembrane pattern recognition receptors, expressed primarily by myeloid cells. They recognize not only pathogen moieties for host defense, but also modified self-antigens such as damage-associated molecular patterns released from dead cells. Upon ligation, CLR signaling leads to the production of inflammatory mediators to shape amplitude, duration and outcome of the immune response. Thus, following excessive injury, dysregulation of these receptors leads to the development of inflammatory diseases. Herein, we will focus on four CLRs of the "Dectin family," shown to decode the immunogenicity of cell death. CLEC9A on dendritic cells links F-actin exposed by dying cells to favor cross-presentation of dead-cell associated antigens to CD8+ T cells. Nevertheless, CLEC9A exerts also feedback mechanisms to temper neutrophil recruitment and prevent additional tissue damage. MINCLE expressed by macrophages binds nuclear SAP130 released by necrotic cells to potentiate pro-inflammatory responses. However, the consequent inflammation can exacerbate pathogenesis of inflammatory diseases. Moreover, in a tumor microenvironment, MINCLE induces macrophage-induced immune suppression and cancer progression. Similarly, triggering of LOX-1 by oxidized LDL, amplifies pro-inflammatory response but promotes tumor immune escape and metastasis. Finally, CLEC12A that recognizes monosodium urate crystals formed during cell death, inhibits activating signals to prevent detrimental inflammation. Interestingly, CLEC12A also sustains type-I IFN response to finely tune immune responses in case of viral-induced collateral damage. Therefore, CLRs acting in concert as sensors of injury, could be used in a targeted way to treat numerous diseases such as allergies, obesity, tumors, and autoimmunity.
Collapse
Affiliation(s)
- Marion Drouin
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,OSE Immunotherapeutics, Nantes, France
| | - Javier Saenz
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
16
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Schulz O, Hanč P, Böttcher JP, Hoogeboom R, Diebold SS, Tolar P, Reis e Sousa C. Myosin II Synergizes with F-Actin to Promote DNGR-1-Dependent Cross-Presentation of Dead Cell-Associated Antigens. Cell Rep 2019; 24:419-428. [PMID: 29996102 PMCID: PMC6057488 DOI: 10.1016/j.celrep.2018.06.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/30/2022] Open
Abstract
Conventional type 1 DCs (cDC1s) excel at cross-presentation of dead cell-associated antigens partly because they express DNGR-1, a receptor that recognizes exposed actin filaments on dead cells. In vitro polymerized F-actin can be used as a synthetic ligand for DNGR-1. However, cellular F-actin is decorated with actin-binding proteins, which could affect DNGR-1 recognition. Here, we demonstrate that myosin II, an F-actin-associated motor protein, greatly potentiates the binding of DNGR-1 to F-actin. Latex beads coated with F-actin and myosin II are taken up by DNGR-1+ cDC1s, and antigen associated with those beads is efficiently cross-presented to CD8+ T cells. Myosin II-deficient necrotic cells are impaired in their ability to stimulate DNGR-1 or to serve as substrates for cDC1 cross-presentation to CD8+ T cells. These results provide insights into the nature of the DNGR-1 ligand and have implications for understanding immune responses to cell-associated antigens and for vaccine design. Myosin II amplifies the activity of the DNGR-1 ligand F-actin Lack of myosin II in donor cells reduces DNGR-1-dependent cross-presentation Beads with F-actin and myosin II can target antigens to cDC1 for CD8 T cell priming
Collapse
Affiliation(s)
- Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pavel Hanč
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jan P Böttcher
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robbert Hoogeboom
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sandra S Diebold
- Biotherapeutics Division, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London SW7 2AZ, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
18
|
Abstract
The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.
Collapse
|
19
|
Monteiro JT, Schön K, Ebbecke T, Goethe R, Ruland J, Baumgärtner W, Becker SC, Lepenies B. The CARD9-Associated C-Type Lectin, Mincle, Recognizes La Crosse Virus (LACV) but Plays a Limited Role in Early Antiviral Responses against LACV. Viruses 2019; 11:v11030303. [PMID: 30917612 PMCID: PMC6466035 DOI: 10.3390/v11030303] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
La Crosse virus (LACV) is a mosquito-transmitted arbovirus and the main cause of virus-mediated neurological diseases in children. To date, little is known about the role of C-type lectin receptors (CLRs)—an important class of pattern recognition receptors—in LACV recognition. DC-SIGN remains the only well-described CLR that recognizes LACV. In this study, we investigated the role of additional CLR/LACV interactions. To this end, we applied a flow-through chromatography method for the purification of LACV to perform an unbiased high-throughput screening of LACV with a CLR-hFc fusion protein library. Interestingly, the CARD9-associated CLRs Mincle, Dectin-1, and Dectin-2 were identified to strongly interact with LACV. Since CARD9 is a common adaptor protein for signaling via Mincle, Dectin-1, and Dectin-2, we performed LACV infection of Mincle−/− and CARD9−/− DCs. Mincle−/− and CARD9−/− DCs produced less amounts of proinflammatory cytokines, namely IL-6 and TNF-α, albeit no reduction of the LACV titer was observed. Together, novel CLR/LACV interactions were identified; however, the Mincle/CARD9 axis plays a limited role in early antiviral responses against LACV.
Collapse
Affiliation(s)
- João T Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Kathleen Schön
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Institute for Parasitology and & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Tim Ebbecke
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany.
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Stefanie C Becker
- Institute for Parasitology and & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
20
|
Use of Dendritic Cell Receptors as Targets for Enhancing Anti-Cancer Immune Responses. Cancers (Basel) 2019; 11:cancers11030418. [PMID: 30909630 PMCID: PMC6469018 DOI: 10.3390/cancers11030418] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
A successful anti-cancer vaccine construct depends on its ability to induce humoral and cellular immunity against a specific antigen. Targeting receptors of dendritic cells to promote the loading of cancer antigen through an antibody-mediated antigen uptake mechanism is a promising strategy in cancer immunotherapy. Researchers have been targeting different dendritic cell receptors such as Fc receptors (FcR), various C-type lectin-like receptors such as dendritic and thymic epithelial cell-205 (DEC-205), dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and Dectin-1 to enhance the uptake process and subsequent presentation of antigen to T cells through major histocompatibility complex (MHC) molecules. In this review, we compare different subtypes of dendritic cells, current knowledge on some important receptors of dendritic cells, and recent articles on targeting those receptors for anti-cancer immune responses in mouse models.
Collapse
|
21
|
Interplay between dendritic cells and cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:179-215. [DOI: 10.1016/bs.ircmb.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Nagae M, Yamaguchi Y. Structural Aspects of Carbohydrate Recognition Mechanisms of C-Type Lectins. Curr Top Microbiol Immunol 2019; 429:147-176. [PMID: 31781867 DOI: 10.1007/82_2019_181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbohydrate recognition is an essential function occurring in all living organisms. Lectins are carbohydrate-binding proteins and are classified into several families. In mammals, Ca2+-dependent C-type lectins, such as β-galactoside-binding galectin and sialic acid-binding siglec, play crucial roles in the immune response and homeostasis. C-type lectins are abundant and diverse in animals. Their immunological activities include lymphocyte homing, pathogen recognition, and clearance of apoptotic bodies. C-type lectin domains are composed of 110-130 amino acid residues with highly conserved structural folds. Remarkably, individual lectins can accept a wide variety of sugar ligands and can distinguish subtle structural differences in closely related ligands. In addition, several C-type lectin-like proteins specifically bind to carbohydrate ligands in Ca2+-independent ways. The accumulated 3D structural evidence clarifies the unexpected structural versatility of C-type lectins underlying the variety of ligand binding modes. In this issue, we focus on the structural aspects of carbohydrate recognition mechanisms of C-type lectins and C-type lectin-like proteins.
Collapse
Affiliation(s)
- Masamichi Nagae
- Department of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, 981-8558, Japan.
| |
Collapse
|
23
|
C-type lectin receptor LSECtin-mediated apoptotic cell clearance by macrophages directs intestinal repair in experimental colitis. Proc Natl Acad Sci U S A 2018; 115:11054-11059. [PMID: 30301800 DOI: 10.1073/pnas.1804094115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial barrier disruption is a major cause of inflammatory bowel disease (IBD); however, the cellular and molecular regulation of intestinal epithelial homeostasis remains largely undefined. Here, we show that the C-type lectin receptor LSECtin (Clec4g) on macrophages is required for protection against dextran sulfate sodium-induced colitis. Mechanistically, LSECtin promotes apoptotic cell clearance by macrophages and induces the production of antiinflammatory/tissue repair factors in an engulfment-dependent manner, which in turn stimulates epithelial cell proliferation. Deletion of LSECtin results in defective engulfment by colon macrophages, leading to aberrant proresolving factor production and impaired intestinal epithelium repair. Collectively, our findings suggest that LSECtin-dependent corpse clearance by macrophages can direct intestinal regeneration and maintenance of the mucosal barrier after injury.
Collapse
|
24
|
Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL, Sánchez-Arráez A, Sancho D, Melero I. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol 2018; 28:xii44-xii55. [PMID: 28945841 DOI: 10.1093/annonc/mdx237] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are the main professional antigen-presenting cells for induction of T-cell adaptive responses. Cancer cells express tumor antigens, including neoantigens generated by nonsynonymous mutations, but are poor for antigen presentation and for providing costimulatory signals for T-cell priming. Mounting evidence suggests that antigen transfer to DCs and their surrogate presentation on major histocompatibility complex class I and II molecules together with costimulatory signals is paramount for induction of viral and cancer immunity. Of the great diversity of DCs, BATF3/IRF8-dependent conventional DCs type 1 (cDC1) excel at cross-presentation of tumor cell-associated antigens. Location of cDC1s in the tumor correlates with improved infiltration by CD8+ T cells and tumor-specific T-cell immunity. Indeed, cDC1s are crucial for antitumor efficacy using checkpoint inhibitors and anti-CD137 agonist monoclonal antibodies in mouse models. Enhancement and exploitation of T-cell cross-priming by cDC1s offer opportunities for improved cancer immunotherapy, including in vivo targeting of tumor antigens to internalizing receptors on cDC1s and strategies to increase their numbers, activation and priming capacity within tumors and tumor-draining lymph nodes.
Collapse
Affiliation(s)
- A R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - A Teijeira
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - F J Cueto
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid.,Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid
| | - S Garasa
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - J L Pérez-Gracia
- University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| | - A Sánchez-Arráez
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - D Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid
| | - I Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona.,University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
25
|
Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol 2018; 9:883. [PMID: 29867798 PMCID: PMC5949370 DOI: 10.3389/fmicb.2018.00883] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| | - Manuel Soto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain.,Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| |
Collapse
|
26
|
Del Fresno C, Iborra S, Saz-Leal P, Martínez-López M, Sancho D. Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front Immunol 2018; 9:804. [PMID: 29755458 PMCID: PMC5932189 DOI: 10.3389/fimmu.2018.00804] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Myeloid C-type lectin receptors (CLRs) are important sensors of self and non-self that work in concert with other pattern recognition receptors (PRRs). CLRs have been previously classified based on their signaling motifs as activating or inhibitory receptors. However, specific features of the ligand binding process may result in distinct signaling through a single motif, resulting in the triggering of non-canonical pathways. In addition, CLR ligands are frequently exposed in complex structures that simultaneously bind different CLRs and other PRRs, which lead to integration of heterologous signaling among diverse receptors. Herein, we will review how sensing by myeloid CLRs and crosstalk with heterologous receptors is modulated by many factors affecting their signaling and resulting in differential outcomes for immunity and inflammation. Finding common features among those flexible responses initiated by diverse CLR-ligand partners will help to harness CLR function in immunity and inflammation.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula Saz-Leal
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Martínez-López
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
27
|
Gebhardt A, Laudenbach BT, Pichlmair A. Discrimination of Self and Non-Self Ribonucleic Acids. J Interferon Cytokine Res 2018; 37:184-197. [PMID: 28475460 DOI: 10.1089/jir.2016.0092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most virus infections are controlled through the innate and adaptive immune system. A surprisingly limited number of so-called pattern recognition receptors (PRRs) have the ability to sense a large variety of virus infections. The reason for the broad activity of PRRs lies in the ability to recognize viral nucleic acids. These nucleic acids lack signatures that are present in cytoplasmic cellular nucleic acids and thereby marking them as pathogen-derived. Accumulating evidence suggests that these signatures, which are predominantly sensed by a class of PRRs called retinoic acid-inducible gene I (RIG-I)-like receptors and other proteins, are not unique to viruses but rather resemble immature forms of cellular ribonucleic acids generated by cellular polymerases. RIG-I-like receptors, and other cellular antiviral proteins, may therefore have mainly evolved to sense nonprocessed nucleic acids typically generated by primitive organisms and pathogens. This capability has not only implications on induction of antiviral immunity but also on the function of cellular proteins to handle self-derived RNA with stimulatory potential.
Collapse
Affiliation(s)
- Anna Gebhardt
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry , Munich, Germany
| | | | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry , Munich, Germany
| |
Collapse
|
28
|
Mayer S, Moeller R, Monteiro JT, Ellrott K, Josenhans C, Lepenies B. C-Type Lectin Receptor (CLR)-Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Campylobacter jejuni Isolates. Front Immunol 2018; 9:213. [PMID: 29487596 PMCID: PMC5816833 DOI: 10.3389/fimmu.2018.00213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
C-type lectin receptors (CLRs) are carbohydrate-binding receptors that recognize their ligands often in a Ca2+-dependent manner. Upon ligand binding, myeloid CLRs in innate immunity trigger or inhibit a variety of signaling pathways, thus initiating or modulating effector functions such as cytokine production, phagocytosis, and antigen presentation. CLRs bind to various pathogens, including viruses, fungi, parasites, and bacteria. The bacterium Campylobacter jejuni (C. jejuni) is a very frequent Gram-negative zoonotic pathogen of humans, causing severe intestinal symptoms. Interestingly, C. jejuni expresses several glycosylated surface structures, for example, the capsular polysaccharide (CPS), lipooligosaccharide (LOS), and envelope proteins. This “Methods” paper describes applications of CLR–Fc fusion proteins to screen for yet unknown CLR/bacteria interactions using C. jejuni as an example. ELISA-based detection of CLR/bacteria interactions allows a first prescreening that is further confirmed by flow cytometry-based binding analysis and visualized using confocal microscopy. By applying these methods, we identified Dectin-1 as a novel CLR recognizing two selected C. jejuni isolates with different LOS and CPS genotypes. In conclusion, the here-described applications of CLR–Fc fusion proteins represent useful methods to screen for and identify novel CLR/bacteria interactions.
Collapse
Affiliation(s)
- Sabine Mayer
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Rebecca Moeller
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - João T Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Kerstin Ellrott
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Christine Josenhans
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Max von Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
29
|
Allele-specific recognition by LILRB3 and LILRA6 of a cytokeratin 8-associated ligand on necrotic glandular epithelial cells. Oncotarget 2017; 7:15618-31. [PMID: 26769854 PMCID: PMC4941265 DOI: 10.18632/oncotarget.6905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/06/2016] [Indexed: 12/22/2022] Open
Abstract
The LILRs are a family of receptors that regulate the activities of myelomonocytic cells. We found that specific allelic variants of two related members of the LILR family, LILRB3 and LILRA6, interact with a ligand exposed on necrotic glandular epithelial cells. The extracellular domains of LILRB3 and LILRA6 are very similar and their genes are highly polymorphic. A commonly occurring allele, LILRB3*12, displayed particularly strong binding of these necrotic cells and further screening of the products of LILRB3 alleles identified motifs that correlated with binding. Immunoprecipitation of the ligand from epithelial cell lysates using recombinant LILRB3*12, identified cytokeratins 8, 18 and 19. Purified proteins obtained from epithelial cell lysates, using anti-cytokeratin 8 antibodies, were able to activate LILRB3*12 reporter cells. Knock-down of cytokeratin 8 in epithelial cells abrogated expression of the LILRB3 ligand, while staining with recombinant LILRB3*12 showed co-localisation with cytokeratin 8 and 18 in permeabilised breast cancer cells. Necrosis is a common feature of tumours. The finding of a necrosis-associated ligand for these two receptors raises the possibility of a novel interaction that alters immune responses within the tumour microenvironment. Since LILRB3 and LILRA6 genes are highly polymorphic the interaction may influence an individual's immune response to tumours.
Collapse
|
30
|
Wang X, Jiang Y, Yuan M, Chen C, Wang K, Zhang Q, Zuo Y, Ren S. Overexpression of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related protein in cervical cancer and correlation with squamous cell carcinoma antigen. Oncol Lett 2017; 14:2813-2821. [PMID: 28927040 PMCID: PMC5588121 DOI: 10.3892/ol.2017.6508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related protein (DC-SIGNR) is a type II transmembrane protein that has been reported to bind to various pathogens and participate in immunoregulation and tumorigenesis. However, further research is required to investigate whether the level of DC-SIGNR and cervical cancer are associated. The present study aimed to explore the clinical diagnostic significance of DC-SIGNR in cervical cancer. Immunohistochemical staining of DC-SIGNR was performed in samples from 25 patients with early stage cervical cancer, 14 patients with cervical intraepithelial neoplasia (CIN) and cervical polyp samples from 15 individuals. DC-SIGNR expression in cervical cancer tissue was significantly higher compared with that in CIN and cervical polyp tissue (P=0.0184 and P=0.0236, respectively). However, there was no significant difference in DC-SIGNR expression between CIN and cervical polyp tissue (P=0.8103). Additionally, the serum DC-SIGNR levels in 84 cervical cancer patients and 69 healthy female individuals were measured using an ELISA. Serum (s)DC-SIGNR levels were significantly higher in cervical cancer patients compared with healthy female individuals (P<0.0001). A sDC-SIGNR level of 93.7 ng/ml was revealed by receiver operating characteristic curve analysis to predict the presence of cervical cancer with 69.57% sensitivity and 66.67% specificity (area under the curve, 0.6989; P<0.0001). Levels of sDC-SIGNR in cervical cancer patients were also correlated with serum levels of squamous cell carcinoma antigen (r=0.2583; P=0.0348). The results of the present study demonstrate that DC-SIGNR is overexpressed in cervical cancer tissue, and suggest that DC-SIGNR could serve as a biomarker for the early diagnosis of cervical cancer. Nevertheless, further studies are required to demonstrate what role DC-SIGNR serves in cervical cancer.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yangmei Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Menglang Yuan
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Chunlin Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Keyong Wang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qianshi Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuangyi Ren
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
31
|
Wang YY, Chen WL, Weng XQ, Sheng Y, Wu J, Hao J, Liu ZY, Zhu YM, Chen B, Xiong SM, Chen Y, Chen QS, Sun HP, Li JM, Wang J. Low CLL-1 Expression Is a Novel Adverse Predictor in 123 Patients with De Novo CD34 + Acute Myeloid Leukemia. Stem Cells Dev 2017; 26:1460-1467. [PMID: 28810819 DOI: 10.1089/scd.2016.0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent reports state that C-type lectin-like molecule-1 (CLL-1) in acute myeloid leukemia (AML) is expressed primarily on myeloid cells, but there is still no investigation about its prognostic significance on leukemic blast compartment. Hence, this study aimed to evaluate the prognostic value of CLL-1 in 123 patients with de novo CD34+ Non-M3 AML. Multiparameter flow cytometry was used to assess the expression of CLL-1 on immature compartment in AML and control groups. We found that CLL-1 expression level on blast compartment was closely linked to clinical characteristics, treatment response, and survival outcome of patients. Decreased expression of CLL-1 was observed on immature compartment from AML patients as compared with controls (62.6% vs. 86.5%, P < 0.05). Logistic model exhibited that CLL-1low independently predicted low complete remission rate with an odds ratio of 4.57 (2.53-6.61, P < 0.05). Additionally, CLL-1 expression level at diagnosis was inversely correlated to the residual blast cells (residual leukemia cell) after induction chemotherapy (r = -0.423, P < 0.05). Furthermore, multivariate Cox regression model demonstrated that CLL-1low was still an independent adverse predictor (P < 0.05 for event-free survival, P < 0.05 for overall survival). Notably, CLL-1low was able to discriminate poor survival patients from intermediate- and favorable-risk groups. Taken together, CLL-1 is a novel prognostic predictor that could be exploited to supplement the current AML prognostic risk stratification system, and potentially optimize the clinical management of AML.
Collapse
Affiliation(s)
- Yan-Yu Wang
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Department of Hematology, Bei Zhan Hospital , Shanghai, China
- 3 Department of Hematology, The Central Hospital of Xu Hui District , Shanghai, China
| | - Wen-Lian Chen
- 4 University of Hawaii Cancer Center , Honolulu, Hawaii
| | - Xiang-Qin Weng
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yan Sheng
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jing Wu
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jie Hao
- 2 Department of Hematology, Bei Zhan Hospital , Shanghai, China
| | - Zhan-Yun Liu
- 2 Department of Hematology, Bei Zhan Hospital , Shanghai, China
| | - Yong-Mei Zhu
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Bing Chen
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Shu-Min Xiong
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yu Chen
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Qiu-Sheng Chen
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Hui-Ping Sun
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jun-Min Li
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jin Wang
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
32
|
Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:205-39. [PMID: 27558823 DOI: 10.1007/978-3-319-39406-0_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence.
Collapse
|
33
|
Desai J, Steiger S, Anders HJ. Molecular Pathophysiology of Gout. Trends Mol Med 2017; 23:756-768. [PMID: 28732688 DOI: 10.1016/j.molmed.2017.06.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023]
Abstract
Three contradictory clinical presentations of gout have puzzled clinicians and basic scientists for some time: first, the crescendo of sterile inflammation in acute gouty arthritis; second, its spontaneous resolution, despite monosodium urate (MSU) crystal persistence in the synovium; and third, immune anergy to MSU crystal masses observed in tophaceous or visceral gout. Here, we provide an update on the molecular pathophysiology of these gout manifestations, namely, how MSU crystals can trigger the auto-amplification loop of necroinflammation underlying the crescendo of acute gouty arthritis. We also discuss new findings, such as how aggregating neutrophil extracellular traps (NETs) might drive the resolution of arthritis and how these structures, together with granuloma formation, might support immune anergy, but yet promote tissue damage and remodeling during tophaceous gout.
Collapse
Affiliation(s)
- Jyaysi Desai
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Stefanie Steiger
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
34
|
Benito-Villalvilla C, Cirauqui C, Diez-Rivero CM, Casanovas M, Subiza JL, Palomares O. MV140, a sublingual polyvalent bacterial preparation to treat recurrent urinary tract infections, licenses human dendritic cells for generating Th1, Th17, and IL-10 responses via Syk and MyD88. Mucosal Immunol 2017; 10:924-935. [PMID: 27966556 DOI: 10.1038/mi.2016.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/08/2016] [Indexed: 02/08/2023]
Abstract
Recurrent urinary tract infections (RUTIs) are one of the most common bacterial infectious diseases, especially in women. Antibiotics remain the mainstay of treatment, but their overuse is associated with antibiotic-resistant infections and deleterious effects in the microbiota. Therefore, alternative approaches are fully demanded. Sublingual immunization with MV140 (Uromune), a polyvalent bacterial preparation (PBP) of whole heat-inactivated bacteria, demonstrated clinical efficacy for the treatment of RUTIs, but the involved immunological mechanisms remain unknown. Herein, we demonstrated that MV140 endorses human dendritic cells (DCs) with the capacity to generate Th1/Th17 and IL-10-producing T cells by mechanisms depending on spleen tyrosine kinase (Syk)- and myeloid differentiation primary response gene 88 (MyD88)-mediated pathways. MV140-induced activation of nuclear factor κB (NF-κB) and p38 in human DCs is essential for the generated Th1/Th17 and IL-10 immune responses whereas c-Jun N-terminal Kinase (JNK) and extracellular-signal regulated kinase (ERK) contribute to Th1 and IL-10 responses, respectively. Sublingual immunization of BALB/c mice with MV140 also induces potent systemic Th1/Th17 and IL-10 responses in vivo. We uncover immunological mechanisms underlying the way of action of MV140, which might well also contribute to understand the rational use of specific PBPs in other clinical conditions with potential high risk of recurrent infections.
Collapse
Affiliation(s)
- C Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - C Cirauqui
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | | | - M Casanovas
- Inmunotek, SL. Alcalá de Henares, Madrid, Spain
| | - J L Subiza
- Inmunotek, SL. Alcalá de Henares, Madrid, Spain.,Department of Immunology, Hospital Clínico San Carlos and School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - O Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| |
Collapse
|
35
|
Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev 2017; 278:219-236. [DOI: 10.1111/imr.12555] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - Mar Martín-Fontecha
- Department of Organic Chemistry; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| |
Collapse
|
36
|
Intracellular metabolite β-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc Natl Acad Sci U S A 2017; 114:E3285-E3294. [PMID: 28373578 DOI: 10.1073/pnas.1618133114] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sensing and reacting to tissue damage is a fundamental function of immune systems. Macrophage inducible C-type lectin (Mincle) is an activating C-type lectin receptor that senses damaged cells. Notably, Mincle also recognizes glycolipid ligands on pathogens. To elucidate endogenous glycolipids ligands derived from damaged cells, we fractionated supernatants from damaged cells and identified a lipophilic component that activates reporter cells expressing Mincle. Mass spectrometry and NMR spectroscopy identified the component structure as β-glucosylceramide (GlcCer), which is a ubiquitous intracellular metabolite. Synthetic β-GlcCer activated myeloid cells and induced production of inflammatory cytokines; this production was abrogated in Mincle-deficient cells. Sterile inflammation induced by excessive cell death in the thymus was exacerbated by hematopoietic-specific deletion of degrading enzyme of β-GlcCer (β-glucosylceramidase, GBA1). However, this enhanced inflammation was ameliorated in a Mincle-deficient background. GBA1-deficient dendritic cells (DCs) in which β-GlcCer accumulates triggered antigen-specific T-cell responses more efficiently than WT DCs, whereas these responses were compromised in DCs from GBA1 × Mincle double-deficient mice. These results suggest that β-GlcCer is an endogenous ligand for Mincle and possesses immunostimulatory activity.
Collapse
|
37
|
Cote R, Lynn Eggink L, Kenneth Hoober J. CLEC receptors, endocytosis and calcium signaling. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection. Immunity 2016; 45:788-801. [PMID: 27742545 DOI: 10.1016/j.immuni.2016.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
Abstract
C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c+ cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self.
Collapse
|
39
|
Clément M, Basatemur G, Masters L, Baker L, Bruneval P, Iwawaki T, Kneilling M, Yamasaki S, Goodall J, Mallat Z. Necrotic Cell Sensor Clec4e Promotes a Proatherogenic Macrophage Phenotype Through Activation of the Unfolded Protein Response. Circulation 2016; 134:1039-1051. [DOI: 10.1161/circulationaha.116.022668] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/05/2016] [Indexed: 01/22/2023]
Abstract
Background:
Atherosclerotic lesion expansion is characterized by the development of a lipid-rich necrotic core known to be associated with the occurrence of complications. Abnormal lipid handling, inflammation, and alteration of cell survival or proliferation contribute to necrotic core formation, but the molecular mechanisms involved in this process are not properly understood. C-type lectin receptor 4e (Clec4e) recognizes the cord factor of Mycobacterium
tuberculosis
but also senses molecular patterns released by necrotic cells and drives inflammation.
Methods:
We hypothesized that activation of Clec4e signaling by necrosis is causally involved in atherogenesis. We addressed the impact of Clec4e activation on macrophage functions in vitro and on the development of atherosclerosis using low-density lipoprotein receptor–deficient (
Ldlr
−/−
) mice in vivo.
Results:
We show that Clec4e is expressed within human and mouse atherosclerotic lesions and is activated by necrotic lesion extracts. Clec4e signaling in macrophages inhibits cholesterol efflux and induces a Syk-mediated endoplasmic reticulum stress response, leading to the induction of proinflammatory mediators and growth factors.
Chop
and
Ire1a
deficiencies significantly limit Clec4e-dependent effects, whereas
Atf3
deficiency aggravates Clec4e-mediated inflammation and alteration of cholesterol efflux. Repopulation of
Ldlr
−/−
mice with
Clec4e
−/−
bone marrow reduces lipid accumulation, endoplasmic reticulum stress, and macrophage inflammation and proliferation within the developing arterial lesions and significantly limits atherosclerosis.
Conclusions:
Our results identify a nonredundant role for Clec4e in coordinating major biological pathways involved in atherosclerosis and suggest that it may play similar roles in other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Marc Clément
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Gemma Basatemur
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Leanne Masters
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Lauren Baker
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Patrick Bruneval
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Takao Iwawaki
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Manfred Kneilling
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Sho Yamasaki
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Jane Goodall
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Ziad Mallat
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| |
Collapse
|
40
|
Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP. How Mouse Macrophages Sense What Is Going On. Front Immunol 2016; 7:204. [PMID: 27313577 PMCID: PMC4890338 DOI: 10.3389/fimmu.2016.00204] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/10/2016] [Indexed: 01/26/2023] Open
Abstract
Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Akula Bala Pramod
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, VA , USA
| | - Jenny P Ting
- Department of Genetics, The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| |
Collapse
|
41
|
Priyam M, Tripathy M, Rai U, Ghorai SM. Tracing the evolutionary lineage of pattern recognition receptor homologues in vertebrates: An insight into reptilian immunity via de novo sequencing of the wall lizard splenic transcriptome. Vet Immunol Immunopathol 2016; 172:26-37. [DOI: 10.1016/j.vetimm.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
|
42
|
Gallo J, Raska M, Konttinen YT, Nich C, Goodman SB. Innate immunity sensors participating in pathophysiology of joint diseases: a brief overview. J Long Term Eff Med Implants 2015; 24:297-317. [PMID: 25747032 DOI: 10.1615/jlongtermeffmedimplants.2014010825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The innate immune system consists of functionally specialized "modules" that are activated in response to a particular set of stimuli via sensors located on the surface or inside the tissue cells. These cells screen tissues for a wide range of exogenous and endogenous danger/damage-induced signals with the aim to reject or tolerate them and maintain tissue integrity. In this line of thinking, inflammation evolved as an adaptive tool for restoring tissue homeostasis. A number of diseases are mediated by a maladaptation of the innate immune response, perpetuating chronic inflammation and tissue damage. Here, we review recent evidence on the cross talk between innate immune sensors and development of rheumatoid arthritis, osteoarthritis, and aseptic loosening of total joint replacements. In relation to the latter topic, there is a growing body of evidence that aseptic loosening and periprosthetic osteolysis results from long-term maladaptation of periprosthetic tissues to the presence of by-products continuously released from an artificial joint.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopedics, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc 775 20, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine & Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Yrjo T Konttinen
- Department of Clinical Medicine, University of Helsinki and ORTON Orthopaedic Hospital of the Invalid Foundation, Helsinki, Finland
| | - Christophe Nich
- Laboratoire de Biomecanique et Biomateriaux Osteo-Articulaires - UMR CNRS 7052, Faculte de Medecine - Universite Paris 7, Paris, France; Department of Orthopaedic Surgery, European Teaching Hospital, Assistance Publique - Hopitaux de Paris
| | - Stuart B Goodman
- Department of Orthopaedic Surgery Stanford University Medical Center Redwood City, CA
| |
Collapse
|
43
|
Kiyotake R, Oh-Hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S. Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses. J Biol Chem 2015; 290:25322-32. [PMID: 26296894 DOI: 10.1074/jbc.m115.645234] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Indexed: 11/06/2022] Open
Abstract
C-type lectin receptors (CLRs) are an emerging family of pattern recognition receptors that recognizes pathogens or damaged tissue to trigger innate immune responses. However, endogenous ligands for CLRs are not fully understood. In this study, we sought to identify an endogenous ligand(s) for human macrophage-inducible C-type lectin (hMincle). A particular fraction of lipid extracts from liver selectively activated reporter cells expressing hMincle. MS analysis determined the chemical structure of the active component as cholesterol. Purified cholesterol in plate-coated and crystalized forms activates reporter cells expressing hMincle but not murine Mincle (mMincle). Cholesterol crystals are known to activate immune cells and induce inflammatory responses through lysosomal damage. However, direct innate immune receptors for cholesterol crystals have not been identified. Murine macrophages transfected with hMincle responded to cholesterol crystals by producing pro-inflammatory cytokines. Human dendritic cells expressed a set of inflammatory genes in response to cholesterol crystals, and this was inhibited by anti-human Mincle. Importantly, other related CLRs did not bind cholesterol crystals, whereas other steroids were not recognized by hMincle. These results suggest that cholesterol crystals are an endogenous ligand for hMincle and that they activate innate immune responses.
Collapse
Affiliation(s)
- Ryoko Kiyotake
- From the Division of Molecular Immunology, Research Center for Infectious Diseases, Medical institute of Bioregulation, Kyushu University, Fukuoka 812-8582, the Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Masatsugu Oh-Hora
- From the Division of Molecular Immunology, Research Center for Infectious Diseases, Medical institute of Bioregulation, Kyushu University, Fukuoka 812-8582
| | - Eri Ishikawa
- From the Division of Molecular Immunology, Research Center for Infectious Diseases, Medical institute of Bioregulation, Kyushu University, Fukuoka 812-8582
| | - Tomofumi Miyamoto
- the Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, and
| | - Tatsuro Ishibashi
- the Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Sho Yamasaki
- From the Division of Molecular Immunology, Research Center for Infectious Diseases, Medical institute of Bioregulation, Kyushu University, Fukuoka 812-8582, the Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
44
|
Yau T, Dan X, Ng CCW, Ng TB. Lectins with potential for anti-cancer therapy. Molecules 2015; 20:3791-810. [PMID: 25730388 PMCID: PMC6272365 DOI: 10.3390/molecules20033791] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
This article reviews lectins of animal and plant origin that induce apoptosis and autophagy of cancer cells and hence possess the potential of being developed into anticancer drugs. Apoptosis-inducing lectins encompass galectins, C-type lectins, annexins, Haliotis discus discus lectin, Polygonatum odoratum lectin, mistletoe lectin, and concanavalin A, fucose-binding Dicentrarchus labrax lectin, and Strongylocentrotus purpuratus lectin, Polygonatum odoratum lectin, and mistletoe lectin, Polygonatum odoratum lectin, autophagy inducing lectins include annexins and Polygonatum odoratum lectin.
Collapse
Affiliation(s)
- Tammy Yau
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
45
|
Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers. Eur J Pharm Biopharm 2015; 95:13-7. [PMID: 25701806 DOI: 10.1016/j.ejpb.2015.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 01/08/2023]
Abstract
Targeted drug delivery systems hold promise for selective provision of active compounds to distinct tissues or cell subsets. Thus, locally enhanced drug concentrations are obtained that would confer improved efficacy. As a consequence adverse effects should be diminished, as innocent bystander cells are less affected. Currently, several controlled drug delivery systems based on diverse materials are being developed. Some systems exhibit material-associated toxic effects and/or show low drug loading capacity. In contrast, liposomal nanocarriers are particularly favorable because they are well tolerated, poorly immunogenic, can be produced in defined sizes, and offer a reasonable payload capacity. Compared with other immune cells, professional antigen-presenting cells (APCs) demonstrate enhanced liposome uptake mediated by macropinocytosis, phagocytosis and presumably also by clathrin- and caveolae-mediated endocytosis. In order to further enhance the targeting efficacy toward APCs, receptor-mediated uptake appears advisable. Since APC subsets generally do not express single linage-specific receptors, members of the C-type lectin receptor (CLR) family are compelling targets. Examples of CLR expressed by APCs include DEC-205 (CD205) expressed by myeloid dendritic cells (DC) and monocytes, the mannose receptor C type 1 (MR, CD206) expressed by DC, monocytes and macrophages, DC-SIGN (CD209) expressed by DC, and several others. These receptors bind glycans, which are typically displayed by pathogens and thus support pathogen uptake and endocytosis. Further research will elucidate whether glycan-decorated liposomes will not only enhance APCs targeting but also enable preferential delivery of their payload to discrete subcellular compartments.
Collapse
|
46
|
Lightfoot YL, Selle K, Yang T, Goh YJ, Sahay B, Zadeh M, Owen JL, Colliou N, Li E, Johannssen T, Lepenies B, Klaenhammer TR, Mohamadzadeh M. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J 2015; 34:881-95. [PMID: 25666591 DOI: 10.15252/embj.201490296] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/16/2015] [Indexed: 12/31/2022] Open
Abstract
Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3(-/-) mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD.
Collapse
Affiliation(s)
- Yaíma L Lightfoot
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Kurt Selle
- Department of Food, Bioprocessing and Nutrition Sciences, and Genomic Sciences Program, North Carolina State University, Raleigh, NC, USA
| | - Tao Yang
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, and Genomic Sciences Program, North Carolina State University, Raleigh, NC, USA
| | - Bikash Sahay
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer L Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Natacha Colliou
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Eric Li
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Timo Johannssen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Todd R Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, and Genomic Sciences Program, North Carolina State University, Raleigh, NC, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
Cytoplasmic sensing of viral nucleic acids. Curr Opin Virol 2015; 11:31-7. [PMID: 25668758 PMCID: PMC7172233 DOI: 10.1016/j.coviro.2015.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Viral nucleic acids (NAs) are targeted by cellular proteins with diverse functions. NA sensing proteins are forming a three-layered defence system. NA localisation and modifications synergistically activate defence systems.
Viruses are the most abundant pathogens on earth. A fine-tuned framework of intervening pathways is in place in mammalian cells to orchestrate the cellular defence against these pathogens. Key for this system is sensor proteins that recognise specific features associated with nucleic acids of incoming viruses. Here we review the current knowledge on cytoplasmic sensors for viral nucleic acids. These sensors induce expression of cytokines, affect cellular functions required for virus replication and directly target viral nucleic acids through degradation or sequestration. Their ability to respond to a given nucleic acid is based on both the differential specificity of the individual proteins and the downstream signalling or adaptor proteins. The cooperation of these multiple proteins and pathways plays a key role in inducing successful immunity against virus infections.
Collapse
|
48
|
Abstract
Host and pathogen engage in a constant evolutionary struggle known as a "Red Queen Paradigm". In this struggle, natural selection favours the pathogen which evolves effective virulence mechanisms and the host which is able to field adequate resistance strategies. A number of factors limit what each side can do. These include the fact that the elaboration of virulence or resistance mechanisms results in costs in genetic fitness and requires the use of ever more of the limited number of genes available in the genome. In addition, since the pathogen usually has a very much shorter generation time than the host, it can fix new virulence mutations much more quickly than the host can evolve matching resistance mechanisms. Finally, the host must ensure that its defence system does not result in unacceptable levels of collateral damage to its own tissues. This chapter briefly outlines how these considerations shape host-pathogen interactions.
Collapse
Affiliation(s)
- Robert S Jack
- Department of Immunology, University of Greifswald, Sauerbruchstrasse DZ 7, Greifswald, D-17487, Germany.
| |
Collapse
|
49
|
Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol 2014; 32:21-7. [PMID: 25553393 PMCID: PMC4589735 DOI: 10.1016/j.coi.2014.12.002] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 12/18/2022]
Abstract
CLRs play an essential role in immunity to fungi and mycobacteria. CLRs are involved in the regulation of homeostasis, autoimmunity and allergy. CLRs recognise and trigger cellular responses to dead and cancerous cells.
C-type lectin receptors (CLRs) comprise a large superfamily of proteins, which recognise a diverse range of ligands, and are defined by the presence of at least one C-type lectin-like domain (CTLD). Of particular interest are the single extracellular CTLD-containing receptors of the ‘Dectin-1’ and ‘Dectin-2’ clusters, which associate with signalling adaptors or possess integral intracellular signalling domains. These CLRs have traditionally been associated with the recognition of fungi, but recent discoveries have revealed diverse and unexpected functions. In this review, we describe their newly identified roles in anti-microbial host defence, homeostasis, autoimmunity, allergy and their functions in the recognition and response to dead and cancerous cells.
Collapse
Affiliation(s)
- Ivy M Dambuza
- Aberdeen Fungal Group, Division of Applied Medicine, Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Gordon D Brown
- Aberdeen Fungal Group, Division of Applied Medicine, Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
50
|
Weinstock JV, Elliott DE. Helminth infections decrease host susceptibility to immune-mediated diseases. THE JOURNAL OF IMMUNOLOGY 2014; 193:3239-47. [PMID: 25240019 DOI: 10.4049/jimmunol.1400927] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helminthic infection has become rare in highly industrialized nations. Concurrent with the decline in helminthic infection has been an increase in the prevalence of inflammatory disease. Removal of helminths from our environment and their powerful effects on host immunity may have contributed to this increase. Several helminth species can abrogate disease in murine models of inflammatory bowel disease, type 1 diabetes, multiple sclerosis, and other conditions. Helminths evoke immune regulatory pathways often involving dendritic cells, regulatory T cells, and macrophages that help to control disease. Cytokines, such as IL-4, IL-10, and TGF-β, have a role. Notable is the helminthic modulatory effect on innate immunity, which impedes development of aberrant adaptive immunity. Investigators are identifying key helminth-derived immune modulatory molecules that may have therapeutic usefulness in the control of inflammatory disease.
Collapse
Affiliation(s)
- Joel V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111; and
| | - David E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|