1
|
Gao H, Lin J, Yang M, Gui M, Ji S, Bu B, Li Y. Telitacicept add-on therapy in refractory idiopathic inflammatory myopathy: insights from a pilot study. Rheumatology (Oxford) 2025; 64:2945-2952. [PMID: 39495163 DOI: 10.1093/rheumatology/keae601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the therapeutic efficacy of telitacicept based on the conventional treatment in adults with idiopathic inflammatory myopathy (IIM), focusing on its impact on clinical manifestations. METHODS IIM patients who had been treated with telitacicept for at least 3 months based on the conventional treatment from January 2023 to January 2024 were included in this study. The clinical response to telitacicept was determined based on the ACR/EULAR criteria for minimal, moderate and major improvement in the Total Improvement Score. Disease activity was monitored using core set measures, while myositis damage was assessed with established assessment tools. The Manual Muscle Test for eight muscle groups (MMT-8) was used to assess the muscle performance. RESULTS A total of 11 patients administered with telitacicept (160 mg per week) were included in this study. Post-treatment assessments revealed improvements in all patients according to ACR/EULAR criteria. Notably, there was a significant reduction in the prednisone dosage from baseline to last visit [27.05 (12.47) to 12.05 (7.32) mg; P < 0.005]. An enhancement was observed in the MMT-8 score [which improved from 109.18 (14.18) to 137.64 (15.28); P < 0.005], and there was a reduction in creatine kinase level [from 2670.27 (2675.00) to 561.09 (754.09) U/l; P < 0.05]. CONCLUSION Telitacicept demonstrated effectiveness in treating refractory inflammatory myopathy, contributing to a significant reduction in steroid dosage among the patients. These findings highlight the potential of telitacicept as a valuable therapeutic option in the management of IIM.
Collapse
Affiliation(s)
- Huajie Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengcui Gui
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suqiong Ji
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Kitaya K. B Cell Lineage in the Human Endometrium: Physiological and Pathological Implications. Cells 2025; 14:648. [PMID: 40358172 PMCID: PMC12071375 DOI: 10.3390/cells14090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/12/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Immunocompetent cells of B lineage function in the humoral immunity system in the adaptive immune responses. B cells differentiate into plasmacytes upon antigen-induced activation and produce different subclasses of immunoglobulins/antibodies. Secreted immunoglobulins not only interact with pathogens to inactivate and neutralize them, but also involve the complement system to exert antibacterial activities and trigger opsonization. Endometrium is a mucosal tissue that lines the mammalian uterus and is indispensable for the establishment of a successful pregnancy. The lymphocytes of B cell lineage are a minority in the human cycling endometrium. Human endometrial B cells have therefore been understudied so far. However, the disorders of the female reproductive tract, including chronic endometritis and endometriosis, have highlighted the importance of further research on the endometrial B cell lineage. This review aims to revisit lymphopoiesis, maturation, commitment, and survival of B cells, shedding light on their physiological and pathological implications in the human endometrium.
Collapse
Affiliation(s)
- Kotaro Kitaya
- Infertility Center, Iryouhoujin Kouseikai Mihara Hospital, 6-8 Kamikatsura Miyanogo-cho, Nishikyo-ku, Kyoto 615-8227, Japan
| |
Collapse
|
3
|
Ma H, Wang Z, Yu M, Zhai Y, Yan J. Aberrations in peripheral B lymphocytes and B lymphocyte subsets levels in Parkinson disease: a systematic review. Front Immunol 2025; 16:1526095. [PMID: 40230858 PMCID: PMC11994702 DOI: 10.3389/fimmu.2025.1526095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Objective The association of B lymphocytes and B lymphocyte subsets and Parkinson's disease (PD) is increasingly acknowledged. However, there is inconsistence in the alterations of B lymphocytes or B lymphocyte subsets in peripheral blood of PD patients. To comprehensively understand its changes in PD patients,it is necessary to conduct a systematic review on this subject. Methods PubMed, Cochrane Library, and MEDLINE databases were searched until 3rd February 2024. Results We included 20 studies (n=2658) to conduct this systematic review. We conducted a qualitative analysis to assess the alterations of B lymphocytes and B lymphocyte subsets in the peripheral blood of individuals with PD. And studies reviewed demonstrated a significant decrease in the number of B cells, as well as immune dysregulation in the B lymphocyte subsets of these patients' peripheral blood. Conclusion Studies reviewed demonstrated that PD is linked to abnormalities in B lymphocytes and/or B lymphocytes subsets in peripheral blood. This study provides a novel perspective into the pathogenesis of PD, and future investigations into the B lymphocytes and/or B lymphocyte subsets as biomarkers and therapeutic targets for PD is warranted.
Collapse
Affiliation(s)
- Hongxia Ma
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ziyuan Wang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Miao Yu
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yibo Zhai
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Key laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Hao W, Liu C, Zhang T, Cai Y, Wang Y. Immune Cells, Metabolites, and Intracranial Aneurysms: A Mendelian Randomization Study. J Craniofac Surg 2025:00001665-990000000-02505. [PMID: 40111031 DOI: 10.1097/scs.0000000000011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION The authors' aim is to comprehensively investigate the causal relationship between 731 immune cell traits and intracranial aneurysms (IAs), and to identify and quantify the role of 1400 metabolic traits as potential mediators in the association between the two. METHODS Using summary data from genome-wide association studies (GWAS), the authors conducted a 2-sample bidirectional Mendelian randomization (MR) analysis for 731 immune cell traits and genetically predicted IAs. Emphatically, the authors used a 2-step MR analysis to quantify the proportion of the total effect mediated by potential metabolites on the impact of immune cells on IAs risk. RESULTS The authors identified 23 immune cells [with odds ratio (OR) ranging from 1.2147 to 0.8962] and 13 metabolic traits (with OR ranging from 1.4866 to 0.7783) that have a causal relationship with AIT. Five immune cells (including IgD- CD38din% B cell, CD25 on CD39+ CD4+ T cell, BAFF-R on memory B cell, SSC-A on monocyte, CD27 on CD20- CD38- B cell) were found to be associated with the risk of IAs, partially mediated by 6 metabolites (1,2-dipalmitoyl-gpc (16:0/16:0), X-11478, (N(1) + N(8))-acetylspermidine, Sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2), Retinol to linoleoyl-arachidonoyl-glycerol (18:2-20:4) ratio, Cholesterol to linoleoylarachidonoyl-glycerol (18:2-20:4) ratio). The proportion of genetically predicted IAs mediated by the identified metabolites ranged from -25.7% to 26.4%. DISCUSSION The authors' study has established causal relationships between IAs and immune cells, which are partially mediated by metabolites, thereby providing guidance for future clinical and basic research.
Collapse
Affiliation(s)
- Wei Hao
- Weifang People's Hospital, Shandong Second Medical University
| | - Cuiling Liu
- Affiliated Hospital of Shandong Second Medical University,Weifang City, Shandong Province, China
| | - Tingfu Zhang
- Weifang People's Hospital, Shandong Second Medical University
| | - Yanrui Cai
- Weifang People's Hospital, Shandong Second Medical University
| | - Yuting Wang
- Weifang People's Hospital, Shandong Second Medical University
| |
Collapse
|
5
|
Zhuang X, Yin Q, Yang R, Man X, Wang R, Geng H, Shi Y. Causal pathways in lymphoid leukemia: the gut microbiota, immune cells, and serum metabolites. Front Immunol 2024; 15:1437869. [PMID: 39351228 PMCID: PMC11439652 DOI: 10.3389/fimmu.2024.1437869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background We employed Mendelian randomization (MR) to investigate the causal relationship between the gut microbiota and lymphoid leukemia, further exploring the causal relationships among immune cells, lymphoid leukemia, and potential metabolic mediators. Methods We utilized data from the largest genome-wide association studies to date, encompassing 418 species of gut microbiota, 713 types of immune cells, and 1,400 serum metabolites as exposures. Summary statistics for lymphoid leukemia, acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL) were obtained from the FinnGen database. We performed bidirectional Mendelian analyses to explore the causal relationships among the gut microbiota, immune cells, serum metabolites, and lymphoid leukemia. Additionally, we conducted a two-step mediation analysis to identify potential intermediary metabolites between immune cells and lymphoid leukemia. Results Several gut microbiota were found to have causal relationships with lymphoid leukemia, ALL, and CLL, particularly within the Firmicutes and Bacteroidetes phyla. In the two-step MR analysis, various steroid hormone metabolites (such as DHEAS, pregnenolone sulfateprogestogen derivatives, and androstenediol-related compounds) were identified as potential intermediary metabolites between lymphoid leukemia and immune cells. In ALL, the causal relationship between 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) and ALL was mediated by CD62L-plasmacytoid DC%DC (mediated proportion=-2.84%, P=0.020). In CLL, the causal relationship between N6,n6,n6-trimethyllysine and CLL was mediated by HLA DR+ CD8br AC (mediated proportion=4.07%, P=0.021). Conclusion This MR study provides evidence supporting specific causal relationships between the gut microbiota and lymphoid leukemia, as well as between certain immune cells and lymphoid leukemia with potential intermediary metabolites.
Collapse
MESH Headings
- Humans
- Gastrointestinal Microbiome/immunology
- Leukemia, Lymphoid/immunology
- Leukemia, Lymphoid/etiology
- Genome-Wide Association Study
- Mendelian Randomization Analysis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/microbiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/microbiology
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
Collapse
Affiliation(s)
- Xin Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingning Yin
- Department of Vice President, Qinghai Province Women and Children's Hospital, Xining, Qinghai, China
| | - Rong Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Man
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruochen Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Geng
- Department of Vice President, Qinghai Province Women and Children's Hospital, Xining, Qinghai, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Vice President, Qinghai Province Women and Children's Hospital, Xining, Qinghai, China
- Zhejiang Provincial Clinical Research Center For Hematological Disorders, Wenzhou, China
| |
Collapse
|
6
|
Zeng L, Yang K, Wu Y, Yu G, Yan Y, Hao M, Song T, Li Y, Chen J, Sun L. Telitacicept: A novel horizon in targeting autoimmunity and rheumatic diseases. J Autoimmun 2024; 148:103291. [PMID: 39146891 DOI: 10.1016/j.jaut.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BLyS and APRIL have the capability to bind to B cells within the body, allowing these cells to evade elimination when they should naturally be removed. While BLyS primarily plays a role in B cell development and maturation, APRIL is linked to B cell activation and the secretion of antibodies. Thus, in theory, inhibiting BLyS or APRIL could diminish the population of aberrant B cells that contribute to SLE and reduce disease activity in patients. Telitacicept functions by binding to and neutralizing the activities of both BLyS and APRIL, thus hindering the maturation and survival of plasma cells and fully developed B cells. The design of telitacicept is distinctive; it is not a monoclonal antibody but a TACI-Fc fusion protein generated through recombinant DNA technology. This fusion involves merging gene segments of the TACI protein, which can target BLyS/APRIL simultaneously, with the Fc gene segment of the human IgG protein. The TACI-Fc fusion protein exhibits the combined characteristics of both proteins. Currently utilized for autoimmune disease treatment, telitacicept is undergoing clinical investigations globally to assess its efficacy in managing various autoimmune conditions. This review consolidates information on the mechanistic actions, dosing regimens, pharmacokinetics, efficacy, and safety profile of telitacicept-a dual-targeted biological agent. It integrates findings from prior experiments and pharmacokinetic analyses in the treatment of RA and SLE, striving to offer a comprehensive overview of telitacicept's research advancements.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yexing Yan
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Tian Song
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Li
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Hunan, China
| | - Junpeng Chen
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China; Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Balasubramaniam M, Mokhtar AMA. Past and present discovery of the BAFF/APRIL system - A bibliometric study from 1999 to 2023. Cell Signal 2024; 120:111201. [PMID: 38714287 DOI: 10.1016/j.cellsig.2024.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Cytokines from the Tumour Necrosis Factor (TNF) family are important regulators of both physiological and pathological processes. The discovery of novel TNF ligands and receptors, BAFF and APRIL, have opened up new possibilities for scientists to explore the effect of these cytokines on the human immune system. The role of BAFF/APRIL system in B lymphocytes is particularly important for survival and maintenance of homeostasis. Aberrant expression of the system is associated with various immunological disorders. Hence, this study provides a comprehensive overview of the past and present BAFF/APRIL system research development in a bibliometric perspective. To our best knowledge, this is the first ever bibliometric analysis conducted focusing on the BAFF/APRIL system. A total of 1055 relevant documents were retrieved from WoSCC. Microsoft Excel, VOSviewer, and Biblioshiny of R studio were bibliometric tools used to analyse the scientific literature. From 1999, the annual publications showed an upward trend, with Journal of Immunology being the most productive journal. USA leads the race for BAFF/APRIL system research developments. Pascal Schneider, a senior researcher affiliated with University of Lausanne, Switzerland was recognised as the most productive author and institution in the BAFF/APRIL system research field. The research focus transitioned from focusing on the role of the system in B cell biology, to immunological disorders and finally to development of BAFF/APRIL targeting drugs. Despite several studies elucidating briefly the pathway mechanism of BAFF/APRIL system in B-cell selection, substantial research on the mechanism of action in disease models and T cell activation and development of immunomodulating drugs from natural origins remains largely unexplored. Therefore, future research focusing on these areas are crucial for the deeper understanding of the system in disease manifestations and progression allowing a better treatment management for various immunological disorders.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
8
|
Zouali M. Engineered immune cells as therapeutics for autoimmune diseases. Trends Biotechnol 2024; 42:842-858. [PMID: 38368169 DOI: 10.1016/j.tibtech.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
Current treatment options for autoimmune disease (AID) are essentially immunosuppressive, inhibiting the inflammatory cascade, without curing the disease. Therapeutic monoclonal antibodies (mAbs) that target B cells showed efficacy, emphasizing the importance of B lymphocytes in autoimmune pathogenesis. Treatments that eliminate more potently B cells would open a new therapeutic era for AID. Immune cells can now be bioengineered to express constructs that enable them to specifically eradicate pathogenic B lymphocytes. Engineered immune cells (EICs) have shown therapeutic promise in both experimental models and in clinical trials in AID. Next-generation platforms are under development to optimize their specificity and improve safety. The profound and durable B cell depletion achieved reinforces the view that this biotherapeutic option holds promise for treating AID.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Lin J, Li Y, Gui M, Bu B, Li Z. Effectiveness and safety of telitacicept for refractory generalized myasthenia gravis: a retrospective study. Ther Adv Neurol Disord 2024; 17:17562864241251476. [PMID: 38751755 PMCID: PMC11095194 DOI: 10.1177/17562864241251476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Refractory generalized myasthenia gravis (GMG) remains a substantial therapeutic challenge. Telitacicept, a recombinant human B-lymphocyte stimulator receptor-antibody fusion protein, holds promise for interrupting the immunopathology of this condition. Objectives This study retrospectively assessed the effectiveness and safety of telitacicept in patients with refractory GMG. Design A single-center retrospective study. Methods Patients with refractory GMG receiving telitacicept (160 mg/week or biweekly) from January to September in 2023 were included. We assessed effectiveness using Myasthenia Gravis Foundation of America post-intervention status (MGFA-PIS), myasthenia gravis treatment status and intensity (MGSTI), quantitative myasthenia gravis (QMG), and MG-activity of daily living (ADL) scores, alongside reductions in prednisone dosage at 3- and 6-month intervals. Safety profiles were also evaluated. Results Sixteen patients with MGFA class II-V refractory GMG were included, with eight females and eight males. All patients were followed up for at least 3 months, and 11 patients reached 6 months follow-up. At the 3-month evaluation, 75% (12/16) demonstrated clinical improvement with MGFA-PIS. One patient achieved pharmacological remission, two attained minimal manifestation status, and nine showed functional improvement; three remained unchanged, and one deteriorated. By the 6-month visit, 90.1% (10/11) sustained significant symptomatic improvement. MGSTI scores and prednisone dosages significantly reduced at both follow-ups (p < 0.05). MG-ADL and QMG scores showed marked improvement at 6 months (p < 0.05). The treatment was well tolerated, with no severe adverse events such as allergy or infection reported. Conclusion Our exploratory investigation suggests that telitacicept is a feasible and well-tolerated add-on therapy for refractory GMG, offering valuable clinical evidence for this novel treatment option.
Collapse
Affiliation(s)
- Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengcui Gui
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
10
|
Zhang C, Lin Y, Kuang Q, Li H, Jiang Q, Yang X. Case report: A highly active refractory myasthenia gravis with treatment of telitacicept combined with efgartigimod. Front Immunol 2024; 15:1400459. [PMID: 38799457 PMCID: PMC11116603 DOI: 10.3389/fimmu.2024.1400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
There is always a lack of effective treatment for highly active refractory generalized myasthenia gravis (GMG). Recently, telitacicept combined with efgartigimod significantly reduces circulating B cells, plasma cells, and immunoglobulin G, which brings promising therapeutic strategies. We report a case of a 37-year-old female patient with refractory GMG, whose condition got significant improvement and control with this latest treatment after multiple unsuccessful therapies of immunosuppressants. The new combination deserves further attention in the therapeutic application of myasthenia gravis.
Collapse
Affiliation(s)
| | | | | | | | - Qilong Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Yang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Dwivedi SD, Shukla R, Yadav K, Rathor LS, Singh D, Singh MR. Mechanistic insight on the role of iRhom2-TNF-α-BAFF signaling pathway in various autoimmune disorders. Adv Biol Regul 2024; 92:101011. [PMID: 38151421 DOI: 10.1016/j.jbior.2023.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
iRhom2 is a crucial cofactor involved in upregulation of TNF receptors (TNFRs) and the pro-inflammatory cytokine tumor necrosis factor (TNF-) from the cell surface by ADAM17. Tumor necrosis factor- α converting enzyme (TACE) is another name given to ADAM17. Many membrane attached biologically active molecules are cleaved by this enzyme which includes TNFRs and the pro-inflammatory cytokine tumor necrosis factor- α. The TNF receptors are of two types TNFR1 and TNFR2. iRhom2 belongs to the pseudo-protease class of rhomboid family, its abundance is observed in the immune cells. Biological activity of ADAM17 is affected in multiple levels by the iRhom2. ADAM17 is trafficked into the Golgi apparatus by the action of iRhom2, where it gets matured proteolytically and is stimulated to perform its function on the cell surface. This process of activation of ADAM17 results in the protection of the organism from the cascade of inflammatory reactions, as this activation blocks the TNF- α mediated secretion responsible for inflammatory responses produced. Present paper illustrates about the iRhom2-TNF-α-BAFF signaling pathway and its correlation with several autoimmune disorders such as Rheumatoid Arthritis, Systemic Lupus Erythematosus, Hemophilia Arthropathy, Alzheimer's disease and Tylosis with esophageal cancer etc.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Rashi Shukla
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Krishna Yadav
- Raipur Institute of Pharmaceutical Educations and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Lokendra Singh Rathor
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India.
| |
Collapse
|
12
|
Pang J, Li Y, Tao R, Li J, Wang F, Xu H. Correlation Between B-Cell Activating Factor of the Tumor Necrosis Factor Family Level in Serum and Immune Inflammation in Patients with Neuropsychiatric Systemic Lupus Erythematosus and its Clinical Value. Immunol Invest 2024; 53:559-573. [PMID: 38329469 DOI: 10.1080/08820139.2024.2309567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Neuropsychiatric systemic lupus erythematosus (NPSLE) is a form of SLE associated with severe NP syndromes causing mortality and morbidity. Respecting the fundamental of BAFF in NPSLE pathophysiology, we investigated its clinical value. METHODS Totally 105 NPSLE and 101 SLE cases without NPSLE (non-NPSLE, control) were included. Serum BAFF/TNF-α/IL-6/IL-10 levels were measured using ELISA kits. T lymphocytes were detected by flow cytometry. The independent influencing factors for NPSLE, and the auxiliary diagnostic efficacy and the ability of BAFF levels to predict adverse prognosis of NPSLE patients were analyzed by multiple factor logistic regression, and ROC curve and survival curve. RESULTS In NPSLE patients, serum BAFF level was increased and positively correlated with SLEDAI-2k, serum proinflammatory cytokines, while negatively correlated with CD4+T/CD8+T cells, and anti-inflammatory cytokine. High serum BAFF protein level was associated with a higher risk of developing NPSLE. The AUC of serum BAFF > 301.7 assisting in NPSLE diagnosis was 0.8196. Furthermore, high levels of serum BAFF were associated with a higher risk of adverse outcomes in NPSLE patients. . CONCLUSION Serum BAFF level in NPSLE patients was correlated with lymphocytes and high serum BAFF protein level could assist in diagnosis and to predict adverse outcomes in NPSLE patients.
Collapse
Affiliation(s)
- Jie Pang
- Department of Rheumatology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanxia Li
- Department of Rheumatology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ran Tao
- Department of Rheumatology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jing Li
- Department of Rheumatology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Feifei Wang
- Department of Rheumatology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Huaheng Xu
- Department of Rheumatology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
13
|
Nilforoushzadeh MA, Heidari N, Heidari A, Ghane Y, Lotfi Z, Jaffary F, Najar Nobari M, Najar Nobari N. The role of BAFF and BAFF-R inhibitors in the treatment of immune thrombocytopenia; a focused review. Int Immunopharmacol 2024; 131:111827. [PMID: 38460303 DOI: 10.1016/j.intimp.2024.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune-driven disease characterized by increased destruction and impaired platelet production resulting in an enhanced risk of bleeding. Immunosuppressant agents are the most common treatment strategies for ITP. Despite their efficacy, these medications often cause unpredictable side effects. Recent investigations revealed that patients with ITP exhibit elevated B-cell activating factor (BAFF) levels in both their spleens and serum. Belimumab, a BAFF inhibitor, illustrated a promising therapeutic avenue for managing ITP by interfering with BAFF activity and long-lived plasma cell production. Both clinical and experimental studies have yielded positive outcomes when combining rituximab with an anti-BAFF monoclonal antibody in treating ITP. In addition, ianalumab, a monoclonal antibody with a dual mechanism that targets BAFF-R and deletes peripheral BAFF-R+ B cells, is currently being used for ITP treatment [NCT05885555]. The upcoming results from novel BAFF inhibitors, such as ianalumab, could offer clinicians an additional therapeutic option for treating ITP.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nazila Heidari
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Heidari
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yekta Ghane
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Lotfi
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariba Jaffary
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Minou Najar Nobari
- Department of Orofacial Pain and Dysfunction, UCLA School of Dentistry, Los Angeles, CA, USA.
| | - Niloufar Najar Nobari
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Castiello MC, Brandas C, Ferrari S, Porcellini S, Sacchetti N, Canarutto D, Draghici E, Merelli I, Barcella M, Pelosi G, Vavassori V, Varesi A, Jacob A, Scala S, Basso Ricci L, Paulis M, Strina D, Di Verniere M, Sergi Sergi L, Serafini M, Holland SM, Bergerson JRE, De Ravin SS, Malech HL, Pala F, Bosticardo M, Brombin C, Cugnata F, Calzoni E, Crooks GM, Notarangelo LD, Genovese P, Naldini L, Villa A. Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency. Sci Transl Med 2024; 16:eadh8162. [PMID: 38324638 PMCID: PMC11149094 DOI: 10.1126/scitranslmed.adh8162] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Chiara Brandas
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Samuele Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simona Porcellini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Nicolò Sacchetti
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Daniele Canarutto
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Merelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Matteo Barcella
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Gabriele Pelosi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Dario Strina
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Lucia Sergi Sergi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marta Serafini
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza (MI) 20900, Italy
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Enrica Calzoni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pietro Genovese
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Naldini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| |
Collapse
|
15
|
Cunha SMF, Lam S, Mallard B, Karrow NA, Cánovas Á. Genomic Regions Associated with Resistance to Gastrointestinal Nematode Parasites in Sheep-A Review. Genes (Basel) 2024; 15:187. [PMID: 38397178 PMCID: PMC10888242 DOI: 10.3390/genes15020187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Gastrointestinal nematodes (GINs) can be a major constraint and global challenge to the sheep industry. These nematodes infect the small intestine and abomasum of grazing sheep, causing symptoms such as weight loss, diarrhea, hypoproteinemia, and anemia, which can lead to death. The use of anthelmintics to treat infected animals has led to GIN resistance, and excessive use of these drugs has resulted in residue traced in food and the environment. Resistance to GINs can be measured using multiple traits, including fecal egg count (FEC), Faffa Malan Chart scores, hematocrit, packed cell volume, eosinophilia, immunoglobulin (Ig), and dagginess scores. Genetic variation among animals exists, and understanding these differences can help identify genomic regions associated with resistance to GINs in sheep. Genes playing important roles in the immune system were identified in several studies in this review, such as the CFI and MUC15 genes. Results from several studies showed overlapping quantitative trait loci (QTLs) associated with multiple traits measuring resistance to GINs, mainly FEC. The discovery of genomic regions, positional candidate genes, and QTLs associated with resistance to GINs can help increase and accelerate genetic gains in sheep breeding programs and reveal the genetic basis and biological mechanisms underlying this trait.
Collapse
Affiliation(s)
- Samla Marques Freire Cunha
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Bonnie Mallard
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| |
Collapse
|
16
|
Mathur M, Chan TM, Oh KH, Kooienga L, Zhuo M, Pinto CS, Chacko B. A PRoliferation-Inducing Ligand (APRIL) in the Pathogenesis of Immunoglobulin A Nephropathy: A Review of the Evidence. J Clin Med 2023; 12:6927. [PMID: 37959392 PMCID: PMC10650434 DOI: 10.3390/jcm12216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A PRoliferation-Inducing Ligand (APRIL), the thirteenth member of the tumor necrosis factor superfamily, plays a key role in the regulation of activated B cells, the survival of long-lived plasma cells, and immunoglobulin (Ig) isotype class switching. Several lines of evidence have implicated APRIL in the pathogenesis of IgA nephropathy (IgAN). Globally, IgAN is the most common primary glomerulonephritis, and it can progress to end-stage kidney disease; yet, disease-modifying treatments for this condition have historically been lacking. The preliminary data in ongoing clinical trials indicate that APRIL inhibition can reduce proteinuria and slow the rate of kidney disease progression by acting at an upstream level in IgAN pathogenesis. In this review, we examine what is known about the physiologic roles of APRIL and evaluate the experimental and epidemiological evidence describing how these normal biologic processes are thought to be subverted in IgAN. The weight of the preclinical, clinical, and genetic data supporting a key role for APRIL in IgAN has galvanized pharmacologic research, and several anti-APRIL drug candidates have now entered clinical development for IgAN. Herein, we present an overview of the clinical results to date. Finally, we explore where more research and evidence are needed to transform potential therapies into clinical benefits for patients with IgAN.
Collapse
Affiliation(s)
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Laura Kooienga
- Colorado Kidney and Vascular Care, Denver, CO 80012, USA;
| | - Min Zhuo
- Visterra, Inc., Waltham, MA 02451, USA;
- Division of Renal Medicine, Department of Medicine Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cibele S. Pinto
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ 08540, USA;
| | - Bobby Chacko
- Nephrology and Transplantation Unit, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
17
|
Cerreto M, Foà R, Natoni A. The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5160. [PMID: 37958334 PMCID: PMC10647257 DOI: 10.3390/cancers15215160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Collapse
Affiliation(s)
| | | | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy; (M.C.); (R.F.)
| |
Collapse
|
18
|
Tan F, Xuan Y, Long L, Yu Y, Zhang C, Liang P, Wang Y, Chen M, Wen J, Chen G. Single-cell analysis of human prepuce reveals dynamic changes in gene regulation and cellular communications. BMC Genomics 2023; 24:514. [PMID: 37658288 PMCID: PMC10474653 DOI: 10.1186/s12864-023-09615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The cellular and molecular dynamics of human prepuce are crucial for understanding its biological and physiological functions, as well as the prevention of related genital diseases. However, the cellular compositions and heterogeneity of human prepuce at single-cell resolution are still largely unknown. Here we systematically dissected the prepuce of children and adults based on the single-cell RNA-seq data of 90,770 qualified cells. RESULTS We identified 15 prepuce cell subtypes, including fibroblast, smooth muscle cells, T/natural killer cells, macrophages, vascular endothelial cells, and dendritic cells. The proportions of these cell types varied among different individuals as well as between children and adults. Moreover, we detected cell-type-specific gene regulatory networks (GRNs), which could contribute to the unique functions of related cell types. The GRNs were also highly dynamic between the prepuce cells of children and adults. Our cell-cell communication network analysis among different cell types revealed a set of child-specific (e.g., CD96, EPO, IFN-1, and WNT signaling pathways) and adult-specific (e.g., BMP10, NEGR, ncWNT, and NPR1 signaling pathways) signaling pathways. The variations of GRNs and cellular communications could be closely associated with prepuce development in children and prepuce maintenance in adults. CONCLUSIONS Collectively, we systematically analyzed the cellular variations and molecular changes of the human prepuce at single-cell resolution. Our results gained insights into the heterogeneity of prepuce cells and shed light on the underlying molecular mechanisms of prepuce development and maintenance.
Collapse
Affiliation(s)
- Fei Tan
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
| | - Yuan Xuan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Lan Long
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, 518172, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunhua Zhang
- Department of Dermatology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Yaoqun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Meiyu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Geng Chen
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Center for Bioinformatics and Computational Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
19
|
Kyselová J, Tichý L, Sztankóová Z, Marková J, Kavanová K, Beinhauerová M, Mušková M. Comparative Characterization of Immune Response in Sheep with Caseous Lymphadenitis through Analysis of the Whole Blood Transcriptome. Animals (Basel) 2023; 13:2144. [PMID: 37443943 DOI: 10.3390/ani13132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Caseous lymphadenitis (CL) is a chronic contagious disease that affects small ruminants and is characterized by the formation of pyogranulomas in lymph nodes and other organs. However, the pathogenesis of this disease and the response of the host genome to infection are not yet fully understood. This study aimed to investigate the whole blood transcriptome and evaluate differential gene expression during the later stages of CL in naturally infected ewes. The study included diseased, serologically positive (EP), exposed, serologically negative (EN) ewes from the same infected flock and healthy ewes (CN) from a different flock. RNA sequencing was performed using the Illumina NextSeq system, and differential gene expression was estimated using DESeq2 and Edge R approaches. The analysis identified 191 annotated differentially expressed genes (DEGs) in the EP group (102 upregulated and 89 downregulated) and 256 DEGs in the EN group (106 upregulated and 150 downregulated) compared to the CN group. Numerous immunoregulatory interactions between lymphoid and nonlymphoid cells were influenced in both EP and EN ewes. Immune DEGs were preferentially assigned to antigen presentation through the MHC complex, T lymphocyte-mediated immunity, and extracellular matrix interactions. Furthermore, the EP group showed altered regulation of cytokine and chemokine signaling and activation and recombination of B-cell receptors. Conversely, NF-kappa B signaling, apoptosis, and stress response were the main processes influenced in the EN group. In addition, statistically significant enrichment of the essential immune pathways of binding and uptake of ligands by scavenger receptors in EP and p53 signaling in the EN group was found. In conclusion, this study provides new insights into the disease course and host-pathogen interaction in naturally CL-infected sheep by investigating the blood transcriptome.
Collapse
Affiliation(s)
- Jitka Kyselová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Ladislav Tichý
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Zuzana Sztankóová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Jiřina Marková
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kateřina Kavanová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Monika Beinhauerová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Michala Mušková
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| |
Collapse
|
20
|
Sabat R, Šimaitė D, Gudjonsson JE, Brembach TC, Witte K, Krause T, Kokolakis G, Bartnik E, Nikolaou C, Rill N, Coulibaly B, Levin C, Herrmann M, Salinas G, Leeuw T, Volk HD, Ghoreschi K, Wolk K. Neutrophilic granulocyte-derived B-cell activating factor supports B cells in skin lesions in hidradenitis suppurativa. J Allergy Clin Immunol 2023; 151:1015-1026. [PMID: 36481267 DOI: 10.1016/j.jaci.2022.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/17/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by painful inflamed nodules, abscesses, and pus-draining tunnels appearing in axillary, inguinal, and perianal skin areas. HS lesions contain various types of immigrated immune cells. OBJECTIVE This study aimed to characterize mediators that support lesional B/plasma cell persistence in HS. METHODS Skin samples from several cohorts of HS patients and control cohorts were assessed by mRNA sequencing, quantitative PCR on reverse-transcribed RNA, flow cytometry, and immunohistofluorescence. Blood plasma and cultured skin biopsy samples, keratinocytes, dermal fibroblasts, neutrophilic granulocytes (neutrophils), monocytes, and B cells were analyzed. Complex systems biology approaches were used to evaluate bulk and single-cell RNA sequencing data. RESULTS Proportions of B/plasma cells, neutrophils, CD8+ T cells, and M0 and M1 macrophages were elevated in HS lesions compared to skin of healthy and perilesional intertriginous areas. There was an association between B/plasma cells, neutrophils, and B-cell activating factor (BAFF, aka TNFSF13B). BAFF was abundant in HS lesions, particularly in nodules and abscesses. Among the cell types present in HS lesions, myeloid cells were the main BAFF producers. Mechanistically, granulocyte colony-stimulating factor in the presence of bacterial products was the major stimulus for neutrophils' BAFF secretion. Lesional upregulation of BAFF receptors was attributed to B cells (TNFRSF13C/BAFFR and TNFRSF13B/TACI) and plasma cells (TNFRSF17/BCMA). Characterization of the lesional BAFF pathway revealed molecules involved in migration/adhesion (eg, CXCR4, CD37, CD53, SELL), proliferation/survival (eg, BST2), activation (eg, KLF2, PRKCB), and reactive oxygen species production (eg, NCF1, CYBC1) of B/plasma cells. CONCLUSION Neutrophil-derived BAFF supports B/plasma cell persistence and function in HS lesions.
Collapse
Affiliation(s)
- Robert Sabat
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Deimantė Šimaitė
- Data and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Johann Eli Gudjonsson
- Department of Dermatology, University of Michigan, and Taubman Medical Research Institute, University of Michigan Medical School, Ann Arbor, Mich
| | - Theresa-Charlotte Brembach
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Katrin Witte
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Inflammation and Regeneration of the Skin, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eckart Bartnik
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Christos Nikolaou
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Natascha Rill
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Béma Coulibaly
- Molecular Histopathology & Bio-Imaging, R&D, Sanofi-Aventis, Vitry-sur-Seine, France
| | - Clément Levin
- Molecular Histopathology & Bio-Imaging, R&D, Sanofi-Aventis, Vitry-sur-Seine, France
| | - Matthias Herrmann
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Leeuw
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany; Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Inflammation and Regeneration of the Skin, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
21
|
Amendt T, Tybulewicz VLJ. Antidepressants cheer up hepatic B1 B cells: Hope for the treatment of autoimmune liver diseases? Front Immunol 2023; 13:1083173. [PMID: 36733387 PMCID: PMC9887017 DOI: 10.3389/fimmu.2022.1083173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Timm Amendt
- Institute of Immunology, Ulm University, Ulm, Germany,*Correspondence: Timm Amendt,
| | | |
Collapse
|
22
|
Giordano D, Kuley R, Draves KE, Elkon KB, Giltiay NV, Clark EA. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Front Immunol 2023; 14:1050528. [PMID: 36923413 PMCID: PMC10009188 DOI: 10.3389/fimmu.2023.1050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose and methods B cell-activating factor (BAFF) contributes to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Although several anti-BAFF Abs and derivatives have been developed for the treatment of SLE, the specific sources of BAFF that sustain autoantibody (auto-Ab) producing cells have not been definitively identified. Using BAFF-RFP reporter mice, we identified major changes in BAFF-producing cells in two mouse spontaneous lupus models (Tlr7 Tg mice and Sle1), and in a pristane-induced lupus (PIL) model. Results First, we confirmed that similar to their wildtype Tlr7 Tg and Sle1 mice counterparts, BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice had increased BAFF serum levels, which correlated with increases in plasma cells and auto-Ab production. Next, using the RFP reporter, we defined which cells had dysregulated BAFF production. BAFF-producing neutrophils (Nphs), monocytes (MOs), cDCs, T cells and B cells were all expanded in the spleens of BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice compared to controls. Furthermore, Ly6Chi inflammatory MOs and T cells had significantly increased BAFF expression per cell in both spontaneous lupus models, while CD8- DCs up-regulated BAFF expression only in the Tlr7 Tg mice. Similarly, pristane injection of BAFF-RFP mice induced increases in serum BAFF levels, auto-Abs, and the expansion of BAFF-producing Nphs, MOs, and DCs in both the spleen and peritoneal cavity. BAFF expression in MOs and DCs, in contrast to BAFF from Nphs, was required to maintain homeostatic and pristane-induced systemic BAFF levels and to sustain mature B cell pools in spleens and BMs. Although acting through different mechanisms, Nph, MO and DC sources of BAFF were each required for the development of auto-Abs in PIL mice. Conclusions Our findings underscore the importance of considering the relative roles of specific myeloid BAFF sources and B cell niches when developing treatments for SLE and other BAFF-associated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- *Correspondence: Daniela Giordano,
| | - Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Keith B. Elkon
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
24
|
Zhang W, Shao T, Leung PSC, Tsuneyama K, Heuer L, Young HA, Ridgway WM, Gershwin ME. Dual B-cell targeting therapy ameliorates autoimmune cholangitis. J Autoimmun 2022; 132:102897. [PMID: 36029718 PMCID: PMC10311358 DOI: 10.1016/j.jaut.2022.102897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The ability to regulate B cell development has long been recognized to have therapeutic potential in a variety of autoimmune diseases. However, despite the presence of a classic autoantibody in primary biliary cholangitis (PBC), B cell depleting therapy and indeed therapy with other biologic agents has been disappointing. Unsuccessful treatment using Rituximab is associated with elevation of B-cell activating factor (BAFF) level. Indeed, therapies for PBC remain directed at modulating bile salt biology, rather than targeting effector pathways. With these data in mind, we proposed that targeting two major stages of B cell development, namely long-lived memory B cells and short-lived peripheral autoreactive plasma cells would have therapeutic potential. METHODS To address this thesis, we administrated anti-BAFF and anti-CD20 monoclonal antibody to ARE-Del mice, a well-characterized murine model of human PBC. We evaluated and compared the therapeutic efficacy of the two agents individually and the combination of anti-BAFF and anti-CD20 in female mice with well-established disease. RESULTS Our data demonstrate that there was an increased level of B cell depletion that resulted in a significantly more effective clinical and serologic response using the combination of agents as compared with the use of the individual agents. The combination of anti-BAFF and anti-CD20 treatment was more effective in reducing serum levels of antimitochondrial antibody (AMA), total IgM and IgG compared to mice treated with the 2 individual agents. Combination treatment efficiently depleted B cells in the peripheral blood, peritoneal cavity and spleen. Importantly, we identified a unique IgM+ FCRL5+ B cell subset which was sensitive to dual B-cell targeting therapy and depletion of this unique population was associated with reduced portal infiltration and bile duct damage. Taken together, our data indicate that dual B cell targeting therapy with anti-BAFF and anti-CD20 not only led to the efficient depletion of B cells both in the peripheral blood and tissues, but also led to significant clinical improvement. These findings highlight the potential application of combination of anti-BAFF and anti-CD20 in treating patients with PBC. However, additional studies in other animal models of PBC should be undertaken before considering human trials in those PBC patients who have incomplete responses to conventional therapy.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Tihong Shao
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University; Hefei, China.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School; Tokushima, Japan.
| | - Luke Heuer
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute-Frederick; Frederick, MD, USA.
| | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| |
Collapse
|
25
|
Hasnat MA, Cheang I, Dankers W, Lee JPW, Truong LM, Pervin M, Jones SA, Morand EF, Ooi JD, Harris J. Investigating immunoregulatory effects of myeloid cell autophagy in acute and chronic inflammation. Immunol Cell Biol 2022; 100:605-623. [PMID: 35652357 PMCID: PMC9542007 DOI: 10.1111/imcb.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Studies have highlighted a critical role for autophagy in the regulation of multiple cytokines. Autophagy inhibits the release of interleukin (IL)‐1 family cytokines, including IL‐1α, IL‐1β and IL‐18, by myeloid cells. This, in turn, impacts the release of other cytokines by myeloid cells, as well as other cells of the immune system, including IL‐22, IL‐23, IL‐17 and interferon‐γ. Here, we assessed the impact of genetic depletion of the autophagy gene Atg7 in myeloid cells on acute and chronic inflammation. In a model of acute lipopolysaccharide‐induced endotoxemia, loss of autophagy in myeloid cells resulted in increased release of proinflammatory cytokines, both locally and systemically. By contrast, loss of Atg7 in myeloid cells in the Lyn−/− model of lupus‐like autoimmunity resulted in reduced systemic release of IL‐6 and IL‐10, with no effects on other cytokines observed. In addition, Lyn−/− mice with autophagy‐deficient myeloid cells showed reduced expression of autoantibodies relevant to systemic lupus erythematosus, including anti‐histone and anti‐Smith protein. In vitro, loss of autophagy, through pharmacological inhibition or small interfering RNA against Becn1, inhibited IL‐10 release by human and mouse myeloid cells. This effect was evident at the level of Il10 messenger RNA expression. Our data highlight potentially important differences in the role of myeloid cell autophagy in acute and chronic inflammation and demonstrate a direct role for autophagy in the production and release of IL‐10 by macrophages.
Collapse
Affiliation(s)
- Md Abul Hasnat
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - IanIan Cheang
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Wendy Dankers
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Jacinta PW Lee
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Lynda M Truong
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Mehnaz Pervin
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Sarah A Jones
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Joshua D Ooi
- Regulatory T Cell Therapies Group, Centre for Inflammatory Diseases Department of Medicine, School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - James Harris
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| |
Collapse
|
26
|
Perutelli F, Jones R, Griggio V, Vitale C, Coscia M. Immunotherapeutic Strategies in Chronic Lymphocytic Leukemia: Advances and Challenges. Front Oncol 2022; 12:837531. [PMID: 35265527 PMCID: PMC8898826 DOI: 10.3389/fonc.2022.837531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Immune-based therapeutic strategies have drastically changed the landscape of hematological disorders, as they have introduced the concept of boosting immune responses against tumor cells. Anti-CD20 monoclonal antibodies have been the first form of immunotherapy successfully applied in the treatment of CLL, in the context of chemoimmunotherapy regimens. Since then, several immunotherapeutic approaches have been studied in CLL settings, with the aim of exploiting or eliciting anti-tumor immune responses against leukemia cells. Unfortunately, despite initial promising data, results from pilot clinical studies have not shown optimal results in terms of disease control - especially when immunotherapy was used individually - largely due to CLL-related immune dysfunctions hampering the achievement of effective anti-tumor responses. The growing understanding of the complex interactions between immune cells and the tumor cells has paved the way for the development of new combined approaches that rely on the synergism between novel agents and immunotherapy. In this review, we provide an overview of the most successful and promising immunotherapeutic modalities in CLL, including both antibody-based therapy (i.e. monoclonal antibodies, bispecific antibodies, bi- or tri- specific killer engagers) and adoptive cellular therapy (i.e. CAR T cells and NK cells). We also provide examples of successful new combination strategies and some insights on future perspectives.
Collapse
Affiliation(s)
- Francesca Perutelli
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Rebecca Jones
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Valentina Griggio
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Candida Vitale
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Coscia
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- *Correspondence: Marta Coscia,
| |
Collapse
|