1
|
Wang H, Chen G, Gong Q, Wu J, Chen P. Primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome: a Mendelian randomization study. Front Immunol 2024; 15:1403429. [PMID: 39253091 PMCID: PMC11381235 DOI: 10.3389/fimmu.2024.1403429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background Currently, evidence regarding the causal relationship between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome is limited and inconsistent. Therefore, this study employs Mendelian randomization (MR) methodology to investigate the causal relationship between the two. Methods This study selected 110 single-nucleotide polymorphisms (SNPs) of primary immunodeficiency-related genes as instrumental variables (IVs). Genetic associations of primary immunodeficiency-related genes were derived from recent genome-wide association studies (GWAS) data on human plasma protein levels and circulating immune cells. Data on genes associated with varicella-zoster virus reactivation syndrome were obtained from the GWAS Catalog and FINNGEN database, primarily analyzed using inverse variance weighting (IVW) and sensitivity analysis. Results Through MR analysis, we identified 9 primary immunodeficiency-related genes causally associated with herpes zoster and its subsequent neuralgia; determined causal associations of 20 primary immunodeficiency-related genes with three vascular lesions (stroke, cerebral aneurysm, giant cell arteritis); revealed causal associations of 10 primary immunodeficiency-related genes with two ocular diseases (retinopathy, keratitis); additionally, three primary immunodeficiency-related genes each were associated with encephalitis, cranial nerve palsy, and gastrointestinal infections. Conclusions This study discovers a certain association between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome, yet further investigations are warranted to explore the specific mechanisms underlying these connections.
Collapse
Affiliation(s)
- Hao Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qian Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Peng Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Yin W, Li R, Zhang Z, Wang Y, Tang X, Zhu L, Yao H, Li K. Causal association between skin cancer and immune cells: mendelian randomization (MR) study. BMC Cancer 2024; 24:849. [PMID: 39020276 PMCID: PMC11256556 DOI: 10.1186/s12885-024-12603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Numerous meta-analyses and clinical studies have shown that subtypes of immune cells are associated with the development of skin cancer, but it is not clear whether this association is causal or biased. Mendelian randomization (MR) analysis reduces the effect of confounding factors and improves the accuracy of the results when compared to traditional studies. Thus, in order to examine the causal relationship between various immune cell and skin cancer, this study employs two-sample MR. METHODS This study assesses the causal association between 731 immune cell characteristics and skin cancer using a two-sample Mendel randomization (MR) methodology. Multiple MR methods were used to bias and to derive reliable estimates of causality between instrumental variables and outcomes. Comprehensive sensitivity analyses were used to validate the stability, heterogeneity and horizontal multiplicity of the results. RESULTS We discovered that potential causal relationships between different types of immune cells and skin cancer disease. Specifically, one type of immune cell as potentially causal to malignant melanoma of skin (MM), eight different types of immune cells as potentially causal to basal cell carcinoma (BCC), four different types of immune cells as potentially causal to actinic keratosis (AK), and no different types of immune cells were found to have a potential causal association with squamous cell carcinoma(SCC), with stability in all of the results. CONCLUSION This study demonstrates the close connection between immune cells and skin cancer disease by genetic means, which enriches the current knowledge about the role of immune cells in skin cancer and also contributes to the design of therapeutic strategies from an immunological perspective.
Collapse
Affiliation(s)
- Wei Yin
- Cancer Biotherapy Center, Key Laboratory of Melanoma Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan Province, 650000, China
| | - Ruilei Li
- Cancer Biotherapy Center, Key Laboratory of Melanoma Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan Province, 650000, China
| | - Zhaoqi Zhang
- Cancer Biotherapy Center, Key Laboratory of Melanoma Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan Province, 650000, China
| | - Ying Wang
- Cancer Biotherapy Center, Key Laboratory of Melanoma Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan Province, 650000, China
| | - Xinghua Tang
- Cancer Biotherapy Center, Key Laboratory of Melanoma Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan Province, 650000, China
| | - Lin Zhu
- Cancer Biotherapy Center, Key Laboratory of Melanoma Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan Province, 650000, China
| | - Hong Yao
- Cancer Biotherapy Center, Key Laboratory of Melanoma Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan Province, 650000, China.
| | - Ke Li
- Cancer Biotherapy Center, Key Laboratory of Melanoma Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan Province, 650000, China.
| |
Collapse
|
3
|
Hsieh EWY, Bolze A, Hernandez JD. Inborn errors of immunity illuminate mechanisms of human immunology and pave the road to precision medicine. Immunol Rev 2024; 322:5-14. [PMID: 38308392 DOI: 10.1111/imr.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Affiliation(s)
- Elena W Y Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Joseph D Hernandez
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Dimitriadis K, Katelani S, Pappa M, Fragkoulis GE, Androutsakos T. The Role of Interleukins in HBV Infection: A Narrative Review. J Pers Med 2023; 13:1675. [PMID: 38138902 PMCID: PMC10744424 DOI: 10.3390/jpm13121675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a worldwide medical issue with significant morbidity and mortality, as it is the main cause of chronic liver disease and hepatocellular carcinoma (HCC). Both innate and adaptive immune responses play a key role in HBV replication and suppression. Recently, the pathophysiological function of interleukins (IL) in the natural course of HBV has gained much attention as a result of the broad use of anti-interleukin agents for a variety of autoimmune diseases and the accompanying risk of HBV reactivation. We present a narrative review regarding the role of IL in HBV infection. Collectively, the pro-inflammatory ILs, namely IL-1, IL-5, IL-6, IL-12 and IL-21, seem to play a critical role in the suppression of HBV replication. In contrast, the anti-inflammatory cytokines IL-10, IL-23 and IL-35 probably act as HBV replication enhancers, while IL-17 has been correlated with HBV-related liver injury. Interestingly enough, IL-2, IL-4 and IL-12 have been tried as therapeutic options against HBV infection with contradictory results. Lastly, the role of IL-22 remains largely ill defined, although preliminary data suggest that it may play a significant role in HBV replication, proliferation and subsequent liver damage.
Collapse
Affiliation(s)
- Konstantinos Dimitriadis
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.D.); (S.K.)
| | - Stamatia Katelani
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.D.); (S.K.)
| | - Maria Pappa
- First Department of Internal Medicine, Propaedeutic Clinic, “Laiko” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (G.E.F.)
| | - George E. Fragkoulis
- First Department of Internal Medicine, Propaedeutic Clinic, “Laiko” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (G.E.F.)
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.D.); (S.K.)
| |
Collapse
|
5
|
Hernandez JD, Hsieh EW. A great disturbance in the force: IL-2 receptor defects disrupt immune homeostasis. Curr Opin Pediatr 2022; 34:580-588. [PMID: 36165614 PMCID: PMC9633542 DOI: 10.1097/mop.0000000000001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The current review highlights how inborn errors of immunity (IEI) due to IL-2 receptor (IL-2R) subunit defects may result in children presenting with a wide variety of infectious and inflammatory presentations beyond typical X-linked severe combined immune deficiency (X-SCID) associated with IL-2Rγ. RECENT FINDINGS Newborn screening has made diagnosis of typical SCID presenting with severe infections less common. Instead, infants are typically diagnosed in the first days of life when they appear healthy. Although earlier diagnosis has improved clinical outcomes for X-SCID, atypical SCID or other IEI not detected on newborn screening may present with more limited infectious presentations and/or profound immune dysregulation. Early management to prevent/control infections and reduce inflammatory complications is important for optimal outcomes of definitive therapies. Hematopoietic stem cell transplant (HSCT) is curative for IL-2Rα, IL-2Rβ, and IL-2Rγ defects, but gene therapy may yield comparable results for X-SCID. SUMMARY Defects in IL-2R subunits present with infectious and inflammatory phenotypes that should raise clinician's concern for IEI. Immunophenotyping may support the suspicion for diagnosis, but ultimately genetic studies will confirm the diagnosis and enable family counseling. Management of infectious and inflammatory complications will determine the success of gene therapy or HSCT.
Collapse
Affiliation(s)
- Joseph D. Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, School of Medicine, Stanford University, Lucile Packard Children’s Hospital
| | - Elena W.Y. Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Children’s Hospital Colorado
- Department of Immunology and Microbiology, School of Medicine, University of Colorado
| |
Collapse
|
6
|
Sheng L, Li X, Weng F, Wu S, Chen Y, Lou L. Efficacy and Safety of Adjunctive Recombinant Human Interleukin-2 for Patients with Pulmonary Tuberculosis: A Meta-Analysis. J Trop Med 2022; 2022:5071816. [PMID: 36467716 PMCID: PMC9712014 DOI: 10.1155/2022/5071816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 09/10/2024] Open
Abstract
Background The results of previous clinical trials evaluating the efficacy and safety of recombinant human interleukin-2 (rhuIL-2) for adult patients with pulmonary tuberculosis showed inconsistent results. Accordingly, a comprehensive systematic review and meta-analysis was performed. Methods Relevant randomized controlled trials (RCTs) were retrieved by searching the PubMed, Embase, Cochrane's Library, Web of Science, Wanfang, and CNKI databases. A random-effects model was used to combine the results. Results 18 RCTs with 2630 patients were included in this meta-analysis. Pooled results showed that adjunctive rhuIL-2 significantly increased the odds of sputum culture conversion to negative (risk ratio [RR]: 1.27, 95% CI: 1.09 to 1.47, p=0.002, I 2 = 80%), sputum smear conversion to negative (RR: 1.35, 95% CI: 1.17 to 1.57, p < 0.001, I 2 = 83%), radiographic focus absorption (RR: 1.17, 95% CI: 1.06 to 1.30, p=0.002, I 2 = 72), and cavity closure (RR: 1.24, 95% CI: 1.09 to 1.40, p < 0.001, I 2 = 23). The use of rhuIL-2 was not related to any severe adverse events which led to discontinuation of the treatment. Results showed that rhuIL-2 was related to an increased risk of fever (RR: 2.46, 95% CI: 1.29 to 4.70, p=0.006, I 2 = 0%). The incidence of other adverse events, such as musculoskeletal pain, hepatic injury, and renal toxicity, was not significantly different between groups (p all >0.05). Conclusions rhuIL-2 is an effective adjunctive immunotherapy for patients with pulmonary tuberculosis.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Infectious Diseases, Yiwu Central Hospital, Jinhua, Zhejiang 322000, China
| | - Xiaofei Li
- Department of Infectious Diseases, Yiwu Central Hospital, Jinhua, Zhejiang 322000, China
| | - Fangbin Weng
- Department of Infectious Diseases, Yiwu Central Hospital, Jinhua, Zhejiang 322000, China
| | - Shuang Wu
- Department of Infectious Diseases, Yiwu Central Hospital, Jinhua, Zhejiang 322000, China
| | - Yongxin Chen
- Department of Infectious Diseases, Yiwu Central Hospital, Jinhua, Zhejiang 322000, China
| | - Lianqing Lou
- Department of Infectious Diseases, Yiwu Central Hospital, Jinhua, Zhejiang 322000, China
| |
Collapse
|
7
|
The role of A Disintegrin and Metalloproteinase (ADAM)-10 in T helper cell biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119192. [PMID: 34982961 DOI: 10.1016/j.bbamcr.2021.119192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
A Disintegrin and Metalloproteinases (ADAM)-10 is a member of a family of membrane-anchored proteinases that regulate a broad range of cellular functions with central roles within the immune system. This has spurred the interest to modulate ADAM activity therapeutically in immunological diseases. CD4 T helper (Th) cells are the key regulators of adaptive immune responses. Their development and function is strongly dependent on Notch, a key ADAM-10 substrate. However, Th cells rely on a variety of additional ADAM-10 substrates regulating their functional activity at multiple levels. The complexity of both, the ADAM substrate expression as well as the functional consequences of ADAM-mediated cleavage of the various substrates complicates the analysis of cell type specific effects. Here we provide an overview on the major ADAM-10 substrates relevant for CD4 T cell biology and discuss the potential effects of ADAM-mediated cleavage exemplified for a selection of important substrates.
Collapse
|
8
|
Su HC, Casanova JL. Editorial overview: Human inborn errors of immunity to infection. Curr Opin Immunol 2021; 72:iii-v. [PMID: 34742535 DOI: 10.1016/j.coi.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|